Package 'mvLSWimpute'

July 23, 2025

Type Package	
Title Imputation Methods for Multivariate Locally Stationary Time Series	
Version 0.1.1	
Date 2022-08-15	
Author Rebecca Wilson [aut], Matt Nunes [aut, cre], Idris Eckley [ctb, ths], Tim Park [ctb]	
Maintainer Matt Nunes <nunesrpackages@gmail.com></nunesrpackages@gmail.com>	
Description Implementation of imputation techniques based on locally stationary wavelet time series forecasting methods from Wilson, R. E. et al. $(2021) < doi:10.1007/s11222-021-09998-2>$.	
License GPL-2	
Depends wavethresh, mvLSW	
Imports binhf, xts, zoo, imputeTS, utils	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2022-08-16 10:20:02 UTC	
Contents	
_r	2 3 4 6 7 8 9 11 13
Index	15

Imputation Methods for Multivariate Locally Stationary Time Series mvLSWimpute-package

Description

Implementation of imputation techniques based on locally stationary wavelet time series forecasting methods from Wilson, R. E. et al. (2021) <doi:10.1007/s11222-021-09998-2>.

Details

The DESCRIPTION file:

Package: mvLSWimpute Type: Package

Title: Imputation Methods for Multivariate Locally Stationary Time Series

Version: 0.1.1 2022-08-15 Date:

Author: Rebecca Wilson [aut], Matt Nunes [aut, cre], Idris Eckley [ctb, ths], Tim Park [ctb]

Authors@R: c(person("Rebecca", "Wilson", role = "aut"), person("Matt", "Nunes", role=c("aut", "cre"), email="nunesrpacka

Matt Nunes <nunesrpackages@gmail.com> Maintainer:

Description: Implementation of imputation techniques based on locally stationary wavelet time series forecasting methods f

License: GPL-2

Depends: wavethresh, mvLSW

Imports: binhf, xts, zoo, imputeTS, utils

Index of help topics:

Function to smooth the raw wavelet periodogram correct_per form_lacv_forward

Function to form the local autocovariance array

for the forecasting / backcasting step.

haarWT Function to apply the (univariate) Haar wavelet

transform

mvLSWimpute-package Imputation Methods for Multivariate Locally

Stationary Time Series

 mv_impute Function to apply the mvLSWimpute method and

impute missing values in a multivariate locally

stationary time series

pdef Function to regularise the LWS matrix.

Function to form the prediction equations for pred_eq_forward

the forecasting / backcasting step.

Function to smooth the raw wavelet periodogram smooth_per

using the default 'mvLSW' routine.

Function to estimate the Local Wavelet Spectral spec_estimation

matrix for a multivariate locally stationary

time series containing missing values

correct_per 3

The main routine of the package is mv_impute which performs forward or forward and backward imputation of locally stationary multivariate time series, using one-step ahead forecasting (and backcasting).

Author(s)

Rebecca Wilson [aut], Matt Nunes [aut, cre], Idris Eckley [ctb, ths], Tim Park [ctb]

Maintainer: Matt Nunes <nunesrpackages@gmail.com>

References

Wilson, R. E., Eckley, I. A., Nunes, M. A. and Park, T. (2021) A wavelet-based approach for imputation in nonstationary multivariate time series. _Statistics and Computing_ *31* Article 18, doi:10.1007/s11222-021-09998-2.

correct_per

Function to smooth the raw wavelet periodogram

Description

This function corrects the raw wavelet periodogram, similar to the mvEWS function in the mvLSW package, except acting on the raw periodogram directly. See mvEWS for more details. Note: this function is not really intended to be used separately, but internally within the spec_estimation function.

Usage

correct_per(RawPer)

Arguments

RawPer

Raw wavelet periodogram that is to be corrected, can be either a 4D array or a mvLSW object.

Details

The raw wavelet periodogram as an estimator for the local wavelet spectrum (LWS) is biased, and thus needs to be corrected. This is done using a correction (debiasing) matrix, formed from the inner product of autocorrelation wavelets, see Park et al. (2014), Taylor et al. (2019) for more details. This function performs this bias-correction.

Value

Returns a mvLSW object containing the smoothed EWS of a multivariate locally stationary time series.

Author(s)

Rebecca Wilson

4 form_lacv_forward

References

Taylor, S.A.C., Park, T.A. and Eckley, I. (2019) Multivariate locally stationary wavelet analysis with the mvLSW R package. _Journal of Statistical Software_ *90*(11) pp. 1-16, doi:10.18637/jss.v090.i11.

Park, T., Eckley, I. and Ombao, H.C. (2014) Estimating time-evolving partial coherence between signals via multivariate locally stationary wavelet processes. _IEEE Transactions on Signal Processing_ *62*(20) pp. 5240-5250.

See Also

```
mvEWS, spec_estimation
```

Examples

```
## Sample bivariate locally stationary time series

set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)

# form periodogram, reshaping array as necessary

tmp = apply(X, 2, function(x){haarWT(x)$D})
D = array(t(tmp), dim = c(2, 2^8, 8))

RawPer = array(apply(D, c(2, 3), tcrossprod), dim = c(2, 2, 2^8, 8))
RawPer = aperm(RawPer, c(1, 2, 4, 3))
# now correct</pre>
```

form_lacv_forward

Function to form the local autocovariance array for the forecasting / backcasting step.

Description

This function generates the local autocovariance (LACV) array that is used in the forecasting / backcasting step to form the prediction equations.

Usage

```
form_lacv_forward(spectrum, index, p.len = 2)
form_lacv_backward(spectrum, index, p.len = 2)
```

form_lacv_forward 5

Arguments

spectrum Local wavelet spectral matrix for which we wish to form the local autocovari-

ance array.

index Time index of the missing data which we wish to impute.

p.len Number of terms to include in the clipped predictor when forecasting / back-

casting.

Details

In order to form the one-step ahead predictor for use in the imputation algorithm of Wilson et al. (2021), one needs the local autocovariance (LACV). This is computed using the relationship between the LACV and the local wavelet spectrum (LWS). See equations (4) and (5) in Wilson et al. (2021) for more details.

Value

Returns the local autocovariance array that can be used as an input to the pred_eq_forward or pred_eq_backward function.

Author(s)

Rebecca Wilson

References

Wilson, R. E., Eckley, I. A., Nunes, M. A. and Park, T. (2021) A wavelet-based approach for imputation in nonstationary multivariate time series. _Statistics and Computing_ *31* Article 18, doi:10.1007/s11222-021-09998-2.

Taylor, S.A.C., Park, T.A. and Eckley, I. (2019) Multivariate locally stationary wavelet analysis with the mvLSW R package. _Journal of Statistical Software_ *90*(11) pp. 1-16, doi:10.18637/jss.v090.i11.

Park, T., Eckley, I. and Ombao, H.C. (2014) Estimating time-evolving partial coherence between signals via multivariate locally stationary wavelet processes. _IEEE Transactions on Signal Processing_ *62*(20) pp. 5240-5250.

See Also

```
pred_eq_forward, pred_eq_backward
```

```
## Sample bivariate locally stationary time series
set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)</pre>
```

6 haarWT

```
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)

# create some missing values, taking care to provide some data at the start of the series
missing.index = sort(sample(10:2^8, 30))
X[missing.index, ] <-NA

# estimate the spectrum
spec = spec_estimation(X)
out <- form_lacv_forward(spec$spectrum, missing.index[1], p.len=2)</pre>
```

haarWT

Function to apply the (univariate) Haar wavelet transform

Description

This function applies the (univariate) Haar wavelet transform. For a time series containing missing values, the wavelet coefficients are generating and any NAs remain intact.

Usage

```
haarWT(data)
```

Arguments

data

Input univariate time series.

Value

Returns a list containing the following elements:

- C Matrix containing the smooth coefficients for the transform.
- D Matrix containing the detail coefficients for the transform.

```
set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)</pre>
```

mv_impute 7

compute the haar wavelet coefficients of the first time series component:

```
Xwt1 = haarWT(X[, 1])
```

mv_impute	Function to apply the mvLSWimpute method and impute missing val-
	ues in a multivariate locally stationary time series

Description

This function applies the mvLSWimpute method to impute missing values in a multivariate locally stationary time series. The imputation can be based on forecasts only or use information from both a forecasting and backcasting step.

Usage

```
mv_impute(data, p = 2, type = "forward", index = NULL)
```

Arguments

data	Input multivariate time series, matrix of dimension TxP where P is the number of channels and T is the length of the series.
p	The number of terms to include in the clipped predictor when carrying out one step ahead forecasting/backcasting.
type	The type of imputation to carry out, either "forward" or "forward-backward"
index	The set of time indices containing missing values, this is NULL by default and will be determined from the input series.

Value

Returns a list containing the following elements:

ImputedData	Matrix containing the imputed time series.
missing.index	Vector containing the set of time indices that have missing values.

Note

As with other time series imputation methods, mv_impute requires some data values at the start of the series. In this case, we need 5 time points.

Author(s)

Rebecca Wilson

8 pdef

References

Wilson, R. E., Eckley, I. A., Nunes, M. A. and Park, T. (2021) A wavelet-based approach for imputation in nonstationary multivariate time series. _Statistics and Computing_ *31* Article 18, doi:10.1007/s11222-021-09998-2.

Examples

```
set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)

# create some fake missing data, taking care not to have missingness hear the start of the series missing.index = sort(sample(10:2^8, 30))

X[missing.index, ] <- NA
newdata = mv_impute(X)</pre>
```

pdef

Function to regularise the LWS matrix.

Description

This function regularises each EWS matrix to ensure that they are strictly positive definite, similar to the mvEWS function in the mvLSW package, except acting on a (bias-corrected) periodogram directly. See mvEWS for more details. Note: this function is not really intended to be used separately, but internally within the spec_estimation function.

Usage

```
pdef(spec, W = 1e-10)
```

Arguments

spec

EWS matrix that is to be regularised, can be either a 4D array or a mvLSW object.

W

Tolerance in applying matrix regularisation to ensure each EWS matrix to be

strictly positive definite. This is 1e-10 by default.

Value

Returns a mvLSW object containing the regularised EWS of a multivariate locally stationary time series.

pred_eq_forward 9

Author(s)

Rebecca Wilson

References

Taylor, S.A.C., Park, T.A. and Eckley, I. (2019) Multivariate locally stationary wavelet analysis with the mvLSW R package. _Journal of Statistical Software_ *90*(11) pp. 1-16, doi:10.18637/jss.v090.i11.

Park, T., Eckley, I. and Ombao, H.C. (2014) Estimating time-evolving partial coherence between signals via multivariate locally stationary wavelet processes. _IEEE Transactions on Signal Processing_ *62*(20) pp. 5240-5250.

See Also

```
mvEWS, spec_estimation
```

Examples

```
set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)

# form periodogram
tmp = apply(X, 2, function(x){haarWT(x)$D})
D = array(t(tmp), dim = c(2, 2^8, 8))
RawPer = array(apply(D, c(2, 3), tcrossprod), dim = c(2, 2, 2^8, 8))
RawPer = aperm(RawPer, c(1, 2, 4, 3))
# now correct
correctedper = correct_per(RawPer)
# now regularize
newper = pdef(correctedper)</pre>
```

pred_eq_forward

Function to form the prediction equations for the forecasting / back-casting step.

10 pred_eq_forward

Description

This function generates the prediction equations (B matrix and RHS matrix) for one step ahead prediction.

Usage

```
pred_eq_forward(lacv.array, p = 2, index)
pred_eq_forward(lacv.array, p = 2, index)
```

Arguments

lacv.array The local autocovariance array from which we want to form the prediction equa-

tions, can be obtained as the output of the form_lacv_forward or form_lacv_backward

functions.

p Number of terms to include in the clipped predictor when forecasting / back-

casting.

index Time index of the missing data which we wish to impute.

Details

The one-step ahead predictor is formed as a linear combination of the time series. The coefficients involved in optimal predictor (in the sense of minimising the mean square prediction error) are obtained by solving a matrix equation formed using parts of the (estimated) local autocovariance array. This function forms the matrices involved in the equation used to find the optimal linear predictor. See equation (6) in Wilson et al. (2021) or Section 3.3 in Fryzlewicz et al. (2003) for more details.

Value

Returns a list containing the following elements:

B The left-hand side of the matrix equation to compute the optimal one-step ahead

predictor, which is essentially used to approximate the MSPE for a particular set

of coefficients used in a predictor.

RHS The right hand side of the matrix equation used to compute the optimal one-step

ahead predictor.

Author(s)

Rebecca Wilson

References

Wilson, R. E., Eckley, I. A., Nunes, M. A. and Park, T. (2021) A wavelet-based approach for imputation in nonstationary multivariate time series. _Statistics and Computing_ *31* Article 18, doi:10.1007/s11222-021-09998-2.

smooth_per 11

Fryzlewicz, P. van Bellegem, S. and von Sachs, R. (2003) Forecasting non-stationary time series by wavelet process modelling. _Annals of the Institute of Statistical Mathematics_ *55* (4), pp. 737-764.

See Also

```
form_lacv_forward, pred_eq_backward
```

Examples

```
## Sample bivariate locally stationary time series
set.seed(1)
X \leftarrow matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] \leftarrow 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] \leftarrow X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] \leftarrow X[-(1:2^7), 1] * 4
X \leftarrow as.ts(X)
# create some missing values, taking care to provide some data at the start of the series
missing.index = sort(sample(10:2^8, 30))
X[missing.index, ] <-NA</pre>
# estimate the spectrum
spec = spec_estimation(X)
# obtain the LACV
lacvfor <- form_lacv_forward(spec$spectrum, missing.index[1], p.len = 2)</pre>
# form matrix equation terms
mspeterms = pred_eq_forward(lacvfor, p = 2, missing.index[1])
# compute the optimal coefficients in the linear predictor:
predcoeffs = solve(mspeterms$B, mspeterms$RHS)
```

smooth_per

Function to smooth the raw wavelet periodogram using the default $\ensuremath{\mathsf{mvLSW}}$ routine.

Description

This function smooths the raw wavelet periodogram, similar to the mvEWS function in the mvLSW package, except acting on the raw periodogram directly. See mvEWS for more details. Note: this function is not really intended to be used separately, but internally within the spec_estimation function.

12 smooth_per

Usage

Arguments

RawPer Raw wavelet periodogram that is to be smoothed, can be either a 4D array or a

mvLSW object.

type Determines the type of smoothing to be performed, if "all" then the same

smoothing kernel is applied to all levels, if "by.level" then a different smooth-

ing kernel is applied to each level.

kernel.name Name of the smoothing kernel to be applied.

optimize Should the smoothing be optimized. If FALSE then smoothing is carried out with

kernel.name and kernel.param.

kernel.param Value of the smoothing kernel parameter to be applied.

smooth. Jset Vector indicating which levels should be used in the calculation of the optimal

kernel parameter. By default all levels are used.

Value

Returns a mvLSW object containing the smoothed EWS of a multivariate locally stationary time series.

Author(s)

Rebecca Wilson

References

Taylor, S.A.C., Park, T.A. and Eckley, I. (2019) Multivariate locally stationary wavelet analysis with the mvLSW R package. _Journal of Statistical Software_ *90*(11) pp. 1-16, doi:10.18637/jss.v090.i11.

Park, T., Eckley, I. and Ombao, H.C. (2014) Estimating time-evolving partial coherence between signals via multivariate locally stationary wavelet processes. _IEEE Transactions on Signal Processing_ *62*(20) pp. 5240-5250.

See Also

```
mvEWS, spec_estimation
```

```
## Sample bivariate locally stationary time series
set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])</pre>
```

spec_estimation 13

```
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)

# form periodogram
tmp = apply(X, 2, function(x){haarWT(x)$D})
D = array(t(tmp), dim = c(2, 2^8, 8))

#sqrv <- function(d) return( d %*% t(d) )

#RawPer = array(apply(D, c(2, 3), sqrv), dim = c(2, 2, 2^8, 8))
RawPer = array(apply(D, c(2, 3), tcrossprod), dim = c(2, 2, 2^8, 8))
RawPer = aperm(RawPer, c(1, 2, 4, 3))

# now smooth
smoothper = smooth_per(RawPer)</pre>
```

spec_estimation

Function to estimate the Local Wavelet Spectral matrix for a multivariate locally stationary time series containing missing values

Description

This function estimates the LWS matrix for a multivariate locally stationary time series containing missing values. If the input time series does not contain missing values then spectral estimation is carried out using routines from the **mvLSW** package.

Usage

```
spec_estimation(data, interp = "linear")
```

Arguments

data Input multivariate time series, matrix of dimension TxP where P is the number

of channels and T is the length of the series.

interp Method of interpolation of NAs in spectrum. Can be "linear" or "spline";

see na_interpolation for more detals. See also note below.

Value

Returns a mvLSW object containing the estimated LWS matrix.

Note

For some series with a lot of missing values, the linear interpolation will result in zero periodogram values (due to the form of the Haar filters). This may not be desirable, so a higher order (spline) interpolation function may be better.

spec_estimation

See Also

```
correct_per, smooth_per, mvEWS, na_interpolation
```

```
## Sample bivariate locally stationary time series

set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)

# create some missing values, taking care to provide some data at the start of the series
missing.index = sort(sample(10:2^8, 30))
X[missing.index, ] <-NA

# estimate the spectrum

spec = spec_estimation(X)</pre>
```

Index

```
* package
    mvLSWimpute-package, 2
correct_per, 3, 14
form_lacv_backward(form_lacv_forward),
form_lacv_forward, 4, 11
haarWT, 6
mv_impute, 3, 7
mvEWS, 3, 4, 8, 9, 11, 12, 14
mvLSWimpute (mvLSWimpute-package), 2
mvLSWimpute-package, 2
na_interpolation, 13, 14
pdef, 8
pred_eq_backward, 5, 11
pred_eq_backward (pred_eq_forward), 9
pred_eq_forward, 5, 9
smooth_per, 11, 14
spec_estimation, 4, 9, 12, 13
```