Type: | Package |
Title: | Nonlinear Cointegrating Autoregressive Distributed Lag Model |
Version: | 0.1.6 |
Author: | Taha Zaghdoudi |
Maintainer: | Taha Zaghdoudi <zedtaha@gmail.com> |
Description: | Computes the nonlinear cointegrating autoregressive distributed lag model with automatic bases aic and bic lags selection of independent variables proposed by (Shin, Yu & Greenwood-Nimmo, 2014 <doi:10.1007/978-1-4899-8008-3_9>). |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.0.2 |
Imports: | stats, strucchange, tseries, Formula, gtools, car, MASS |
Suggests: | testthat |
BugReports: | https://github.com/zedtaha/nardl/issues |
URL: | https://github.com/zedtaha/nardl |
NeedsCompilation: | no |
Packaged: | 2021-01-06 17:29:50 UTC; t.Zaghdoudi |
Repository: | CRAN |
Date/Publication: | 2021-01-06 18:20:02 UTC |
ARCH test
Description
Computes the Lagrange multiplier test for conditional heteroscedasticity of Engle (1982), as described by Tsay (2005, pp. 101-102).
Usage
ArchTest(x, lags = 12, demean = FALSE)
Arguments
x |
numeric vector |
lags |
positive integer number of lags |
demean |
logical: If TRUE, remove the mean before computing the test statistic. |
Examples
reg<-nardl(food~inf,fod,ic="aic",maxlag = 4,graph = TRUE,case=3)
x<-reg$selresidu
nlag<-reg$nl
ArchTest(x,lags=nlag)
LM test for serial correlation
Description
LM test for serial correlation
Usage
bp2(object, nlags, fill = NULL, type = c("F", "Chi2"))
Arguments
object |
fitted lm model |
nlags |
positive integer number of lags |
fill |
starting values for the lagged residuals in the auxiliary regression. By default 0. |
type |
Fisher or Chisquare statistics |
Examples
reg<-nardl(food~inf,fod,ic="aic",maxlag = 4,graph = TRUE,case=3)
lm2<-bp2(reg$fits,reg$nl,fill=0,type="F")
Function cumsq
Description
Function cumsq
Usage
cumsq(e, k, n)
Arguments
e |
is the recursive errors |
k |
is the estimated coefficients length |
n |
is the recursive errors length |
Examples
reg<-nardl(food~inf,fod,ic="aic",maxlag = 4,graph = TRUE,case=3)
e<-reg$rece
k<-reg$k
n<-reg$n
cumsq(e=e,k=k,n=n)
Function cusum
Description
Function cusum
Usage
cusum(e, k, n)
Arguments
e |
is the recursive errors |
k |
is the estimated coefficients length |
n |
is the recursive errors length |
Examples
reg<-nardl(food~inf,fod,ic="aic",maxlag = 4,graph = TRUE,case=3)
e<-reg$rece
k<-reg$k
n<-reg$n
cusum(e=e,k=k,n=n)
Indian yearly data of inflation rate and percentage food import to total import
Description
The data frame fod
contains the following variables:
food: percentage food import to total import
inf: inflation rate
year: the year
Usage
data(fod)
Format
A data frame with 54 rows and 2 variables
Nonlinear ARDL function
Description
Nonlinear ARDL function
Usage
nardl(formula, data, ic = c("aic", "bic"), maxlag = 4, graph = FALSE, case = 3)
Arguments
formula |
food~inf or food~inf|I(inf^2) |
data |
the dataframe |
ic |
: c("aic","bic") criteria model selection |
maxlag |
maximum lag number |
graph |
TRUE to show stability tests plot |
case |
case number 3 for (unrestricted intercert, no trend) and 5 (unrestricted intercept, unrestricted trend), 1 2 and 4 not supported |
Examples
############################################
# Fit the nonlinear cointegrating autoregressive distributed lag model
############################################
# Load data
data(fod)
############################################
# example 1:auto selected lags (maxlags=TRUE)
############################################
reg<-nardl(food~inf,fod,ic="aic",maxlag = 4,graph = FALSE,case=3)
summary(reg)
############################################
# example 2: Cusum and CusumQ plot (graph=TRUE)
############################################
reg<-nardl(food~inf,fod,ic="aic",maxlag = 4,graph = TRUE,case=3)
pssbounds
Description
display the necessary critical values to conduct the Pesaran, Shin and Smith 2001 bounds test for cointegration. See http://andyphilips.github.io/pssbounds/.
Usage
pssbounds(obs, fstat, tstat = NULL, case, k)
Arguments
obs |
number of observations |
fstat |
value of the F-statistic |
tstat |
value of the t-statistic |
case |
case number |
k |
number of regressors appearing in lag levels |
Details
pssbounds is a module to display the necessary critical values to conduct the Pesaran, Shin and Smith (2001) bounds test for cointegration. Critical values using the F-test are the default; users can also include the critical values of the t-test with the tstat parameter.
As discussed in Philips (2016), the upper and lower bounds of the cointegration test are non-standard, and depend on the number of observations, the number of regressors appearing in levels, and the restrictions (if any) placed on the intercept and trend. Asymptotic critical values are provided by Pesaran, Shin, and Smith (2001), and small-sample critical values by Narayan (2005). The following five cases are possible: I (no intercept, no trend), II (restricted intercept, no trend), III (unrestricted intercept, no trend), IV (unrestricted intercept, restricted trend), V (unrestricted intercept, unrestricted trend). See Pesaran, Shin and Smith (2001) for more details; Case III is the most common.
More details are available at http://andyphilips.github.io/pssbounds/.
Value
None
Author(s)
Soren Jordan, sorenjordanpols@gmail.com
Andrew Q Philips, aphilips@pols.tamu.edu
References
If you use pssbounds, please cite:
Jordan, Soren and Andrew Q. Philips. "pss: Perform bounds test for cointegration and perform dynamic simulations."
and
Philips, Andrew Q. "Have your cake and eat it too? Cointegration and dynamic inference from autoregressive distributed lag models" Working Paper.
Narayan, Paresh Kumar. 2005. "The Saving and Investment Nexus for China: Evidence from Cointegration Tests." Applied Economics 37(17):1979-1990.
Pesaran, M Hashem, Yongcheol Shin and Richard J Smith. 2001. "Bounds testing approaches to the analysis of level relationships." Journal of Applied Econometrics 16(3):289-326.
Examples
reg<-nardl(food~inf,fod,ic="aic",maxlag = 4,graph = TRUE,case=3)
pssbounds(case=reg$case,fstat=reg$fstat,obs=reg$Nobs,k=reg$k)
# F-stat concludes I(1) and cointegrating, t-stat concludes I(0).
Summary of a nardl model
Description
summary
method for a nardl
model.
Usage
## S3 method for class 'nardl'
summary(object, ...)
Arguments
object |
is the object of the function |
... |
not used |
Value
an object of the S3 class summary.nardl
with the
following components: