Package 'newIMVC'

July 22, 2025

Type Package

Title A Robust Integrated Mean Variance Correlation

Version 0.1.0

Description Measure the dependence structure between two random variables with a new correlation coefficient and extend it to hypothesis test, feature screening and false discovery rate control.

License GPL-3

Encoding UTF-8

Imports splines, quantreg, expm, CompQuadForm, GGMridge, limma, stats

RoxygenNote 7.2.3

Suggests knitr, mvtnorm, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Wei Xiong [aut], Han Pan [aut, cre], Hengjian Cui [aut]

Maintainer Han Pan <scott_pan@163.com>

Repository CRAN

Date/Publication 2024-04-16 14:50:13 UTC

Contents

IMVC	2
IMVCFDR	2
IMVCS	3
ΙΜΥCΤ	4
	6

Index

Description

This function is used to calculate the integrated mean variance correlation between two vectors

Usage

IMVC(y, x, K, NN = 3, type)

Arguments

У	is a numeric vector
х	is a numeric vector
К	is the number of quantile levels
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation us- ing B splines

Value

The value of the corresponding sample statistic

Examples

```
n=200
x=rnorm(n)
y=x^2+rt(n,2)
```

IMVC(y,x,K=10,type="nonlinear")

IMVCFDR

Integrated Mean Variance Correlation Based FDR Control

Description

This function is used for FDR control with integrated mean variance correlation

Usage

IMVCFDR(y, x, K, NN = 3, numboot, timeboot, true_signal, null_method, alpha)

IMVC

IMVCS

Arguments

У	is the response vector
х	is the covariate matrix
К	is the number of quantile levels
NN	is the number of B spline basis, default is 3
numboot	is the size of bootstrap samples
timeboot	is the number of bootstrap times for computing standard deviation of the IMVC
true_signal	is the true active set
null_method	is the estimation method for proportion of true null hypotheses. Choices are "lfdr", "mean", "hist" or "convest"
alpha	is the nominal FDR level

Value

A list of FDP, power and selected variables

Examples

```
require("mvtnorm")
n=200
p=20
pho1=0.5
mean_x=rep(0,p)
sigma_x=matrix(NA,nrow = p,ncol = p)
for (i in 1:p) {
 for (j in 1:p) {
   sigma_x[i,j]=pho1^(abs(i-j))
 }
}
x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol")
x1=x[,1]
x2=x[,2]
x3=x[,3]
y=2*x1+2*x2+2*x3+rnorm(n)
```

IMVCFDR(y,x,K=5,numboot=100,timeboot=20,true_signal=c(1,2,3),null_method="hist",alpha=0.2)

IMVCS

Integrated Mean Variance Correlation Based Screening

Description

This function is used to select important features using integrated mean variance correlation

Usage

IMVCS(y, x, K, d, NN = 3, type)

IMVCT

Arguments

У	is the response vector
x	is the covariate matrix
К	is the number of quantile levels
d	is the size of selected variables
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation us- ing B splines

Value

The labels of first d largest active set of all predictors

Examples

```
require("mvtnorm")
n=200
p=500
pho1=0.8
mean_x=rep(0,p)
sigma_x=matrix(NA,nrow = p,ncol = p)
for (i in 1:p) {
for (j in 1:p) {
   sigma_x[i,j]=pho1^(abs(i-j))
 }
}
x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol")
x1=x[,1]
x2=x[,2]
x3=x[,12]
x4=x[,22]
y=2*x1+0.5*x2+3*x3*ifelse(x3<0,1,0)+2*x4+rnorm(n)
```

```
IMVCS(y,x,K=5,d=round(n/log(n)),type="nonlinear")
```

IMVCT

Integrated Mean Variance Correlation Based Hypothesis Test

Description

This function is used to test significance of linear or nonlinear correlation using integrated mean variance correlation

Usage

IMVCT(x, y, K, num_per, NN = 3, type)

IMVCT

Arguments

х	is the univariate covariate vector
У	is the response vector
К	is the number of quantile levels
num_per	is the number of permutation times
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation us- ing B splines

Value

The p-value of the corresponding hypothesis test

Examples

```
# linear model
n=100
x=rnorm(n)
y=2*x+rt(n,2)
IMVCT(x,y,K=5,type = "linear")
# nonlinear model
n=100
x=rnorm(n)
y=2*cos(x)+rt(n,2)
```

IMVCT(x,y,K=5,type = "nonlinear",num_per = 100)

Index

IMVC, 2 IMVCFDR, 2 IMVCS, 3 IMVCT, 4