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dBetaBinom A beta binomial distribution and beta function for use in nimble mod-
els

Description

dBetaBinom_v and dBetaBinom_s provide a beta binomial distribution that can be used directly
from R or in nimble models. These are also used by beta binomial variations of dNmixture distri-
butions. nimBetaFun is the beta function.

Usage

nimBetaFun(a, b, log)

dBetaBinom_v(x, N, shape1, shape2, len, log = 0)

dBetaBinom_s(x, N, shape1, shape2, len, log = 0)

rBetaBinom_v(n, N, shape1, shape2, len)

rBetaBinom_s(n, N, shape1, shape2, len)

Arguments

a shape1 argument of the beta function.
b shape2 argument of the beta function.
log TRUE or 1 to return log probability. FALSE or 0 to return probability.
x vector of integer counts.
N number of trials, sometimes called "size".
shape1 shape1 parameter of the beta distribution.
shape2 shape2 parameter of the beta distribution.
len length of x.
n number of random draws, each returning a vector of length len. Currently only

n = 1 is supported, but the argument exists for standardization of "r" functions.
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Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel). They are used by the beta-binomial variants of the N-
mixture distributions (dNmixture).

The beta binomial is the marginal distribution of a binomial distribution whose probability follows
a beta distribution.

The probability mass function of the beta binomial is choose(N, x) * B(x + shape1, N - x + shape2)
/ B(shape1, shape2), where B(shape1, shape2) is the beta function.

nimBetaFun(shape1, shape2) calculates B(shape1, shape2).

The beta binomial distribution is provided in two forms. dBetaBinom_v and is when shape1 and
shape2 are vectors. dBetaBinom_s is used when shape1 and shape2 are scalars. In both cases, x
is a vector.

Author(s)

Ben Goldstein and Perry de Valpine

See Also

For beta binomial N-mixture models, see dNmixture. For documentation on the beta function, use
?stats::dbeta

Examples

# Calculate a beta binomial probability with different shape1 and shape2 for each x[i]
dBetaBinom_v(x = c(4, 0, 0, 3), N = 10,

shape1 = c(0.5, 0.5, 0.3, 0.5), shape2 = c(0.2, 0.4, 1, 1.2))
# or with constant shape1 and shape2
dBetaBinom_s(x = c(4, 0, 0, 3), N = 10, shape1 = 0.5, shape2 = 0.5, log = TRUE)

dCJS Cormack-Jolly-Seber distribution for use in nimble models

Description

dCJS_** and rCJS_** provide Cormack-Jolly-Seber capture-recapture distributions that can be
used directly from R or in nimble models.

Usage

dCJS_ss(x, probSurvive, probCapture, len = 0, log = 0)

dCJS_sv(x, probSurvive, probCapture, len = 0, log = 0)

dCJS_vs(x, probSurvive, probCapture, len = 0, log = 0)
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dCJS_vv(x, probSurvive, probCapture, len = 0, log = 0)

rCJS_ss(n, probSurvive, probCapture, len = 0)

rCJS_sv(n, probSurvive, probCapture, len = 0)

rCJS_vs(n, probSurvive, probCapture, len = 0)

rCJS_vv(n, probSurvive, probCapture, len = 0)

Arguments

x capture history vector of 0s (not captured) and 1s (captured). Include the initial
capture, so x[1] should equal 1.

probSurvive survival probability, either a time-independent scalar (for dCJS_s*) or a time-
dependent vector (for dCJS_v*) with length len - 1.

probCapture capture probability, either a time-independent scalar (for dCJS_*s) or a time-
dependent vector (for dCJS_*v) with length len. If a vector, first element is
ignored, as the total probability is conditioned on the capture at t = 1.

len length of capture history. Should equal length(x)

log TRUE or 1 to return log probability. FALSE or 0 to return probability.

n number of random draws, each returning a vector of length len. Currently only
n = 1 is supported, but the argument exists for standardization of "r" functions.

Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel).

The letters following the ’dCJS_’ indicate whether survival and/or capture probabilities, in that
order, are scalar (s, meaning the probability applies to every x[t]) or vector (v, meaning the prob-
ability is a vector aligned with x). When probCapture and/or probSurvive is a vector, they must
be the same length as x.

It is important to use the time indexing correctly for survival. probSurvive[t] is the survival
probabilty from time t to time t + 1. When a vector, probSurvive may have length greater than
length(x) - 1, but all values beyond that index are ignored.

Time indexing for detection is more obvious: probDetect[t] is the detection probability at time t.

When called from R, the len argument to dCJS_** is not necessary. It will default to the length of
x. When used in nimble model code (via nimbleCode), len must be provided (even though it may
seem redundant).

For more explanation, see package vignette (vignette("Introduction_to_nimbleEcology")).

Compared to writing nimble models with a discrete latent state for true alive/dead status at each
time and a separate scalar datum for each observation, use of these distributions allows one to di-
rectly sum (marginalize) over the discrete latent states and calculate the probability of the detection
history for one individual jointly.
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These are nimbleFunctions written in the format of user-defined distributions for NIMBLE’s ex-
tension of the BUGS model language. More information can be found in the NIMBLE User Manual
at https://r-nimble.org.

When using these distributions in a nimble model, the left-hand side will be used as x, and the user
should not provide the log argument.

For example, in nimble model code,

captures[i, 1:T] ~ dCSJ_ss(survive, capture, T)

declares a vector node, captures[i, 1:T], (detection history for individual i, for example) that
follows a CJS distribution with scalar survival probability survive and scalar capture probability
capture (assuming survive and capture are defined elsewhere in the model).

This will invoke (something like) the following call to dCJS_ss when nimble uses the model such
as for MCMC:

dCJS_ss(captures[i, 1:T], survive, capture, len = T, log = TRUE)

If an algorithm using a nimble model with this declaration needs to generate a random draw for
captures[i, 1:T], it will make a similar invocation of rCJS_ss, with n = 1.

If both survival and capture probabilities are time-dependent, use

captures[i,1:T] ~ dCSJ_vv(survive[1:(T-1)], capture[1:T], T)

and so on for each combination of time-dependent and time-independent parameters.

Value

For dCJS_**: the probability (or likelihood) or log probability of observation vector x.

For rCJS_**: a simulated capture history, x.

Notes for use with automatic differentiation

The dCJS_** distributions should all work for models and algorithms that use nimble’s automatic
differentiation (AD) system. In that system, some kinds of values are "baked in" (cannot be
changed) to the AD calculations from the first call, unless and until the AD calculations are re-
set. For the dCJS_** distributions, the lengths of vector inputs and the data (x) values themselves
are baked in. These can be different for different iterations through a for loop (or nimble model
declarations with different indices, for example), but the lengths and data values for each specific
iteration will be "baked in" after the first call. In other words, it is assumed that x are data and
are not going to change.

Author(s)

Ben Goldstein, Perry de Valpine, and Daniel Turek

References

D. Turek, P. de Valpine and C. J. Paciorek. 2016. Efficient Markov chain Monte Carlo sampling
for hierarchical hidden Markov models. Environmental and Ecological Statistics 23:549–564. DOI
10.1007/s10651-016-0353-z

https://r-nimble.org
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See Also

For multi-state or multi-event capture-recapture models, see dHMM or dDHMM.

Examples

# Set up constants and initial values for defining the model
dat <- c(1,1,0,0,0) # A vector of observations
probSurvive <- c(0.6, 0.3, 0.3, 0.1)
probCapture <- 0.4

# Define code for a nimbleModel
nc <- nimbleCode({

x[1:4] ~ dCJS_vs(probSurvive[1:4], probCapture, len = 4)
probCapture ~ dunif(0,1)
for (i in 1:4) probSurvive[i] ~ dunif(0, 1)

})

# Build the model, providing data and initial values
CJS_model <- nimbleModel(nc, data = list(x = dat),

inits = list(probSurvive = probSurvive,
probCapture = probCapture))

# Calculate log probability of data from the model
CJS_model$calculate()
# Use the model for a variety of other purposes...

dDHMM Dynamic Hidden Markov Model distribution for use in nimble models

Description

dDHMM and dDHMMo provide Dynamic hidden Markov model distributions for nimble models.

Usage

dDHMM(x, init, probObs, probTrans, len, checkRowSums = 1, log = 0)

dDHMMo(x, init, probObs, probTrans, len, checkRowSums = 1, log = 0)

rDHMM(n, init, probObs, probTrans, len, checkRowSums = 1)

rDHMMo(n, init, probObs, probTrans, len, checkRowSums = 1)

Arguments

x vector of observations, each one a positive integer corresponding to an obser-
vation state (one value of which could can correspond to "not observed", and
another value of which can correspond to "dead" or "removed from system").
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init vector of initial state probabilities. Must sum to 1

probObs time-independent matrix (dDHMM and rDHMM) or time-dependent 3D array (dDHMMo
and rDHMMo) of observation probabilities. First two dimensions of probObs are
of size x (number of possible system states) x (number of possible observation
classes). dDHMMo and rDHMMo expect an additional third dimension of size (num-
ber of observation times). probObs[i, j (,t)] is the probability that an individual
in the ith latent state is recorded as being in the jth detection state (at time t).
See Details for more information.

probTrans time-dependent array of system state transition probabilities. Dimension of
probTrans is (number of possible system states) x (number of possible system
states) x (number of observation times). probTrans[i,j,t] is the probability that
an individual truly in state i at time t will be in state j at time t+1. See Details
for more information.

len length of observations (needed for rDHMM)

checkRowSums should validity of probObs and probTrans be checked? Both of these are re-
quired to have each set of probabilities sum to 1 (over each row, or second
dimension). If checkRowSums is non-zero (or TRUE), these conditions will be
checked within a tolerance of 1e-6. If it is 0 (or FALSE), they will not be checked.
Not checking should result in faster execution, but whether that is appreciable
will be case-specific.

log TRUE or 1 to return log probability. FALSE or 0 to return probability

n number of random draws, each returning a vector of length len. Currently only
n = 1 is supported, but the argument exists for standardization of "r" functions

Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel).

The probability (or likelihood) of observation x[t, o] depends on the previous true latent state,
the time-dependent probability of transitioning to a new state probTrans, and the probability of
observation states given the true latent state probObs.

The distribution has two forms, dDHMM and dDHMMo. dDHMM takes a time-independent observation
probability matrix with dimension S x O, while dDHMMo expects a three-dimensional array of time-
dependent observation probabilities with dimension S x O x T, where O is the number of possible
occupancy states, S is the number of true latent states, and T is the number of time intervals.

probTrans has dimension S x S x (T - 1). probTrans[i, j, t] is the probability that an individual in
state i at time t takes on state j at time t+1. The length of the third dimension may be greater than
(T - 1) but all values indexed greater than T - 1 will be ignored.

init has length S. init[i] is the probability of being in state i at the first observation time. That
means that the first observations arise from the initial state probabilities.

For more explanation, see package vignette (vignette("Introduction_to_nimbleEcology")).

Compared to writing nimble models with a discrete true latent state and a separate scalar datum
for each observation, use of these distributions allows one to directly sum (marginalize) over the
discrete latent state and calculate the probability of all observations from one site jointly.
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These are nimbleFunctions written in the format of user-defined distributions for NIMBLE’s ex-
tension of the BUGS model language. More information can be found in the NIMBLE User Manual
at https://r-nimble.org.

When using these distributions in a nimble model, the left-hand side will be used as x, and the user
should not provide the log argument.

For example, in a NIMBLE model,

observedStates[1:T] ~ dDHMM(initStates[1:S], observationProbs[1:S,1:O], transitionProbs[1:S,
1:S, 1:(T-1)], 1, T)

declares that the observedStates[1:T] vector follows a dynamic hidden Markov model distribu-
tion with parameters as indicated, assuming all the parameters have been declared elsewhere in the
model. In this case, S is the number of system states, O is the number of observation classes, and T is
the number of observation occasions.This will invoke (something like) the following call to dDHMM
when nimble uses the model such as for MCMC:

rDHMM(observedStates[1:T], initStates[1:S], observationProbs[1:S, 1:O],transitionProbs[1:S,
1:S, 1:(T-1)], 1, T, log = TRUE)

If an algorithm using a nimble model with this declaration needs to generate a random draw for
observedStates[1:T], it will make a similar invocation of rDHMM, with n = 1.

If the observation probabilities are time-dependent, one would use:

observedStates[1:T] ~ dDHMMo(initStates[1:S], observationProbs[1:S,1:O, 1:T], transitionProbs[1:S,
1:S, 1:(T-1)], 1, T)

The dDHMM[o] distributions should work for models and algorithms that use nimble’s automatic dif-
ferentiation (AD) system. In that system, some kinds of values are "baked in" (cannot be changed)
to the AD calculations from the first call, unless and until the AD calculations are reset. For the
dDHMM[o] distributions, the sizes of the inputs and the data (x) values themselves are baked in.
These can be different for different iterations through a for loop (or nimble model declarations
with different indices, for example), but the sizes and data values for each specific iteration will be
"baked in" after the first call. In other words, it is assumed that x are data and are not going to
change.

Value

For dDHMM and dDHMMo: the probability (or likelihood) or log probability of observation vector x.
For rDHMM and rDHMMo: a simulated detection history, x.

Author(s)

Perry de Valpine, Daniel Turek, and Ben Goldstein

References

D. Turek, P. de Valpine and C. J. Paciorek. 2016. Efficient Markov chain Monte Carlo sampling
for hierarchical hidden Markov models. Environmental and Ecological Statistics 23:549–564. DOI
10.1007/s10651-016-0353-z

https://r-nimble.org
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See Also

For hidden Markov models with time-independent transitions, see dHMM and dHMMo. For simple
capture-recapture, see dCJS.

Examples

# Set up constants and initial values for defining the model
dat <- c(1,2,1,1) # A vector of observations
init <- c(0.4, 0.2, 0.4) # A vector of initial state probabilities
probObs <- t(array( # A matrix of observation probabilities

c(1, 0,
0, 1,
0.8, 0.2), c(2, 3)))

probTrans <- array(rep(1/3, 27), # A matrix of time-indexed transition probabilities
c(3,3,3))

# Define code for a nimbleModel
nc <- nimbleCode({
x[1:4] ~ dDHMM(init[1:3], probObs = probObs[1:3, 1:2],

probTrans = probTrans[1:3, 1:3, 1:3], len = 4, checkRowSums = 1)

for (i in 1:3) {
init[i] ~ dunif(0,1)

for (j in 1:3) {
for (t in 1:3) {

probTrans[i,j,t] ~ dunif(0,1)
}

}

probObs[i, 1] ~ dunif(0,1)
probObs[i, 2] <- 1 - probObs[i,1]

}
})

# Build the model, providing data and initial values
DHMM_model <- nimbleModel(nc,

data = list(x = dat),
inits = list(init = init,

probObs = probObs,
probTrans = probTrans))

# Calculate log probability of x from the model
DHMM_model$calculate()
# Use the model for a variety of other purposes...

dDynOcc Dynamic occupancy distribution for use in nimble models
dDynOcc_** and rDynOcc_** provide dynamic occupancy model dis-
tributions that can be used directly from R or in nimble models.
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Description

Dynamic occupancy distribution for use in nimble models dDynOcc_** and rDynOcc_** provide
dynamic occupancy model distributions that can be used directly from R or in nimble models.

Usage

dDynOcc_vvm(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_vsm(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_svm(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_ssm(x, init, probPersist, probColonize, p, start, end, log = 0)

rDynOcc_vvm(n, init, probPersist, probColonize, p, start, end)

rDynOcc_vsm(n, init, probPersist, probColonize, p, start, end)

rDynOcc_svm(n, init, probPersist, probColonize, p, start, end)

rDynOcc_ssm(n, init, probPersist, probColonize, p, start, end)

dDynOcc_vvv(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_vsv(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_svv(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_ssv(x, init, probPersist, probColonize, p, start, end, log = 0)

rDynOcc_vvv(n, init, probPersist, probColonize, p, start, end)

rDynOcc_vsv(n, init, probPersist, probColonize, p, start, end)

rDynOcc_svv(n, init, probPersist, probColonize, p, start, end)

rDynOcc_ssv(n, init, probPersist, probColonize, p, start, end)

dDynOcc_vvs(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_vss(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_svs(x, init, probPersist, probColonize, p, start, end, log = 0)

dDynOcc_sss(x, init, probPersist, probColonize, p, start, end, log = 0)

rDynOcc_vvs(n, init, probPersist, probColonize, p, start, end)
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rDynOcc_vss(n, init, probPersist, probColonize, p, start, end)

rDynOcc_svs(n, init, probPersist, probColonize, p, start, end)

rDynOcc_sss(n, init, probPersist, probColonize, p, start, end)

Arguments

x detection/non-detection matrix of 0s (not detected) and 1s (detected). Rows
represent primary sampling occasions (e.g. different seasons). Columns are
secondary sampling locations (e.g. replicate visits within a season) that may be
different for each row

init probability of occupancy in the first sampling period

probPersist persistence probability–probability an occupied cell remains occupied. 1-extinction
probability. Scalar for dDynOcc_s**, vector for dDynOcc_v**. If vector, should
have length dim(x)[1] - 1 since no transition occurs after the last observation

probColonize colonization probability. Probability that an unoccupied cell becomes occupied.
Scalar for dDynOcc_*s*, vector for dDynOcc_*v*. If vector, should have length
dim(x)[1] - 1 since no transition occurs after the last observation

p Detection probabilities. Scalar for dDynOcc_**s, vector for dDynOcc_**v, ma-
trix for dDynOcc_**m. If a matrix, dimensions should match x

start indicates the column number of the first observation in each row of x. A vector
of length dim(x)[1]. This allows for different time periods to have different
numbers of sampling occasions

end indicates the column number of the last observation in each row of x. A vector
of length dim(x)[1]. This allows for different time periods to have different
numbers of sampling occasions

log TRUE (return log probability) or FALSE (return probability)

n number of random draws, each returning a matrix of dimension c(min(start),
max(end)). Currently only n = 1 is supported, but the argument exists for stan-
dardization of "r" functions

Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel).

The probability (or likelihood) of observation x[t, o] depends on the occupancy status of the site
at time t-1, the transitition probability of persistence (probPersist or probPersist[t-1]), col-
onization (probColonize or probColonize[t-1]), and a detection probability (p, p[t], or p[t,
o]).

The first two letters following the ’dDynOcc_’ indicate whether the probabilities of persistence and
colonization are a constant scalar (s) or time-indexed vector (v). For example, dDynOcc_svm takes
scalar persistence probability probPersist with a vector of colonization probabilities probColonize[1:(T-1)].

When vectors, probColonize and probPersist may be of any length greater than or equal to
length(x) - 1. Only the first length(x) - 1 indices are used, each corresponding to the transition
from time t to t+1 (e.g. probColonize[2] describes the transition probability from t = 2 to t = 3).
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All extra values are ignored. This is to make it easier to use one distribution for many sites, some
requiring probabilities of length 1.

The third letter in the suffix indicates whether the detection probability is a constant (scalar), time-
dependent (vector), or both time-dependent and dependent on observation occasion (matrix). For
example, dDynOcc_svm takes a matrix of detection probabilities p[1:T, 1:O].

The arguments start and end allow different time periods to contain different numbers of sampling
events. Suppose you have observations for samples in three seasons; in the first two seasons, there
are four observations, but in the third, there are only three. The start and end could be provided
as start = c(1,1,1) and end = c(4,4,3). In this case, the value of x[4,4] would be ignored.

For more explanation, see package vignette (vignette("Introduction_to_nimbleEcology")).

Compared to writing nimble models with a discrete latent state for true occupancy status and a
separate scalar datum for each observation, use of these distributions allows one to directly sum
(marginalize) over the discrete latent state and calculate the probability of all observations from one
site jointly.

These are nimbleFunctions written in the format of user-defined distributions for NIMBLE’s ex-
tension of the BUGS model language. More information can be found in the NIMBLE User Manual
at https://r-nimble.org.

When using these distributions in a nimble model, the left-hand side will be used as x, and the user
should not provide the log argument.

For example, in nimble model code,

detections[1:T, 1:O] ~ dDynOcc_ssm(init,probPersist = persistence_prob,probColonize
= colonization_prob, p = p[1:T, 1:O],start = start[1:T], end = end[1:T])

declares that the detections[1:T] vector follows a dynamic occupancy model distribution with
parameters as indicated, assuming all the parameters have been declared elsewhere in the model.
This will invoke (something like) the following call to dDynOcc_ssm when nimble uses the model
such as for MCMC:

dDynOcc_ssm(detections[1:T, 1:O], init,probPersist = persistence_prob,probColonize
= colonization_prob, p = p[1:T, 1:O],start = start[1:T], end = end[1:T], log = TRUE)

If an algorithm using a nimble model with this declaration needs to generate a random draw for
detections[1:T, 1:O], it will make a similar invocation of rDynOcc_ssm, with n = 1.

If the colonization probabilities are time-dependent, one would use:

detections[1:T] ~ dDynOcc_svm(nrep, init = init_prob,probPersist = persistence_prob,probColonize
= colonization_prob[1:(T-1)], p = p[1:T, 1:O])

Value

For dDynOcc_***: the probability (or likelihood) or log probability of observation vector x. For
rDynOcc_***: a simulated detection history, x.

Notes for use with automatic differentiation

The dDynOcc_*** distributions should all work for models and algorithms that use nimble’s auto-
matic differentiation (AD) system. In that system, some kinds of values are "baked in" (cannot be
changed) to the AD calculations from the first call, unless and until the AD calculations are reset.
For the dDynOcc_*** distributions, the lengths or dimensions of vector and/or matrix inputs and

https://r-nimble.org
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the start and end values themselves are baked in. These can be different for different iterations
through a for loop (or nimble model declarations with different indices, for example), but the for
each specific iteration will be "baked in" after the first call. It is safest if one can assume that x
are data and are not going to change.

Author(s)

Ben Goldstein, Perry de Valpine and Lauren Ponisio

See Also

For basic occupancy models, see documentation for dOcc.

Examples

# Set up constants and initial values for defining the model
x <- matrix(c(0,0,0,0,

1,1,1,0,
0,0,0,0,
0,0,1,0,
0,0,0,0), nrow = 4)

start <- c(1,1,2,1,1)
end <- c(5,5,5,4,5)
init <- 0.7
probPersist <- 0.5
probColonize <- 0.2
p <- matrix(rep(0.5, 20), nrow = 4)

# Define code for a nimbleModel
nc <- nimbleCode({

x[1:2, 1:5] ~ dDynOcc_vvm(init,
probPersist[1:2], probColonize[1:2], p[1:2,1:5],
start = start[1:4], end = end[1:4])

init ~ dunif(0,1)

for (i in 1:2) {
probPersist[i] ~ dunif(0,1)
probColonize[i] ~ dunif(0,1)

}

for (i in 1:2) {
for (j in 1:5) {

p[i,j] ~ dunif(0,1)
}

}
})

# Build the model, providing data and initial values
DynOcc_model <- nimbleModel(nc, data = list(x = x),
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constants = list(start = start, end = end),
inits = list(p = p, probPersist = probPersist,

init = init, probColonize = probColonize))

# Calculate log probability of data from the model
DynOcc_model$calculate("x")
# Use the model for a variety of other purposes...

dHMM Hidden Markov Model distribution for use in nimble models

Description

dHMM and dHMMo provide hidden Markov model distributions that can be used directly from R or in
nimble models.

Usage

dHMM(x, init, probObs, probTrans, len = 0, checkRowSums = 1, log = 0)

dHMMo(x, init, probObs, probTrans, len = 0, checkRowSums = 1, log = 0)

rHMM(n, init, probObs, probTrans, len = 0, checkRowSums = 1)

rHMMo(n, init, probObs, probTrans, len = 0, checkRowSums = 1)

Arguments

x vector of observations, each one a positive integer corresponding to an obser-
vation state (one value of which could can correspond to "not observed", and
another value of which can correspond to "dead" or "removed from system").

init vector of initial state probabilities. Must sum to 1

probObs time-independent matrix (dHMM and rHMM) or time-dependent array (dHMMo and
rHMMo) of observation probabilities. First two dimensions of probObs are of size
x (number of possible system states) x (number of possible observation classes).
dDHMMo and rDHMMo expects an additional third dimension of size (number of
observation times). probObs[i, j (,t)] is the probability that an individual in the
ith latent state is recorded as being in the jth detection state (at time t). See
Details for more information.

probTrans time-independent matrix of state transition probabilities. probTrans[i,j] is the
probability that an individual in latent state i transitions to latent state j at the
next timestep. See Details for more information.

len length of x (see below).

checkRowSums should validity of probObs and probTrans be checked? Both of these are re-
quired to have each set of probabilities sum to 1 (over each row, or second
dimension). If checkRowSums is non-zero (or TRUE), these conditions will be
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checked within a tolerance of 1e-6. If it is 0 (or FALSE), they will not be checked.
Not checking should result in faster execution, but whether that is appreciable
will be case-specific.

log TRUE or 1 to return log probability. FALSE or 0 to return probability.

n number of random draws, each returning a vector of length len. Currently only
n = 1 is supported, but the argument exists for standardization of "r" functions.

Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel).

The distribution has two forms, dHMM and dHMMo. Define S as the number of latent state cate-
gories (maximum possible value for elements of x), O as the number of possible observation state
categories, and T as the number of observation times (length of x). In dHMM, probObs is a time-
independent observation probability matrix with dimension S x O. In dHMMo, probObs is a three-
dimensional array of time-dependent observation probabilities with dimension S x O x T. The first
index of probObs indexes the true latent state. The second index of probObs indexes the observed
state. For example, in the time-dependent case, probObs[i, j, t] is the probability at time t that
an individual in state i is observed in state j.

probTrans has dimension S x S. probTrans[i, j] is the time-independent probability that an indi-
vidual in state i at time t transitions to state j time t+1.

init has length S. init[i] is the probability of being in state i at the first observation time. That
means that the first observations arise from the initial state probabilities.

For more explanation, see package vignette (vignette("Introduction_to_nimbleEcology")).

Compared to writing nimble models with a discrete latent state and a separate scalar datum for
each observation time, use of these distributions allows one to directly sum (marginalize) over the
discrete latent state and calculate the probability of all observations for one individual (or other
HMM unit) jointly.

These are nimbleFunctions written in the format of user-defined distributions for NIMBLE’s ex-
tension of the BUGS model language. More information can be found in the NIMBLE User Manual
at https://r-nimble.org.

When using these distributions in a nimble model, the left-hand side will be used as x, and the user
should not provide the log argument.

For example, in nimble model code,

observedStates[i, 1:T] ~ dHMM(initStates[1:S], observationProbs[1:S, 1:O], transitionProbs[1:S,
1:S], 1, T)

declares that the observedStates[i, 1:T] (observation history for individual i, for example) vec-
tor follows a hidden Markov model distribution with parameters as indicated, assuming all the
parameters have been declared elsewhere in the model. As above, S is the number of system state
categories, O is the number of observation state categories, and T is the number of observation oc-
casions. This will invoke (something like) the following call to dHMM when nimble uses the model
such as for MCMC:

dHMM(observedStates[1:T], initStates[1:S], observationProbs[1:S, 1:O], transitionProbs[1:S,
1:S], 1, T, log = TRUE)

https://r-nimble.org
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If an algorithm using a nimble model with this declaration needs to generate a random draw for
observedStates[1:T], it will make a similar invocation of rHMM, with n = 1.

If the observation probabilities are time-dependent, one would use:

observedStates[1:T] ~ dHMMo(initStates[1:S], observationProbs[1:S, 1:O, 1:T], transitionProbs[1:S,
1:S], 1, T)

Value

For dHMM and dHMMo: the probability (or likelihood) or log probability of observation vector x.

For rHMM and rHMMo: a simulated detection history, x.

Notes for use with automatic differentiation

The dHMM[o] distributions should work for models and algorithms that use nimble’s automatic dif-
ferentiation (AD) system. In that system, some kinds of values are "baked in" (cannot be changed)
to the AD calculations from the first call, unless and until the AD calculations are reset. For the
dHMM[o] distributions, the sizes of the inputs and the data (x) values themselves are baked in. These
can be different for different iterations through a for loop (or nimble model declarations with dif-
ferent indices, for example), but the sizes and data values for each specific iteration will be "baked
in" after the first call. In other words, it is assumed that x are data and are not going to change.

Author(s)

Ben Goldstein, Perry de Valpine, and Daniel Turek

References

D. Turek, P. de Valpine and C. J. Paciorek. 2016. Efficient Markov chain Monte Carlo sampling
for hierarchical hidden Markov models. Environmental and Ecological Statistics 23:549–564. DOI
10.1007/s10651-016-0353-z

See Also

For dynamic hidden Markov models with time-dependent transitions, see dDHMM and dDHMMo. For
simple capture-recapture, see dCJS.

Examples

# Set up constants and initial values for defining the model
len <- 5 # length of dataset
dat <- c(1,2,1,1,2) # A vector of observations
init <- c(0.4, 0.2, 0.4) # A vector of initial state probabilities
probObs <- t(array( # A matrix of observation probabilities

c(1, 0,
0, 1,
0.2, 0.8), c(2, 3)))

probTrans <- t(array( # A matrix of transition probabilities
c(0.6, 0.3, 0.1,

0, 0.7, 0.3,
0, 0, 1), c(3,3)))
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# Define code for a nimbleModel
nc <- nimbleCode({
x[1:5] ~ dHMM(init[1:3], probObs = probObs[1:3,1:2],

probTrans = probTrans[1:3, 1:3], len = 5, checkRowSums = 1)

for (i in 1:3) {
for (j in 1:3) {

probTrans[i,j] ~ dunif(0,1)
}

probObs[i, 1] ~ dunif(0,1)
probObs[i, 2] <- 1 - probObs[i, 1]

}
})

# Build the model
HMM_model <- nimbleModel(nc,

data = list(x = dat),
inits = list(init = init,

probObs = probObs,
probTrans = probTrans))

# Calculate log probability of data from the model
HMM_model$calculate()
# Use the model for a variety of other purposes...

dNmixture dNmixture distribution for use in nimble models

Description

dNmixture_s and dNmixture_v provide Poisson-Binomial mixture distributions of abundance ("N-
mixture") for use in nimble models. Overdispersion alternatives using the negative binomial distri-
bution (for the abundance submodel) and the beta binomial distribution (for the detection submodel)
are also provided.

Usage

dNmixture_v(x, lambda, prob, Nmin = -1, Nmax = -1, len, log = 0)

dNmixture_s(x, lambda, prob, Nmin = -1, Nmax = -1, len, log = 0)

rNmixture_v(n, lambda, prob, Nmin = -1, Nmax = -1, len)

rNmixture_s(n, lambda, prob, Nmin = -1, Nmax = -1, len)

dNmixture_BNB_v(x, lambda, theta, prob, Nmin = -1, Nmax = -1, len, log = 0)

dNmixture_BNB_s(x, lambda, theta, prob, Nmin = -1, Nmax = -1, len, log = 0)
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dNmixture_BNB_oneObs(x, lambda, theta, prob, Nmin = -1, Nmax = -1, log = 0)

dNmixture_BBP_v(x, lambda, prob, s, Nmin = -1, Nmax = -1, len, log = 0)

dNmixture_BBP_s(x, lambda, prob, s, Nmin = -1, Nmax = -1, len, log = 0)

dNmixture_BBP_oneObs(x, lambda, prob, s, Nmin = -1, Nmax = -1, log = 0)

dNmixture_BBNB_v(x, lambda, theta, prob, s, Nmin = -1, Nmax = -1, len, log = 0)

dNmixture_BBNB_s(x, lambda, theta, prob, s, Nmin = -1, Nmax = -1, len, log = 0)

dNmixture_BBNB_oneObs(x, lambda, theta, prob, s, Nmin = -1, Nmax = -1, log = 0)

rNmixture_BNB_v(n, lambda, theta, prob, Nmin = -1, Nmax = -1, len)

rNmixture_BNB_s(n, lambda, theta, prob, Nmin = -1, Nmax = -1, len)

rNmixture_BNB_oneObs(n, lambda, theta, prob, Nmin = -1, Nmax = -1)

rNmixture_BBP_v(n, lambda, prob, s, Nmin = -1, Nmax = -1, len)

rNmixture_BBP_s(n, lambda, prob, s, Nmin = -1, Nmax = -1, len)

rNmixture_BBP_oneObs(n, lambda, prob, s, Nmin = -1, Nmax = -1)

rNmixture_BBNB_v(n, lambda, theta, prob, s, Nmin = -1, Nmax = -1, len)

rNmixture_BBNB_s(n, lambda, theta, prob, s, Nmin = -1, Nmax = -1, len)

rNmixture_BBNB_oneObs(n, lambda, theta, prob, s, Nmin = -1, Nmax = -1)

Arguments

x vector of integer counts from a series of sampling occasions.

lambda expected value of the Poisson distribution of true abundance

prob detection probability (scalar for dNmixture_s, vector for dNmixture_v).

Nmin minimum abundance to sum over for the mixture probability. Set to -1 to select
automatically (not available for beta binomial variations; see Details).

Nmax maximum abundance to sum over for the mixture probability. Set to -1 to select
automatically (not available for beta binomial variations; see Details).

len The length of the x vector

log TRUE or 1 to return log probability. FALSE or 0 to return probability.

n number of random draws, each returning a vector of length len. Currently only
n = 1 is supported, but the argument exists for standardization of "r" functions.
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theta abundance overdispersion parameter required for negative binomial (*NB) N-
mixture models. The negative binomial is parameterized such that variance of x
is lambda^2 * theta + lambda

s detection overdispersion parameter required for beta binomial (BB*) N-mixture
models. The beta binomial is parameterized such that variance of x is V(x) = N
* prob * (1-prob) * (N + s) / (s + 1)

Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel).

An N-mixture model defines a distribution for multiple counts (typically of animals, typically made
at a sequence of visits to the same site). The latent number of animals available to be counted, N,
follows a Poisson or negative binomial distribution. Each count, x[i] for visit i, follows a binomial
or beta-binomial distribution. The N-mixture distributions calculate the marginal probability of
observed counts by summing over the range of latent abundance values.

The basic N-mixture model uses Poisson latent abundance with mean lambda and binomial ob-
served counts with size (number of trials) N and probability of success (being counted) prob[i].
This distribution is available in two forms, dNmixture_s and dNmixture_v. With dNmixture_s,
detection probability is a scalar, independent of visit, so prob[i] should be replaced with prob
above. With dNmixture_v, detection probability is a vector, with one element for each visit, as
written above.

We also provide three important variations on the traditional N-mixture model: dNmixture_BNB,
dNmixture_BBP, and dNmixture_BBNB. These distributions allow you to replace the Poisson (P)
abundance distribution with the negative binomial (NB) and the binomial (B) detection distribution
with the beta binomial (BB).

Binomial-negative binomial: BNB N-mixture models use a binomial distribution for detection and
a negative binomial distribution for abundance with scalar overdispersion parameter theta (0-Inf).
We parameterize such that the variance of the negative binomial is lambda^2 * theta + lambda, so
large theta indicates a large amount of overdisperison in abundance. The BNB is available in three
suffixed forms: dNmixture_BNB_v is used if prob varies between observations, dNmixture_BNB_s
is used if prob is scalar (constant across observations), and dNmixture_BNB_oneObs is used if only
one observation is available at the site (so both x and prob are scalar).

Beta-binomial-Poisson: BBP N-mixture uses a beta binomial distribution for detection probabili-
ties and a Poisson distribution for abundance. The beta binomial distribution has scalar overdis-
persion parameter s (0-Inf). We parameterize such that the variance of the beta binomial is N *
prob * (1-prob) * (N + s) / (s + 1), with greater s indicating less variance (greater-than-binomial
relatedness between observations at the site) and s -> 0 indicating the binomial. The BBP is
available in three suffixed forms: dNmixture_BBP_v is used if prob varies between observations,
dNmixture_BBP_s is used if prob is scalar (constant across observations), and dNmixture_BBP_oneObs
is used if only one observation is available at the site (so both x and prob are scalar).

Beta-binomial-negative-binomial: dNmixture_BBNB is available using a negative binomial abun-
dance distribution and a beta binomial detection distribution. dNmixture_BBNB is available with
_s, _v, and _oneObs suffixes as above and requires both arguments s and theta as parameterized
above.

The distribution dNmixture_oneObs is not provided as the probability given by the traditional N-
mixture distribution for length(x) = 1 is equivalent to dpois(prob * lambda).
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For more explanation, see package vignette (vignette("Introduction_to_nimbleEcology")).

Compared to writing nimble models with a discrete latent state of abundance N and a separate
scalar datum for each count, use of these distributions allows one to directly sum (marginalize) over
the discrete latent state N and calculate the probability of all observations for a site jointly.

If one knows a reasonable range for summation over possible values of N, the start and end of the
range can be provided as Nmin and Nmax. Otherwise one can set both to -1, in which case values for
Nmin and Nmax will be chosen based on the 0.0001 and 0.9999 quantiles of the marginal distributions
of each count, using the minimum over counts of the former and the maximum over counts of the
latter.

The summation over N uses the efficient method given by Meehan et al. (2020, see Appendix B) for
the basic Poisson-Binomial case, extended for the overdispersion cases in Goldstein and de Valpine
(2022).

These are nimbleFunctions written in the format of user-defined distributions for NIMBLE’s ex-
tension of the BUGS model language. More information can be found in the NIMBLE User Manual
at https://r-nimble.org.

When using these distributions in a nimble model, the left-hand side will be used as x, and the user
should not provide the log argument.

For example, in nimble model code,

observedCounts[i, 1:T] ~ dNmixture_v(lambda[i],prob[i, 1:T],Nmin, Nmax, T)

declares that the observedCounts[i, 1:T] (observed counts for site i, for example) vector follows
an N-mixture distribution with parameters as indicated, assuming all the parameters have been
declared elsewhere in the model. As above, lambda[i] is the mean of the abundance distribution at
site i, prob[i, 1:T] is a vector of detection probabilities at site i, and T is the number of observation
occasions. This will invoke (something like) the following call to dNmixture_v when nimble uses
the model such as for MCMC:

dNmixture_v(observedCounts[i, 1:T], lambda[i],prob[i, 1:T],Nmin, Nmax, T, log = TRUE)

If an algorithm using a nimble model with this declaration needs to generate a random draw for
observedCounts[1:T], it will make a similar invocation of rNmixture_v, with n = 1.

If the observation probabilities are visit-independent, one would use:

observedCounts[1:T] ~ dNmixture_s(observedCounts[i, 1:T], lambda[i],prob[i],Nmin, Nmax,
T)

Value

For dNmixture_s and dNmixture_v: the probability (or likelihood) or log probability of observa-
tion vector x.

For rNmixture_s and rNmixture_v: a simulated detection history, x.

Notes for use with automatic differentiation

The N-mixture distributions are the only ones in nimbleEcology for which one must use different
versions when AD support is needed. See dNmixtureAD.

Author(s)

Ben Goldstein, Lauren Ponisio, and Perry de Valpine

https://r-nimble.org
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References

D. Turek, P. de Valpine and C. J. Paciorek. 2016. Efficient Markov chain Monte Carlo sampling
for hierarchical hidden Markov models. Environmental and Ecological Statistics 23:549–564. DOI
10.1007/s10651-016-0353-z
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See Also

For occupancy models dealing with detection/nondetection data, see dOcc. For dynamic occupancy,
see dDynOcc.

Examples

# Set up constants and initial values for defining the model
len <- 5 # length of dataset
dat <- c(1,2,0,1,5) # A vector of observations
lambda <- 10 # mean abundance
prob <- c(0.2, 0.3, 0.2, 0.1, 0.4) # A vector of detection probabilities

# Define code for a nimbleModel
nc <- nimbleCode({
x[1:5] ~ dNmixture_v(lambda, prob = prob[1:5],

Nmin = -1, Nmax = -1, len = 5)

lambda ~ dunif(0, 1000)

for (i in 1:5) {
prob[i] ~ dunif(0, 1)

}
})

# Build the model
nmix <- nimbleModel(nc,

data = list(x = dat),
inits = list(lambda = lambda,

prob = prob))
# Calculate log probability of data from the model
nmix$calculate()
# Use the model for a variety of other purposes...

dNmixtureAD N-mixture distributions with AD support for use in nimble models
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Description

dNmixtureAD_s and dNmixtureAD_v provide Poisson-Binomial mixture distributions of abundance
("N-mixture") for use in nimble models when automatic differentiation may be needed by an algo-
rithm. Overdispersion alternatives are also provided.

Usage

dNmixtureAD_v(x, lambda, prob, Nmin = -1, Nmax = -1, len, log = 0)

dNmixtureAD_s(x, lambda, prob, Nmin = -1, Nmax = -1, len, log = 0)

rNmixtureAD_v(n, lambda, prob, Nmin, Nmax, len)

rNmixtureAD_s(n, lambda, prob, Nmin, Nmax, len)

dNmixtureAD_BNB_v(x, lambda, theta, prob, Nmin = -1, Nmax = -1, len, log = 0)

dNmixtureAD_BNB_s(x, lambda, theta, prob, Nmin = -1, Nmax = -1, len, log = 0)

dNmixtureAD_BNB_oneObs(x, lambda, theta, prob, Nmin = -1, Nmax = -1, log = 0)

rNmixtureAD_BNB_oneObs(n, lambda, theta, prob, Nmin = -1, Nmax = -1)

dNmixtureAD_BBP_v(x, lambda, prob, s, Nmin = -1, Nmax = -1, len, log = 0)

dNmixtureAD_BBP_s(x, lambda, prob, s, Nmin = -1, Nmax = -1, len, log = 0)

dNmixtureAD_BBP_oneObs(x, lambda, prob, s, Nmin = -1, Nmax = -1, log = 0)

dNmixtureAD_BBNB_v(
x,
lambda,
theta,
prob,
s,
Nmin = -1,
Nmax = -1,
len,
log = 0

)

dNmixtureAD_BBNB_s(
x,
lambda,
theta,
prob,
s,
Nmin = -1,
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Nmax = -1,
len,
log = 0

)

dNmixtureAD_BBNB_oneObs(
x,
lambda,
theta,
prob,
s,
Nmin = -1,
Nmax = -1,
log = 0

)

rNmixtureAD_BNB_v(n, lambda, theta, prob, Nmin = -1, Nmax = -1, len)

rNmixtureAD_BNB_s(n, lambda, theta, prob, Nmin = -1, Nmax = -1, len)

rNmixtureAD_BNB_oneObs(n, lambda, theta, prob, Nmin = -1, Nmax = -1)

rNmixtureAD_BBP_v(n, lambda, prob, s, Nmin = -1, Nmax = -1, len)

rNmixtureAD_BBP_s(n, lambda, prob, s, Nmin = -1, Nmax = -1, len)

rNmixtureAD_BBP_oneObs(n, lambda, prob, s, Nmin = -1, Nmax = -1)

rNmixtureAD_BBNB_v(n, lambda, theta, prob, s, Nmin = -1, Nmax = -1, len)

rNmixtureAD_BBNB_s(n, lambda, theta, prob, s, Nmin = -1, Nmax = -1, len)

rNmixtureAD_BBNB_oneObs(n, lambda, theta, prob, s, Nmin = -1, Nmax = -1)

Arguments

x vector of integer counts from a series of sampling occasions.

lambda expected value of the Poisson distribution of true abundance

prob detection probability (scalar for dNmixture_s, vector for dNmixture_v).

Nmin minimum abundance to sum over for the mixture probability. Must be provided.

Nmax maximum abundance to sum over for the mixture probability. Must be provided.

len The length of the x vector

log TRUE or 1 to return log probability. FALSE or 0 to return probability.

n number of random draws, each returning a vector of length len. Currently only
n = 1 is supported, but the argument exists for standardization of "r" functions.
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theta abundance overdispersion parameter required for negative binomial (*NB) N-
mixture models. theta is parameterized such that variance of the negative bino-
mial variable x is lambda^2 * theta + lambda

s detection overdispersion parameter required for beta binomial (BB*) N-mixture
models. s is parameterized such that variance of the beta binomial variable x is
V(x) = N \* prob \* (1-prob) \* (N + s) / (s + 1)

Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel).

See dNmixture for more information about the N-mixture distributions.

The versions here can be used in models that will be used by algorithms that use nimble’s system
for automatic differentiation (AD). The primary difference is that Nmin and Nmax must be provided.
There are no automatic defaults for these.

In the AD system some kinds of values are "baked in" (cannot be changed) to the AD calculations
from the first call, unless and until the AD calculations are reset. For all variants of the dNmixtureAD
distributions, the sizes of the inputs as well as Nmin and Nmax are baked in. These can be different
for different iterations through a for loop (or nimble model declarations with different indices, for
example), but the sizes and Nmin and Nmax values for each specific iteration will be "baked in" after
the first call.

Value

The probability (or likelihood) or log probability of an observation vector x.

Author(s)

Ben Goldstein, Lauren Ponisio, and Perry de Valpine

dNmixture_steps Internal helper nimbleFunctions for dNmixture distributions

Description

None of these functions should be called directly.

Usage

nimNmixPois_logFac(numN, ff, max_index = -1)

dNmixture_steps(
x,
lambda,
Nmin,
Nmax,
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sum_log_one_m_prob,
sum_log_dbinom,
usingAD = FALSE

)

dNmixture_BNB_steps(
x,
lambda,
theta,
Nmin,
Nmax,
sum_log_one_m_prob,
sum_log_dbinom,
usingAD = FALSE

)

dNmixture_BBP_steps(
x,
beta_m_x,
lambda,
s,
Nmin,
Nmax,
sum_log_dbetabinom,
usingAD = FALSE

)

dNmixture_BBNB_steps(
x,
beta_m_x,
lambda,
theta,
s,
Nmin,
Nmax,
sum_log_dbetabinom,
usingAD = FALSE

)

Arguments

numN number of indices in the truncated sum for the N-mixture.

ff a derived vector of units calculated partway through the fast N-mixture algo-
rithm.

max_index possibly the index of the max contribution to the summation. For AD cases this
is set by heuristic. For non-AD cases it is -1 and will be determined automati-
cally.

x x from dNmixture distributions
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lambda lambda from dNmixture distributions

Nmin start of summation over N

Nmax end of summation over N
sum_log_one_m_prob

sum(log(1-prob)) from relevant dNmixture cases

sum_log_dbinom sum(log(dbinom(...))) from relevant dNmixture cases

usingAD TRUE if called from one of the dNmixtureAD distributions

theta theta from relevant dNmixture distributions

beta_m_x beta-x from relevant dNmixture cases

s s from relevant dNmixture distributions
sum_log_dbetabinom

sum(log(dBetaBinom(...))) from relevant dNmixture cases

Details

These are helper functions for the N-mixture calculations. They don’t have an interpretation outside
of that context and are not intended to be called directly.

See Also

dNmixture

dOcc Occupancy distribution suitable for use in nimble models

Description

dOcc_* and rOcc_* provide occupancy model distributions that can be used directly from R or in
nimble models.

Usage

dOcc_s(x, probOcc, probDetect, len = 0, log = 0)

dOcc_v(x, probOcc, probDetect, len = 0, log = 0)

rOcc_s(n, probOcc, probDetect, len = 0)

rOcc_v(n, probOcc, probDetect, len = 0)
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Arguments

x detection/non-detection vector of 0s (not detected) and 1s (detected).

probOcc occupancy probability (scalar).

probDetect detection probability (scalar for dOcc_s, vector for dOcc_v).

len length of detection/non-detection vector (see below).

log TRUE or 1 to return log probability. FALSE or 0 to return probability.

n number of random draws, each returning a vector of length len. Currently only
n = 1 is supported, but the argument exists for standardization of "r" functions.

Details

These nimbleFunctions provide distributions that can be used directly in R or in nimble hierarchical
models (via nimbleCode and nimbleModel).

The probability of observation vector x depends on occupancy probability, probOcc, and detection
probability, probDetect or probDetect[1:T].

The letter following the ’dOcc_’ indicates whether detection probability is scalar (s, meaning probDetect
is detection probability for every x[t]) or vector (v, meaning probDetect[t] is detection proba-
bility for x[t]).

When used directly from R, the len argument to dOcc_* is not necessary. It will default to the
length of x. When used in nimble model code (via nimbleCode), len must be provided (even
though it may seem redundant).

For more explanation, see package vignette (vignette("Introduction_to_nimbleEcology")).

Compared to writing nimble models with a discrete latent state for true occupancy status and a
separate scalar datum for each observation, use of these distributions allows one to directly sum
(marginalize) over the discrete latent state and calculate the probability of all observations from one
site jointly.

These are nimbleFunctions written in the format of user-defined distributions for NIMBLE’s ex-
tension of the BUGS model language. More information can be found in the NIMBLE User Manual
at https://r-nimble.org.

When using these distributions in a nimble model, the left-hand side will be used as x, and the user
should not provide the log argument.

For example, in nimble model code,

detections[i, 1:T] ~ dOcc_s(occupancyProbability,detectionProbability, T)

declares that detections[i, 1:T] (detection history at site i, for example) follows an occupancy
distribution with parameters as indicated, assuming all the parameters have been declared elsewhere
in the model. This will invoke (something like) the following call to dOcc_s when nimble uses the
model such as for MCMC:

dOcc_s(detections[i, 1:T], occupancyProbability,detectionProbability, len = T, log =
TRUE)

If an algorithm using a nimble model with this declaration needs to generate a random draw for
detections[i, 1:T], it will make a similar invocation of rOcc_s, with n = 1.

If the detection probabilities are time-dependent, use:

detections[i, 1:T] ~ dOcc_v(occupancyProbability,detectionProbability[1:T], len = T)

https://r-nimble.org
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Value

For dOcc_*: the probability (or likelihood) or log probability of observation vector x.

For rOcc_*: a simulated detection history, x.

Notes for use with automatic differentiation

The dOcc_* distributions should all work for models and algorithms that use nimble’s automatic dif-
ferentiation (AD) system. In that system, some kinds of values are "baked in" (cannot be changed)
to the AD calculations from the first call, unless and until the AD calculations are reset. For the
dOcc_* distributions, the lengths of vector inputs are baked in. These can be different for different
iterations through a for loop (or nimble model declarations with different indices, for example), but
the lengths for each specific iteration will be "baked in" after the first call. It is safest if one can
assume that x are data and are not going to change.

Author(s)

Ben Goldstein, Perry de Valpine, and Lauren Ponisio

See Also

For dynamic occupancy models, see documentation for dDynOcc.

Examples

# Set up constants and initial values for defining the model
dat <- c(1,1,0,0) # A vector of observations
probOcc <- 0.6
probDetect <- 0.4

# Define code for a nimbleModel
nc <- nimbleCode({

x[1:4] ~ dOcc_s(probOcc, probDetect, len = 4)
probOcc ~ dunif(0,1)
probDetect ~ dunif(0,1)

})

# Build the model, providing data and initial values
Occ_model <- nimbleModel(nc, data = list(x = dat),

inits = list(probOcc = probOcc,
probDetect = probDetect))

# Calculate log probability of data from the model
Occ_model$calculate()
# Use the model for a variety of other purposes...
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