
Package ‘nosoi’
July 22, 2025

Type Package

Title A Forward Agent-Based Transmission Chain Simulator

Version 1.1.2

Description The aim of 'nosoi' (pronounced no.si) is to provide a flexible agent-based stochastic trans-
mission chain/epidemic simulator (Lequime et al. Methods in Ecology and Evolution 11:1002-
1007). It is named after the daimones of plague, sickness and disease that escaped Pan-
dora's jar in the Greek mythology. 'nosoi' is able to take into account the influence of multi-
ple variable on the transmission process (e.g. dual-host systems (such as arboviruses), within-
host viral dynamics, transportation, population structure), alone or taken together, to create com-
plex but relatively intuitive epidemiological simulations.

URL https://github.com/slequime/nosoi,

https://slequime.github.io/nosoi/

BugReports https://github.com/slequime/nosoi/issues

Language en-US

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Depends data.table (>= 1.12.0), R (>= 3.5.0)

Imports stats (>= 3.5.2), methods (>= 3.5.2), raster (>= 2.8-19)

Suggests testthat (>= 2.1.0), knitr, rmarkdown, igraph, ggplot2,
ggnetwork, intergraph, viridis, gifski, png, gganimate, ape (>=
5.3), tidytree (>= 0.3.3), treeio (>= 1.14.0), ggtree (>=
2.4.0), magrittr (>= 1.5), dplyr (>= 0.8.0), covr

VignetteBuilder knitr

NeedsCompilation no

Author Sebastian Lequime [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3140-0651>),

Paul Bastide [aut] (ORCID: <https://orcid.org/0000-0002-8084-9893>),
Simon Dellicour [aut] (ORCID: <https://orcid.org/0000-0001-9558-1052>),
Philippe Lemey [aut] (ORCID: <https://orcid.org/0000-0003-2826-5353>),
Guy Baele [aut] (ORCID: <https://orcid.org/0000-0002-1915-7732>),
Thijs Janzen [ctb] (ORCID: <https://orcid.org/0000-0002-4162-1140>)

1

https://github.com/slequime/nosoi
https://slequime.github.io/nosoi/
https://github.com/slequime/nosoi/issues
https://orcid.org/0000-0002-3140-0651
https://orcid.org/0000-0002-8084-9893
https://orcid.org/0000-0001-9558-1052
https://orcid.org/0000-0003-2826-5353
https://orcid.org/0000-0002-1915-7732
https://orcid.org/0000-0002-4162-1140

2 dualContinuous

Maintainer Sebastian Lequime <sebastian.lequime@gmail.com>

Repository CRAN

Date/Publication 2024-02-09 12:50:02 UTC

Contents
dualContinuous . 2
dualDiscrete . 10
dualNone . 16
getCumulative . 20
getDynamic . 21
getHostData . 21
getR0 . 23
getTableHosts . 24
getTableState . 25
getTransmissionTree . 25
nosoiSim . 27
nosoiSummary . 29
sampleTransmissionTree . 30
sampleTransmissionTreeFromExiting . 32
singleContinuous . 34
singleDiscrete . 38
singleNone . 42

Index 45

dualContinuous Dual-host pathogen in structured (continuous) hosts populations

Description

This function runs a dual-host transmission chain simulation, with structured hosts populations
(such as spatial features) in a shared continuous space. The simulation stops either at the end of
given time (specified by length.sim) or when the number of hosts infected threshold (max.infected)
is passed. The movement of hosts on the continuous space map is a random walk (Brownian motion)
that can be modified towards a biased random walk where hosts tend to be attracted to higher values
of the environmental variable defined by the raster.

Usage

dualContinuous(
length.sim,
max.infected.A,
max.infected.B,
init.individuals.A,
init.individuals.B,

dualContinuous 3

init.structure.A,
init.structure.B,
structure.raster.A,
structure.raster.B,
pExit.A,
param.pExit.A,
timeDep.pExit.A = FALSE,
diff.pExit.A = FALSE,
hostCount.pExit.A = FALSE,
pMove.A,
param.pMove.A,
timeDep.pMove.A = FALSE,
diff.pMove.A = FALSE,
hostCount.pMove.A = FALSE,
sdMove.A,
param.sdMove.A,
diff.sdMove.A = FALSE,
timeDep.sdMove.A = FALSE,
hostCount.sdMove.A = FALSE,
attracted.by.raster.A = FALSE,
nContact.A,
param.nContact.A,
timeDep.nContact.A = FALSE,
diff.nContact.A = FALSE,
hostCount.nContact.A = FALSE,
pTrans.A,
param.pTrans.A,
timeDep.pTrans.A = FALSE,
diff.pTrans.A = FALSE,
hostCount.pTrans.A = FALSE,
prefix.host.A = "H",
pExit.B,
param.pExit.B,
timeDep.pExit.B = FALSE,
diff.pExit.B = FALSE,
hostCount.pExit.B = FALSE,
pMove.B,
param.pMove.B,
timeDep.pMove.B = FALSE,
diff.pMove.B = FALSE,
hostCount.pMove.B = FALSE,
sdMove.B,
param.sdMove.B,
diff.sdMove.B = FALSE,
timeDep.sdMove.B = FALSE,
hostCount.sdMove.B = FALSE,
attracted.by.raster.B = FALSE,
nContact.B,

4 dualContinuous

param.nContact.B,
timeDep.nContact.B = FALSE,
diff.nContact.B = FALSE,
hostCount.nContact.B = FALSE,
pTrans.B,
param.pTrans.B,
timeDep.pTrans.B = FALSE,
diff.pTrans.B = FALSE,
hostCount.pTrans.B = FALSE,
prefix.host.B = "V",
print.progress = TRUE,
print.step = 10

)

Arguments

length.sim specifies the length (in unit of time) over which the simulation should be run.
max.infected.A specifies the maximum number of individual hosts A that can be infected in the

simulation.
max.infected.B specifies the maximum number of individual hosts B that can be infected in the

simulation.
init.individuals.A

number of initially infected individuals (hosts A).
init.individuals.B

number of initially infected individuals (hosts B).
init.structure.A

in which location the initially infected host-A individuals are located. A vector
of coordinates in the same coordinate space as the raster (NA if init.individual.A
is 0).

init.structure.B

in which location the initially infected host-B individuals are located. A vector
of coordinates in the same coordinate space as the raster (NA if init.individual.B
is 0).

structure.raster.A

raster object defining the environmental variable for host-type A.
structure.raster.B

raster object defining the environmental variable for host B.
pExit.A function that gives the probability to exit the simulation for an infected host A

(either moving out, dying, etc.).
param.pExit.A parameter names (list of functions) for the pExit for host-type A.
timeDep.pExit.A

is pExit of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?
diff.pExit.A does pExit of host-type A depend on the environmental variable (set by the

raster) (TRUE/FALSE).
hostCount.pExit.A

does pExit of host-type A vary with the host count (of either host-type A or B)
in each raster cell? (TRUE/FALSE); if TRUE, diff.pExit.A should be TRUE.

dualContinuous 5

pMove.A function that gives the probability of a host moving as a function of time for
host-type A.

param.pMove.A parameter names (list of functions) for the pMove for host-type A.
timeDep.pMove.A

is pMove of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pMove.A does pMove of host-type A depend on the environmental variable (set by the
raster) (TRUE/FALSE).A.

hostCount.pMove.A

does pMove of host-type A vary with the host count (of either host-type A or B)
in each raster cell? (TRUE/FALSE); if TRUE, diff.pMove.A should be TRUE.

sdMove.A function that gives the distance traveled for host-type A (based on coordinates);
output is the standard deviation value for the Brownian motion.

param.sdMove.A parameter names (list of functions) for sdMove for host-type A.

diff.sdMove.A does sdMove of host-type A depend on the environmental variable (set by the
raster) (TRUE/FALSE).

timeDep.sdMove.A

is sdMove of host-type A dependent on the absolute time of the simulation
(TRUE/FALSE) ?

hostCount.sdMove.A

does sdMove varies with the host count (of either host-type A or B) in each
raster cell? (TRUE/FALSE); diff.sdMove.A should be TRUE.

attracted.by.raster.A

should the host-type A be attracted by higher values in the environmental raster?
(TRUE/FALSE).

nContact.A function that gives the number of potential transmission events per unit of time
for host-type A.

param.nContact.A

parameter names (list of functions) for param.nContact for host-type A.
timeDep.nContact.A

is nContact of host-type A dependent on the absolute time of the simulation
(TRUE/FALSE)?

diff.nContact.A

does nContact of host-type A depend on the environmental variable (set by the
raster) (TRUE/FALSE).

hostCount.nContact.A

does nContact vary with the host count (of either host-type A or B) in each raster
cell?? (TRUE/FALSE); diff.nContact.A should be TRUE.

pTrans.A function that gives the probability of transmit a pathogen as a function of time
since infection for host A.

param.pTrans.A parameter names (list of functions) for the pExit for host A.
timeDep.pTrans.A

is pTrans of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pTrans.A does pTrans of host-type A depend on the environmental variable (set by the
raster) (TRUE/FALSE).

6 dualContinuous

hostCount.pTrans.A

does pTrans vary with the host count (of either host-type A or B) in each raster
cell? (TRUE/FALSE); diff.pTrans.A should be TRUE.

prefix.host.A character(s) to be used as a prefix for the host A identification number.

pExit.B function that gives the probability to exit the simulation for an infected host B
(either moving out, dying, etc.).

param.pExit.B parameter names (list of functions) for the pExit for host-type B.
timeDep.pExit.B

is pExit of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pExit.B does pExit of host-type B depend on the environmental variable (set by the
raster) (TRUE/FALSE).

hostCount.pExit.B

does pExit of host-type B vary with the host count (of either host-type A or B)
in each raster cell? (TRUE/FALSE); if TRUE, diff.pExit.B should be TRUE.

pMove.B function that gives the probability of a host moving as a function of time for
host-type B.

param.pMove.B parameter names (list of functions) for the pMove for host-type B.
timeDep.pMove.B

is sdMove of host-type B dependent on the absolute time of the simulation
(TRUE/FALSE) for host-type B.

diff.pMove.B does pMove of host-type B depend on the environmental variable (set by the
raster) (TRUE/FALSE).

hostCount.pMove.B

does pMove of host-type B vary with the host count (of either host-type A or B)
in each raster cell? (TRUE/FALSE); if TRUE, diff.pMove.B should be TRUE.

sdMove.B function that gives the distance traveled for host-type B (based on coordinates);
output is the standard deviation value for the Brownian motion.

param.sdMove.B parameter names (list of functions) for sdMove for host-type B.

diff.sdMove.B does sdMove of host-type B depend on the environmental variable (set by the
raster) (TRUE/FALSE).

timeDep.sdMove.B

is sdMove of host-type B dependent on the absolute time of the simulation
(TRUE/FALSE) ?

hostCount.sdMove.B

does sdMove of host-type B vary with the host count (of either host-type A or B)
in each raster cell? (TRUE/FALSE); if TRUE, diff.sdMove.B should be TRUE.

attracted.by.raster.B

should the host-type B be attracted by higher values in the environmental raster?
(TRUE/FALSE)

nContact.B function that gives the number of potential transmission events per unit of time
for host B.

param.nContact.B

parameter names (list of functions) for param.nContact for host-type B.

dualContinuous 7

timeDep.nContact.B

is nContact of host-type B dependent on the absolute time of the simulation
(TRUE/FALSE)?

diff.nContact.B

does nContact of host-type B depend on the environmental variable (set by the
raster) (TRUE/FALSE).

hostCount.nContact.B

does nContact of host-type B vary with the host count (of either host-type A
or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.nContact.B should be
TRUE.

pTrans.B function that gives the probability of transmit a pathogen as a function of time
since infection for host B.

param.pTrans.B parameter names (list of functions) for the pExit for host-type B.
timeDep.pTrans.B

is pTrans of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)?
diff.pTrans.B does pTrans of host-type B depend on the environmental variable (set by the

raster) (TRUE/FALSE).
hostCount.pTrans.B

does pTrans of host-type B vary with the host count (of either host-type A or B)
in each raster cell? (TRUE/FALSE); if TRUE, diff.pTrans.B should be TRUE.

prefix.host.B character(s) to be used as a prefix for the host B identification number.
print.progress if TRUE, displays a progress bar (current time/length.sim).
print.step print.progress is TRUE, step with which the progress message will be printed.

Details

The pExit and pTrans functions should return a single probability (a number between 0 and 1),
and nContact a positive natural number (positive integer) or 0.

The param arguments should be a list of functions or NA. Each item name in the parameter list
should have the same name as the argument in the corresponding function.

The use of timeDep (switch to TRUE) makes the corresponding function use the argument prestime
(for "present time").

Value

An object of class nosoiSim, containing all results of the simulation.

Raster

The structure raster(s) provided provided should of class raster. High values of the environmental
variable can attract hosts if attracted.by.raster is TRUE. Raster have to share the same space
(i.e. also the same cell size and ID).

Order of Arguments

The user specified function’s arguments should follow this order: t (mandatory), prestime (op-
tional, only if timeDep is TRUE), current.env.value (optional, only if diff is TRUE), host.count.A
or host.count.B (optional, only if hostCount is TRUE) and parameters specified in the list.

8 dualContinuous

Structure Parameters

The pMove function should return a single probability (a number between 0 and 1), and sdMove a
real number (keep in mind this number is related to your coordinate space).

The use of diff (switch to TRUE) makes the corresponding function use the argument current.env.value
(for "current environmental value").

The use of hostCount (switch to TRUE) makes the corresponding function use the argument host.count.

Suffixes

The suffix .A or .B specifies if the considered function or parameter concerns host type A or B.

See Also

For simulations with a discrete structure, see dualDiscrete. For simulations without any struc-
tures, see dualNone.

Examples

library(raster)

#Generating a raster for the movement
set.seed(860)

test.raster <- raster(nrows=100, ncols=100, xmn=-50, xmx=50, ymn=-50,ymx=50)
test.raster[] <- runif(10000, -80, 180)
test.raster <- focal(focal(test.raster, w=matrix(1, 5, 5), mean), w=matrix(1, 5, 5), mean)

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Move_fct <- function(t){return(0.1)}

sdMove_fct = function(t,current.env.value){return(100/(current.env.value+1))}

p_Exit_fct <- function(t){return(0.08)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)
}

time_contact = function(t){round(rnorm(1, 3, 1), 0)}

start.pos <- c(0,0)

set.seed(805)
test.nosoi <- nosoiSim(type="dual", popStructure="continuous",

length.sim=200,
max.infected.A=500,
max.infected.B=500,
init.individuals.A=1,

dualContinuous 9

init.individuals.B=0,
init.structure.A=start.pos,
init.structure.B=NA,
structure.raster.A=test.raster,
structure.raster.B=test.raster,
pExit.A=p_Exit_fct,
param.pExit.A=NA,
timeDep.pExit.A=FALSE,
diff.pExit.A=FALSE,
pMove.A=p_Move_fct,
param.pMove.A=NA,
timeDep.pMove.A=FALSE,
diff.pMove.A=FALSE,
diff.sdMove.A=TRUE,
sdMove.A=sdMove_fct,
param.sdMove.A=NA,
attracted.by.raster.A=TRUE,
nContact.A=time_contact,
param.nContact.A=NA,
timeDep.nContact.A=FALSE,
diff.nContact.A=FALSE,
pTrans.A=proba,
param.pTrans.A=list(p_max=p_max_fct,

t_incub=t_incub_fct),
timeDep.pTrans.A=FALSE,
diff.pTrans.A=FALSE,
prefix.host.A="H",
pExit.B=p_Exit_fct,
param.pExit.B=NA,
timeDep.pExit.B=FALSE,
diff.pExit.B=FALSE,
pMove.B=p_Move_fct,
param.pMove.B=NA,
timeDep.pMove.B=FALSE,
diff.pMove.B=FALSE,
diff.sdMove.B=TRUE,
sdMove.B=sdMove_fct,
param.sdMove.B=NA,
attracted.by.raster.B=TRUE,
nContact.B=time_contact,
param.nContact.B=NA,
timeDep.nContact.B=FALSE,
diff.nContact.B=FALSE,
pTrans.B=proba,
param.pTrans.B=list(p_max=p_max_fct,

t_incub=t_incub_fct),
timeDep.pTrans.B=FALSE,
diff.pTrans.B=FALSE,
prefix.host.B="V")

test.nosoi

10 dualDiscrete

dualDiscrete Dual-host pathogen in structured (discrete) hosts populations

Description

This function, that can be wrapped within nosoiSim, runs a dual-host transmission chain simulation,
with discrete hosts populations structures (e.g. spatial, socio-economic, etc.). The simulation stops
either at the end of given time (specified by length.sim) or when the number of hosts infected
threshold (max.infected) is crossed.

Usage

dualDiscrete(
length.sim,
max.infected.A,
max.infected.B,
init.individuals.A,
init.individuals.B,
init.structure.A,
init.structure.B,
structure.matrix.A,
structure.matrix.B,
pExit.A,
param.pExit.A,
timeDep.pExit.A = FALSE,
diff.pExit.A = FALSE,
hostCount.pExit.A = FALSE,
pMove.A,
param.pMove.A,
timeDep.pMove.A = FALSE,
diff.pMove.A = FALSE,
hostCount.pMove.A = FALSE,
nContact.A,
param.nContact.A,
timeDep.nContact.A = FALSE,
diff.nContact.A = FALSE,
hostCount.nContact.A = FALSE,
pTrans.A,
param.pTrans.A,
timeDep.pTrans.A = FALSE,
diff.pTrans.A = FALSE,
hostCount.pTrans.A = FALSE,
prefix.host.A = "H",
pExit.B,
param.pExit.B,
timeDep.pExit.B = FALSE,
diff.pExit.B = FALSE,

dualDiscrete 11

hostCount.pExit.B = FALSE,
pMove.B,
param.pMove.B,
timeDep.pMove.B = FALSE,
diff.pMove.B = FALSE,
hostCount.pMove.B = FALSE,
nContact.B,
param.nContact.B,
timeDep.nContact.B = FALSE,
diff.nContact.B = FALSE,
hostCount.nContact.B = FALSE,
pTrans.B,
param.pTrans.B,
timeDep.pTrans.B = FALSE,
diff.pTrans.B = FALSE,
hostCount.pTrans.B = FALSE,
prefix.host.B = "V",
print.progress = TRUE,
print.step = 10

)

Arguments

length.sim specifies the length (in unit of time) over which the simulation should be run.

max.infected.A specifies the maximum number of individual hosts A that can be infected in the
simulation.

max.infected.B specifies the maximum number of individual hosts B that can be infected in the
simulation.

init.individuals.A

number of initially infected individuals (hosts A).
init.individuals.B

number of initially infected individuals (hosts B).
init.structure.A

in which state (e.g. location) the initially infected individuals of host-type A are
located (NA if init.individual.A is 0)?

init.structure.B

in which state (e.g. location) the initially infected individuals of host-type B are
located (NA if init.individual.B is 0)?

structure.matrix.A

transition matrix (probabilities) to go from location A (row) to B (column) for
host-type A.

structure.matrix.B

transition matrix (probabilities) to go from location A (row) to B (column) for
host-type B.

pExit.A function that gives the probability to exit the simulation for an infected host A
(either moving out, dying, etc.).

param.pExit.A parameter names (list of functions) for the pExit for host-type A.

12 dualDiscrete

timeDep.pExit.A

is pExit of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pExit.A is pExit of host-type A different between states of the structured population
(TRUE/FALSE)?

hostCount.pExit.A

does pExit of host-type A vary with the host count (of either host-type A or B)
in the state? (TRUE/FALSE); diff.pExit.A should be TRUE.

pMove.A function that gives the probability of a host moving as a function of time for
host-type A.

param.pMove.A parameter names (list of functions) for the pMove for host-type A.
timeDep.pMove.A

is pMove of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pMove.A is pMove of host-type A different between states of the structured population
(TRUE/FALSE)?

hostCount.pMove.A

does pMove of host-type A vary with the host count (of either host A or B) in
the state? (TRUE/FALSE); diff.pMove.A should be TRUE.

nContact.A function that gives the number of potential transmission events per unit of time
for host-type A.

param.nContact.A

parameter names (list of functions) for param.nContact for host-type A.
timeDep.nContact.A

is nContact of host-type A dependent on the absolute time of the simulation
(TRUE/FALSE)?

diff.nContact.A

is nContact of host-type A different between states of the structured population
(TRUE/FALSE)?

hostCount.nContact.A

does nContact of host-type A vary with the host count (of either host A or B) in
the state? (TRUE/FALSE); diff.nContact.A should be TRUE.

pTrans.A function that gives the probability of transmit a pathogen as a function of time
since infection for host A.

param.pTrans.A parameter names (list of functions) for the pExit for host A.
timeDep.pTrans.A

is pTrans of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pTrans.A is pTrans of host-type A different between states of the structured population
(TRUE/FALSE)?

hostCount.pTrans.A

does pTrans of host-type A vary with the host count (of either host A or B) in
the state? (TRUE/FALSE); diff.pTrans.A should be TRUE.

prefix.host.A character(s) to be used as a prefix for the host A identification number.

pExit.B function that gives the probability to exit the simulation for an infected host B
(either moving out, dying, etc.).

param.pExit.B parameter names (list of functions) for the pExit for host-type B.

dualDiscrete 13

timeDep.pExit.B

is pExit of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pExit.B is pExit of host-type B different between states of the structured population
(TRUE/FALSE)?

hostCount.pExit.B

does pExit of host-type B vary with the host count (of either host A or B) in the
state? (TRUE/FALSE); diff.pExit.B should be TRUE.

pMove.B function that gives the probability of a host moving as a function of time for
host-type B.

param.pMove.B parameter names (list of functions) for the pMove for host-type B.
timeDep.pMove.B

is sdMove of host-type B dependent on the absolute time of the simulation
(TRUE/FALSE) for host-type B.

diff.pMove.B is pMove of host-type B different between states of the structured population
(TRUE/FALSE)?

hostCount.pMove.B

does pMove of host-type B vary with the host count (of either host A or B) in
the state? (TRUE/FALSE); diff.pMove.B should be TRUE.

nContact.B function that gives the number of potential transmission events per unit of time
for host B.

param.nContact.B

parameter names (list of functions) for param.nContact for host-type B.
timeDep.nContact.B

is nContact of host-type B dependent on the absolute time of the simulation
(TRUE/FALSE)?

diff.nContact.B

is nContact of host-type B different between states of the structured population
(TRUE/FALSE)?

hostCount.nContact.B

does nContact of host-type B vary with the host count (of either host A or B) in
the state? (TRUE/FALSE); diff.nContact.B should be TRUE.

pTrans.B function that gives the probability of transmit a pathogen as a function of time
since infection for host B.

param.pTrans.B parameter names (list of functions) for the pExit for host-type B.
timeDep.pTrans.B

is pTrans of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)?

diff.pTrans.B is pTrans host-type B different between states of the structured population (TRUE/FALSE)?
hostCount.pTrans.B

does pTrans of host-type B vary with the host count (of either host A or B) in
the state? (TRUE/FALSE); diff.pTrans.B should be TRUE.

prefix.host.B character(s) to be used as a prefix for the host B identification number.

print.progress if TRUE, displays a progress bar (current time/length.sim).

print.step print.progress is TRUE, step with which the progress message will be printed.

14 dualDiscrete

Details

The pExit and pTrans functions should return a single probability (a number between 0 and 1),
and nContact a positive natural number (positive integer) or 0.

The param arguments should be a list of functions or NA. Each item name in the parameter list
should have the same name as the argument in the corresponding function.

The use of timeDep (switch to TRUE) makes the corresponding function use the argument prestime
(for "present time").

Value

An object of class nosoiSim, containing all results of the simulation.

Structure Matrix

The structure/transition matrix provided provided should of class matrix, with the same number of
rows and columns, rows representing departure state and column the arrival state. All rows should
add to 1. Probability values can be different for hosts A and B (so two different matrices), but the
name of the column and the rows should be shared.

Order of Arguments

The user specified function’s arguments should follow this order: t (mandatory), prestime (op-
tional, only if timeDep is TRUE), current.in (optional, only if diff is TRUE), host.count.A or
host.count.B (optional, only if hostCount is TRUE) and parameters specified in the list.

Structure Parameters

The pMove function should return a single probability (a number between 0 and 1).

The use of diff (switch to TRUE) makes the corresponding function use the argument current.in
(for "currently in"). Your function should in that case give a result for every possible discrete state.

The use of hostCount (switch to TRUE) makes the corresponding function use the argument host.count.

Suffixes

The suffix .A or .B specifies if the considered function or parameter concerns host type A or B.

See Also

For simulations with a structure in continuous space, see dualContinuous. For simulations without
any structures, see dualNone.

Examples

#Host A
t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)}
pTrans_hostA <- function(t,t_infectA){
if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)}
if(t/t_infectA > 1){p=0}
return(p)

dualDiscrete 15

}

p_Move_fctA <- function(t){return(0.1)}

p_Exit_fctA <- function(t,t_infectA){
if(t/t_infectA <= 1){p=0}
if(t/t_infectA > 1){p=1}
return(p)

}

time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))}

t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)}

p_Exit_fct_B <- function(t,current.in){
if(current.in=="A"){return(0.1)}
if(current.in=="B"){return(0.2)}
if(current.in=="C"){return(1)}}

pTrans_hostB <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact_B = function(t){round(rnorm(1, 3, 1), 0)}

transition.matrix = matrix(c(0,0.2,0.4,0.5,0,0.6,0.5,0.8,0),
nrow = 3, ncol = 3,
dimnames=list(c("A","B","C"),c("A","B","C")))

set.seed(6262)
test.nosoi <- nosoiSim(type="dual", popStructure="discrete",

length.sim=40,
max.infected.A=100,
max.infected.B=200,
init.individuals.A=1,
init.individuals.B=0,
init.structure.A="A",
init.structure.B=NA,
structure.matrix.A=transition.matrix,
structure.matrix.B=transition.matrix,
pExit.A = p_Exit_fctA,
param.pExit.A = list(t_infectA = t_infectA_fct),
pMove.A=p_Move_fctA,
param.pMove.A=NA,
timeDep.pMove.A=FALSE,
diff.pMove.A=FALSE,
timeDep.pExit.A=FALSE,
nContact.A = time_contact_A,
param.nContact.A = NA,
timeDep.nContact.A=FALSE,

16 dualNone

pTrans.A = pTrans_hostA,
param.pTrans.A = list(t_infectA=t_infectA_fct),
timeDep.pTrans.A=FALSE,
prefix.host.A="H",
pExit.B = p_Exit_fct_B,
param.pExit.B = NA,
timeDep.pExit.B=FALSE,
diff.pExit.B=TRUE,
pMove.B=NA,
param.pMove.B=NA,
timeDep.pMove.B=FALSE,
diff.pMove.B=FALSE,
nContact.B = time_contact_B,
param.nContact.B = NA,
timeDep.nContact.B=FALSE,
pTrans.B = pTrans_hostB,
param.pTrans.B = list(p_max=p_max_fct_B,

t_incub=t_incub_fct_B),
timeDep.pTrans.B=FALSE,
prefix.host.B="V")

test.nosoi

dualNone Dual-host pathogen in homogeneous hosts populations

Description

This function, that can be wrapped within nosoiSim, runs a dual-host transmission chain simu-
lation, without any structure features in both hosts populations. The simulation stops either at
the end of given time (specified by length.sim) or when the number of hosts infected threshold
(max.infected) is crossed.

Usage

dualNone(
length.sim,
max.infected.A,
max.infected.B,
init.individuals.A,
init.individuals.B,
pExit.A,
param.pExit.A,
timeDep.pExit.A = FALSE,
nContact.A,
param.nContact.A,
timeDep.nContact.A = FALSE,
pTrans.A,

dualNone 17

param.pTrans.A,
timeDep.pTrans.A = FALSE,
prefix.host.A = "H",
pExit.B,
param.pExit.B,
timeDep.pExit.B = FALSE,
nContact.B,
param.nContact.B,
timeDep.nContact.B = FALSE,
pTrans.B,
param.pTrans.B,
timeDep.pTrans.B = FALSE,
prefix.host.B = "V",
print.progress = TRUE,
print.step = 10

)

Arguments

length.sim specifies the length (in unit of time) over which the simulation should be run.

max.infected.A specifies the maximum number of individual hosts A that can be infected in the
simulation.

max.infected.B specifies the maximum number of individual hosts B that can be infected in the
simulation.

init.individuals.A

number of initially infected individuals (hosts A).
init.individuals.B

number of initially infected individuals (hosts B).

pExit.A function that gives the probability to exit the simulation for an infected host A
(either moving out, dying, etc.).

param.pExit.A parameter names (list of functions) for the pExit for host-type A.
timeDep.pExit.A

is pExit of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?

nContact.A function that gives the number of potential transmission events per unit of time
for host-type A.

param.nContact.A

parameter names (list of functions) for param.nContact for host-type A.
timeDep.nContact.A

is nContact of host-type A dependent on the absolute time of the simulation
(TRUE/FALSE)?

pTrans.A function that gives the probability of transmit a pathogen as a function of time
since infection for host A.

param.pTrans.A parameter names (list of functions) for the pExit for host A.
timeDep.pTrans.A

is pTrans of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)?

18 dualNone

prefix.host.A character(s) to be used as a prefix for the host A identification number.

pExit.B function that gives the probability to exit the simulation for an infected host B
(either moving out, dying, etc.).

param.pExit.B parameter names (list of functions) for the pExit for host-type B.
timeDep.pExit.B

is pExit of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)?

nContact.B function that gives the number of potential transmission events per unit of time
for host B.

param.nContact.B

parameter names (list of functions) for param.nContact for host-type B.
timeDep.nContact.B

is nContact of host-type B dependent on the absolute time of the simulation
(TRUE/FALSE)?

pTrans.B function that gives the probability of transmit a pathogen as a function of time
since infection for host B.

param.pTrans.B parameter names (list of functions) for the pExit for host-type B.
timeDep.pTrans.B

is pTrans of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)?

prefix.host.B character(s) to be used as a prefix for the host B identification number.

print.progress if TRUE, displays a progress bar (current time/length.sim).

print.step print.progress is TRUE, step with which the progress message will be printed.

Details

The pExit and pTrans functions should return a single probability (a number between 0 and 1),
and nContact a positive natural number (positive integer) or 0.

The param arguments should be a list of functions or NA. Each item name in the parameter list
should have the same name as the argument in the corresponding function.

The use of timeDep (switch to TRUE) makes the corresponding function use the argument prestime
(for "present time").

Value

An object of class nosoiSim, containing all results of the simulation.

Suffixes

The suffix .A or .B specifies if the considered function or parameter concerns host type A or B.

Order of Arguments

The user specified function’s arguments should follow this order: t (mandatory), prestime (op-
tional, only if timeDep is TRUE), parameters specified in the list.

dualNone 19

See Also

For simulations with a discrete structured host population, see dualDiscrete. For simulations with
a structured population in continuous space, dualContinuous

Examples

#Host A
t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)}
pTrans_hostA <- function(t,t_infectA){

if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)}
if(t/t_infectA > 1){p=0}
return(p)

}

p_Exit_fctA <- function(t,t_infectA){
if(t/t_infectA <= 1){p=0}
if(t/t_infectA > 1){p=1}
return(p)

}

time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))}

#Host B
t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)}

p_Exit_fct_B <- function(t,prestime){(sin(prestime/12)+1)/5}

pTrans_hostB <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact_B = function(t){round(rnorm(1, 3, 1), 0)}

set.seed(90)
test.nosoi <- nosoiSim(type="dual", popStructure="none",

length.sim=40,
max.infected.A=100,
max.infected.B=200,
init.individuals.A=1,
init.individuals.B=0,
pExit.A = p_Exit_fctA,
param.pExit.A = list(t_infectA = t_infectA_fct),
timeDep.pExit.A=FALSE,
nContact.A = time_contact_A,
param.nContact.A = NA,
timeDep.nContact.A=FALSE,
pTrans.A = pTrans_hostA,
param.pTrans.A = list(t_infectA=t_infectA_fct),

timeDep.pTrans.A=FALSE,

20 getCumulative

prefix.host.A="H",
pExit.B = p_Exit_fct_B,
param.pExit.B = NA,
timeDep.pExit.B=TRUE,
nContact.B = time_contact_B,
param.nContact.B = NA,
timeDep.nContact.B=FALSE,
pTrans.B = pTrans_hostB,
param.pTrans.B = list(p_max=p_max_fct_B,

t_incub=t_incub_fct_B),
timeDep.pTrans.B=FALSE,
prefix.host.B="V")

test.nosoi

getCumulative Gets the cumulative number of infected hosts for the full length of the
simulation

Description

This function computes from the output of a nosoiSim simulation the cumulative count of infected
hosts at each time step of the simulation. The output is a data.table.

Usage

getCumulative(nosoi.output)

Arguments

nosoi.output Output of a nosoi simulation (object of class nosoiSim).

Value

The output is a data.table with the following structure:

t Time-step (integer).

Count Cumulative number of infected hosts at given time-step.

type Host-type, identified by its user-defined prefix.

See Also

summary.nosoiSim

getDynamic 21

getDynamic Gets the current number of infected hosts for the full length of the
simulation

Description

This function computes from the output of a nosoiSim simulation the dynamic count of infected
hosts at each time step (and each state if discrete structure) of the simulation. The output is a
data.table.

Usage

getDynamic(nosoi.output)

Arguments

nosoi.output Output of a nosoi simulation (object of class nosoiSim).

Value

The output is a data.table with the following structure:

state (only when discrete structure) Given state

Count Current number of infected hosts at given time-step.

type Host-type, identified by its user-defined prefix.

t Time-step (integer).

See Also

summary.nosoiSim

getHostData Extracts specific data from a nosoiSim object

Description

This function extracts data user-defined data (i.e. table.hosts, N.infected, table.state or
popStructure) from a nosoiSim object.

Usage

getHostData(
nosoi.output,
what = c("table.hosts", "N.infected", "table.state", "popStructure"),
pop = "A"

)

22 getHostData

Arguments

nosoi.output an object of class nosoiSim

what the data to get, among table.hosts, N.infected, table.state or popStructure.

pop the population to be extracted (one of "A" or "B")

Value

Returns a data.table with the requested data.

See Also

To directly extract table.hosts or table.state, you can also use getTableHosts and getTableState
respectively.

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact <- function(t){round(rnorm(1, 3, 1), 0)}

test.nosoi <- nosoiSim(type="single", popStructure="none",
length=40,
max.infected=100,
init.individuals=1,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA)

data.extracted <- getHostData(test.nosoi, "table.hosts", "A")

getR0 23

getR0 Gets R0 from a nosoi simulation

Description

Gets an estimate of secondary cases (what R0 usually tries to estimate) and its distribution from the
output of a nosoiSim simulation. The actual calculation is based on inactive hosts at the end of the
simulation to avoid bias introduced by hosts that have not finished their transmission potential.

Usage

getR0(nosoi.output)

Arguments

nosoi.output Output of a nosoi simulation (object of class nosoiSim).

Details

Current getR0 (after and including version 1.1.0) is a corrected version. In previous versions (prior
to 1.1.0), the output included in its computation hosts that should not have been counted (still
active).

Value

A list with the following items:

N.inactive Number of inactive hosts at the end of the simulation.

R0.mean Mean R0 based on the distribution (see below).

R0.dist Distribution for each host of the secondary cases it generated (in case of dual-hosts, then
the secondary cases of the same host-type).

See Also

summary.nosoiSim

24 getTableHosts

getTableHosts Extracts table.hosts from a nosoiSim object

Description

This function extracts the table.hosts for the request host-type from a nosoiSim object.

Usage

getTableHosts(nosoi.output, pop = "A")

Arguments

nosoi.output an object of class nosoiSim

pop the host-type to be extracted (either "A" or "B", if not dual-host, then "A")

Value

Returns a data.table with the requested data. The table.hosts (class data.table) contains
informations about each host that has been simulated (one row is one host). The structure of the
table is the following:

hosts.ID Unique identifier for the host, based on user-defined prefix and an integer.

inf.by Unique identifier for the host that infected the current one.

inf.in (only if structure is present) State or coordinates (in that case inf.in.x and inf.in.y) in which
the host was infected.

current.in (only if structure is present) State or coordinates (in that case current.in.x and cur-
rent.in.y) in which the host is at the end of the simulation.

current.env.value (only if continuous structure is present) Environmental value (raster cell value)
in which the host is at the end of the simulation.

current.cell.raster (only if continuous structure is present) Raster cell numeric ID in which the
host is at the end of the simulation.

host.count (only if structure is present) Host count in the current state or raster cell (beware, up-
dated only if used).

inf.time When did the host enter the simulation (infection time).

out.time When did the host exit the simulation (NA if still active).

active Is the host still active at the end of the simulation (TRUE for YES, FALSE for NO)?

parameters The remaining columns are the sampled values for the individual-based parameters (if
any) specified by the user.

getTableState 25

getTableState Extracts table.state from a nosoiSim object

Description

This function extracts the table.state for the request host-type from a nosoiSim object. table.state
is present only if there is any structure (discrete or continuous) used.

Usage

getTableState(nosoi.output, pop = "A")

Arguments

nosoi.output an object of class nosoiSim

pop the host-type to be extracted (either "A" or "B", if not dual-host, then "A")

Value

Returns a data.table with the requested data. The table.state (class data.table) contains
informations the location of each host during time (one row is one host at one location). The
structure of the table is the following:

hosts.ID Unique identifier for the host, based on user-defined prefix and an integer.

state State or coordinates (in that case state.x and state.y) in which the host is during that time
interval.

current.env.value (only if continuous structure is present) Environmental value (raster cell value)
in which the host is at the end of the simulation.

current.cell.raster (only if continuous structure is present) Raster cell numeric ID in which the
host is at the end of the simulation.

time.from Time-step at which the host moved to the location.

time.to Time-step at which the host exited the location (either by exiting the simulation or moving
somewhere else).

getTransmissionTree Gets the full transmission tree (phylogenetic tree-like) from a nosoi
simulation

Description

From a nosoi simulated epidemics, this function extracts the full transmission tree in a form mim-
icking a phylogenetic tree.

26 getTransmissionTree

Usage

getTransmissionTree(nosoiInf)

Arguments

nosoiInf an object of class nosoiSim

Details

This function uses packages tidytree and treeio, that rely on ape.

Value

A tree of class treedata, containing a phylogenetic tree based on the transmission chain and the
mapped data at all the nodes.

See Also

For exporting the annotated tree to other software packages, see functions in treeio (e.g. write.beast).

To sub-sample this tree, see functions sampleTransmissionTree and sampleTransmissionTreeFromExiting

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}
p_Move_fct <- function(t){return(0.1)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact = function(t){round(rnorm(1, 3, 1), 0)}

transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0),
nrow = 3, ncol = 3,
dimnames = list(c("A", "B", "C"), c("A", "B", "C")))

set.seed(805)
test.nosoi <- nosoiSim(type="single", popStructure="discrete",

length=20,
max.infected=100,
init.individuals=1,
init.structure="A",
structure.matrix=transition.matrix,
pMove=p_Move_fct,
param.pMove=NA,
nContact=time_contact,
param.nContact=NA,

nosoiSim 27

pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA

)

Make sure all needed packages are here
if (requireNamespace("ape", quietly = TRUE) &&

requireNamespace("tidytree", quietly = TRUE) &&
requireNamespace("treeio", quietly = TRUE)) {

library(ape)
library(tidytree)
library(treeio)

#' ## Full transmission tree
ttreedata <- getTransmissionTree(test.nosoi)
plot(ttreedata@phylo)

Sampling "non dead" individuals
hID <- c("H-1", "H-7", "H-15", "H-100")
samples <- data.table(hosts = hID,

times = c(5.2, 9.3, 10.2, 16),
labels = paste0(hID, "-s"))

sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples)
plot(sampledTree@phylo)

Sampling "dead" individuals
sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID)
plot(sampledDeadTree@phylo)
}

nosoiSim Top-level function to use nosoi.

Description

This function determines which general settings the user wants to use for his simulation. All other
arguments are passed down to the chosen simulator itself, such as singleNone, singleDiscrete,
singleContinuous, dualNone, dualDiscrete or dualContinuous.

Usage

nosoiSim(type = "single", popStructure = "none", ...)

28 nosoiSim

Arguments

type specifies which type of pathogen we are interested in, either "single" or "dual"-
host (e.g. arboviruses).

popStructure specifies if the population in which the transmission is to occur is structured
("none", "discrete" or "continuous").

... arguments to be passed on to the chosen simulator itself, such as singleNone,
singleDiscrete, singleContinuous, dualNone, dualDiscrete or dualContinuous.

Value

An object of class nosoiSim, containing all results of the simulation. Class nosoiSim object have
the following slots:

total.time Number of time steps the simulation ran (integer).

type String giving the simulation type ("single" or "dual" host).

host.info.A: object of class nosoiSimOne N.infected Number of infected hosts (integer).
table.hosts Table containing the results of the simulation (see getTableHosts for more de-

tails on the table).
table.state Table containing the results of the simulation, focusing on the movement history

of each host (see getTableState for more details on the table).
prefix.host String containing the prefix used to name hosts (character string).
popStructure String giving the population structure (one of "none", "discrete" or "continu-

ous").

host.info.B: object of class nosoiSimOne Same structure as host.info.A, but for host B (if it
exists).

See Also

Individual simulation functions: singleNone, singleDiscrete, singleContinuous, dualNone,
dualDiscrete and dualContinuous.

Functions to extract the results: getTableHosts, getTableState

Summary statistics functions: nosoiSummary, getCumulative, getDynamic, getR0

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)
}

time_contact = function(t){round(rnorm(1, 3, 1), 0)}

nosoiSummary 29

test.nosoi <- nosoiSim(type="single", popStructure="none",
length=40,
max.infected=100,
init.individuals=1,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA)

test.nosoi

nosoiSummary Summarizes the epidemiological features of a nosoi simulation

Description

This function provides summary information about the simulation (number of infected hosts, R0,
etc.) as a list.

Usage

nosoiSummary(object)

S3 method for class 'nosoiSim'
summary(object, ...)

Arguments

object Output of a nosoi simulation (object of class nosoiSim).

... further arguments passed to or from other methods.

Value

All computed data is provided in a list:

R0 Provides a sublist with number of inactive hosts at the end of the simulation N.inactive, mean
R0 R0.mean, and R0 distribution R0.dist. For more details, see getR0.

dynamics data.table with the count of currently infected (i.e. active) hosts at each time step of
the simulation (by state if the simulation was in a discrete structured host population). For
more details, see getDynamic.

cumulative data.table with the cumulative count of infected hosts at each time step of the sim-
ulation. For more details, see getCumulative.

30 sampleTransmissionTree

See Also

You can directly compute each elements of the list without using the summarise function. See
getR0, getDynamic and getCumulative.

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact <- function(t){round(rnorm(1, 3, 1), 0)}

test.nosoi <- nosoiSim(type="single", popStructure="none",
length=40,
max.infected=100,
init.individuals=1,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA)

nosoiSummary(test.nosoi)

sampleTransmissionTree

Sample the transmission tree (phylogenetic tree-like)

Description

Sample a full transmission tree. This function allows for sampling multiple times on the same
lineage. When this happens, the sampled ancestor is a tip with length zero.

Usage

sampleTransmissionTree(nosoiInf, tree, samples)

sampleTransmissionTree 31

Arguments

nosoiInf an object of class nosoiSim

tree a treedata object created by function getTransmissionTree

samples a data.table object with the following entries:

hosts Host ID of the individuals to be sampled
times Times at which each host is sampled
labels label for the corresponding tip in the tree

Details

The tree needs to be produced by function getTransmissionTree applied on the same nosoiSim
object.

Value

A tree of class treedata, containing a phylogenetic tree based on the transmission chain and the
mapped data at all the nodes.

See Also

For exporting the annotated tree to other software packages, see functions in treeio (e.g. write.beast).

To get the full transmission matrix, see getTransmissionTree.

For sampling only dead individuals, see sampleTransmissionTreeFromExiting.

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}
p_Move_fct <- function(t){return(0.1)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact = function(t){round(rnorm(1, 3, 1), 0)}

transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0),
nrow = 3, ncol = 3,
dimnames = list(c("A", "B", "C"), c("A", "B", "C")))

set.seed(805)
test.nosoi <- nosoiSim(type="single", popStructure="discrete",

length=20,
max.infected=100,
init.individuals=1,
init.structure="A",

32 sampleTransmissionTreeFromExiting

structure.matrix=transition.matrix,
pMove=p_Move_fct,
param.pMove=NA,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA

)

Make sure all needed packages are here
if (requireNamespace("ape", quietly = TRUE) &&

requireNamespace("tidytree", quietly = TRUE) &&
requireNamespace("treeio", quietly = TRUE)) {

library(ape)
library(tidytree)
library(treeio)

#' ## Full transmission tree
ttreedata <- getTransmissionTree(test.nosoi)
plot(ttreedata@phylo)

Sampling "non dead" individuals
hID <- c("H-1", "H-7", "H-15", "H-100")
samples <- data.table(hosts = hID,

times = c(5.2, 9.3, 10.2, 16),
labels = paste0(hID, "-s"))

sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples)
plot(sampledTree@phylo)

Sampling "dead" individuals
sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID)
plot(sampledDeadTree@phylo)
}

sampleTransmissionTreeFromExiting

Sample the transmission tree (phylogenetic tree-like) among the exited
hosts

Description

Sample a full transmission tree. This function allows for sampling only exited (i.e. inactive) in-
dividuals (e.g. when the sampling procedure is destructive or cuts the hosts from the population).
Beware because it does not influence the epidemiological process, it only means that the host has
been sampled when exiting the simulation.

sampleTransmissionTreeFromExiting 33

Usage

sampleTransmissionTreeFromExiting(tree, hosts)

Arguments

tree a treedata object created by function getTransmissionTree

hosts a vector of dead hosts to sample

Details

The tree needs to be produced by function getTransmissionTree applied on the same nosoiSim
object.

Value

A tree of class treedata, containing a phylogenetic tree based on the transmission chain and the
mapped data at all the nodes.

See Also

For exporting the annotated tree to other software packages, see functions in treeio (e.g. write.beast).

To get the full transmission matrix, see getTransmissionTree.

For sampling among non-dead individuals, see sampleTransmissionTree.

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}
p_Move_fct <- function(t){return(0.1)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact = function(t){round(rnorm(1, 3, 1), 0)}

transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0),
nrow = 3, ncol = 3,
dimnames = list(c("A", "B", "C"), c("A", "B", "C")))

set.seed(805)
test.nosoi <- nosoiSim(type="single", popStructure="discrete",

length=20,
max.infected=100,
init.individuals=1,
init.structure="A",
structure.matrix=transition.matrix,

34 singleContinuous

pMove=p_Move_fct,
param.pMove=NA,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA

)

Make sure all needed packages are here
if (requireNamespace("ape", quietly = TRUE) &&

requireNamespace("tidytree", quietly = TRUE) &&
requireNamespace("treeio", quietly = TRUE)) {

library(ape)
library(tidytree)
library(treeio)

#' ## Full transmission tree
ttreedata <- getTransmissionTree(test.nosoi)
plot(ttreedata@phylo)

Sampling "non dead" individuals
hID <- c("H-1", "H-7", "H-15", "H-100")
samples <- data.table(hosts = hID,

times = c(5.2, 9.3, 10.2, 16),
labels = paste0(hID, "-s"))

sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples)
plot(sampledTree@phylo)

Sampling "dead" individuals
sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID)
plot(sampledDeadTree@phylo)
}

singleContinuous Single-host pathogen in a structured (continuous) host population

Description

This function runs a single-host transmission chain simulation, with a structured host population
(such as spatial features) in a continuous space. The simulation stops either at the end of given time
(specified by length.sim) or when the number of hosts infected threshold (max.infected) is passed.
The movement of hosts on the continuous space map is a random walk (Brownian motion) that can
be modified towards a biased random walk where hosts tend to be attracted to higher values of the
environmental variable defined by the raster.

singleContinuous 35

Usage

singleContinuous(
length.sim,
max.infected,
init.individuals,
init.structure,
structure.raster,
diff.pExit = FALSE,
timeDep.pExit = FALSE,
hostCount.pExit = FALSE,
pExit,
param.pExit,
diff.pMove = FALSE,
timeDep.pMove = FALSE,
hostCount.pMove = FALSE,
pMove,
param.pMove,
diff.sdMove = FALSE,
timeDep.sdMove = FALSE,
hostCount.sdMove = FALSE,
sdMove,
param.sdMove,
attracted.by.raster = FALSE,
diff.nContact = FALSE,
timeDep.nContact = FALSE,
hostCount.nContact = FALSE,
nContact,
param.nContact,
diff.pTrans = FALSE,
timeDep.pTrans = FALSE,
hostCount.pTrans = FALSE,
pTrans,
param.pTrans,
prefix.host = "H",
print.progress = TRUE,
print.step = 10

)

Arguments

length.sim specifies the length (in unit of time) over which the simulation should be run.
max.infected specifies the maximum number of hosts that can be infected in the simulation.
init.individuals

number of initially infected individuals.
init.structure in which location the initially infected individuals are located. A vector of coor-

dinates in the same coordinate space as the raster.
structure.raster

raster object defining the environmental variable.

36 singleContinuous

diff.pExit does pExit depend on the environmental variable (set by the raster) (TRUE/FALSE).
timeDep.pExit is pExit dependent on the absolute time of the simulation? (TRUE/FALSE)
hostCount.pExit

does pExit vary with the host count in each raster cell? (TRUE/FALSE); if
TRUE, diff.pExit should be TRUE.

pExit function that gives the probability to exit the simulation for an infected host
(either moving out, dying, etc.).

param.pExit parameter names (list of functions) for the pExit.
diff.pMove does pMove depend on the environmental variable (set by the raster) (TRUE/FALSE).
timeDep.pMove does pMove depend on the absolute time of the simulation (TRUE/FALSE).
hostCount.pMove

does pMove vary with the host count in each raster cell? (TRUE/FALSE); if
TRUE, diff.pMove should also be TRUE.

pMove function that gives the probability of a host moving as a function of time.
param.pMove parameter names (list of functions) for the pMove.
diff.sdMove does sdMove depend on the environmental variable (set by the raster) (TRUE/FALSE).
timeDep.sdMove does sdMove depend on the absolute time of the simulation (TRUE/FALSE).
hostCount.sdMove

does sdMove vary with the host count in each raster cell? (TRUE/FALSE); if
TRUE, diff.sdMove should be TRUE.

sdMove function that gives the distance traveled (based on coordinates); output is the
standard deviation value for the Brownian motion.

param.sdMove parameter names (list of functions) for sdMove.
attracted.by.raster

should the hosts be attracted by higher values in the environmental raster? (TRUE/FALSE).
diff.nContact does nContact depend on the environmental variable (set by the raster) (TRUE/FALSE).
timeDep.nContact

is nContact dependent on the absolute time of the simulation? (TRUE/FALSE)
hostCount.nContact

does nContact vary with the host count in each raster cell? (TRUE/FALSE); if
TRUE, diff.nContact should be TRUE.

nContact function that gives the number of potential transmission events per unit of time.
param.nContact parameter names (list of functions) for param.nContact.
diff.pTrans does pTrans depend on the environmental variable (set by the raster) (TRUE/FALSE).
timeDep.pTrans is pTrans dependent on the absolute time of the simulation? (TRUE/FALSE)
hostCount.pTrans

does pTrans vary with the host count in each raster cell? (TRUE/FALSE); if
TRUE, diff.pTrans should be TRUE.

pTrans function that gives the probability of transmit a pathogen as a function of time
since infection.

param.pTrans parameter names (list of functions) for the pExit.
prefix.host character(s) to be used as a prefix for the hosts identification number.
print.progress if TRUE, displays a progress bar (current time/length.sim).
print.step print.progress is TRUE, step with which the progress message will be printed.

singleContinuous 37

Details

The pExit and pTrans functions should return a single probability (a number between 0 and 1),
and nContact a positive natural number (positive integer) or 0.

The param arguments should be a list of functions or NA. Each item name in the parameter list
should have the same name as the argument in the corresponding function.

The use of timeDep (switch to TRUE) makes the corresponding function use the argument prestime
(for "present time").

Value

An object of class nosoiSim, containing all results of the simulation.

Raster

The structure raster provided provided should of class raster. High values of the environmental
variable can attract hosts if attracted.by.raster is TRUE.

Structure Parameters

The pMove function should return a single probability (a number between 0 and 1), and sdMove a
real number (keep in mind this number is related to your coordinate space).

The use of diff (switch to TRUE) makes the corresponding function use the argument current.env.value
(for "current environmental value").

The use of hostCount (switch to TRUE) makes the corresponding function use the argument host.count.

Order of Arguments

The user specified function’s arguments should follow this order: t (mandatory), prestime (op-
tional, only if timeDep is TRUE), current.env.value (optional, only if diff is TRUE), host.count
(optional, only if hostCount is TRUE) and parameters specified in the list.

See Also

For simulations with a discrete structure, see singleDiscrete. For simulations without any struc-
tures, see singleNone.

Examples

library(raster)
#Generating a raster for the movement
set.seed(860)

test.raster <- raster(nrows=100, ncols=100, xmn=-50, xmx=50, ymn=-50,ymx=50)
test.raster[] <- runif(10000, -80, 180)
test.raster <- focal(focal(test.raster, w=matrix(1, 5, 5), mean), w=matrix(1, 5, 5), mean)
plot(test.raster)

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}

38 singleDiscrete

p_Move_fct <- function(t){return(0.1)}

sdMove_fct = function(t,current.env.value){return(100/(current.env.value+1))}

p_Exit_fct <- function(t){return(0.08)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact = function(t){round(rnorm(1, 3, 1), 0)}

start.pos <- c(0,0)

test.nosoiA <- nosoiSim(type="single", popStructure="continuous",
length=200,
max.infected=500,
init.individuals=1,
init.structure=start.pos,
structure.raster=test.raster,
pMove=p_Move_fct,
param.pMove=NA,
diff.sdMove=TRUE,
sdMove=sdMove_fct,
param.sdMove=NA,
attracted.by.raster=TRUE,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA)

singleDiscrete Single-host pathogen in a structured (discrete) host population

Description

This function, that can be wrapped within nosoiSim, runs a single-host transmission chain simula-
tion, with a discrete host population structure (e.g. spatial, socio-economic, etc.). The simulation
stops either at the end of given time (specified by length.sim) or when the number of hosts infected
threshold (max.infected) is crossed.

Usage

singleDiscrete(

singleDiscrete 39

length.sim,
max.infected,
init.individuals,
init.structure,
structure.matrix,
diff.pExit = FALSE,
timeDep.pExit = FALSE,
hostCount.pExit = FALSE,
pExit,
param.pExit,
diff.pMove = FALSE,
timeDep.pMove = FALSE,
hostCount.pMove = FALSE,
pMove,
param.pMove,
diff.nContact = FALSE,
timeDep.nContact = FALSE,
hostCount.nContact = FALSE,
nContact,
param.nContact,
diff.pTrans = FALSE,
timeDep.pTrans = FALSE,
hostCount.pTrans = FALSE,
pTrans,
param.pTrans,
prefix.host = "H",
print.progress = TRUE,
print.step = 10

)

Arguments

length.sim specifies the length (in unit of time) over which the simulation should be run.

max.infected specifies the maximum number of hosts that can be infected in the simulation.
init.individuals

number of initially infected individuals.

init.structure in which state (e.g. location) the initially infected individuals are located.
structure.matrix

transition matrix (probabilities) to go from location A (row) to B (column)

diff.pExit is pExit different between states of the structured population (TRUE/FALSE)

timeDep.pExit is pExit dependent on the absolute time of the simulation? (TRUE/FALSE)
hostCount.pExit

does pExit varies with the host count in the state? (TRUE/FALSE); diff.pExit
should be TRUE.

pExit function that gives the probability to exit the simulation for an infected host
(either moving out, dying, etc.).

40 singleDiscrete

param.pExit parameter names (list of functions) for the pExit.
diff.pMove is pMove different between states of the structured population (TRUE/FALSE)
timeDep.pMove is pMove dependent on the absolute time of the simulation (TRUE/FALSE)
hostCount.pMove

does pMove varies with the host count in the state? (TRUE/FALSE); diff.pMove
should be TRUE.

pMove function that gives the probability of a host moving as a function of time.
param.pMove parameter names (list of functions) for the pMove.
diff.nContact is nContact different between states of the structured population (TRUE/FALSE)
timeDep.nContact

is nContact dependent on the absolute time of the simulation? (TRUE/FALSE)
hostCount.nContact

does nContact varies with the host count in the state? (TRUE/FALSE); diff.nContact
should be TRUE.

nContact function that gives the number of potential transmission events per unit of time.
param.nContact parameter names (list of functions) for param.nContact.
diff.pTrans is pTrans different between states of the structured population (TRUE/FALSE)
timeDep.pTrans is pTrans dependent on the absolute time of the simulation? (TRUE/FALSE)
hostCount.pTrans

does pTrans varies with the host count in the state? (TRUE/FALSE); diff.pTrans
should be TRUE.

pTrans function that gives the probability of transmit a pathogen as a function of time
since infection.

param.pTrans parameter names (list of functions) for the pExit.
prefix.host character(s) to be used as a prefix for the hosts identification number.
print.progress if TRUE, displays a progress bar (current time/length.sim).
print.step print.progress is TRUE, step with which the progress message will be printed.

Details

The pExit and pTrans functions should return a single probability (a number between 0 and 1),
and nContact a positive natural number (positive integer) or 0.

The param arguments should be a list of functions or NA. Each item name in the parameter list
should have the same name as the argument in the corresponding function.

The use of timeDep (switch to TRUE) makes the corresponding function use the argument prestime
(for "present time").

Value

An object of class nosoiSim, containing all results of the simulation.

Structure Matrix

The structure matrix provided provided should of class matrix, with the same number of rows and
columns, rows representing departure state and column the arrival state. All rows should add to 1.

singleDiscrete 41

Structure Parameters

The pMove function should return a single probability (a number between 0 and 1).

The use of diff (switch to TRUE) makes the corresponding function use the argument current.in
(for "currently in"). Your function should in that case give a result for every possible discrete state.

The use of hostCount (switch to TRUE) makes the corresponding function use the argument host.count.

Order of Arguments

The user specified function’s arguments should follow this order: t (mandatory), prestime (op-
tional, only if timeDep is TRUE), current.in (optional, only if diff is TRUE), host.count (op-
tional, only if hostCount is TRUE) and parameters specified in the list.

See Also

For simulations with a structure in continuous space, see singleContinuous. For simulations
without any structures, see singleNone.

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}
p_Move_fct <- function(t){return(0.1)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)

}

time_contact = function(t){round(rnorm(1, 3, 1), 0)}

transition.matrix = matrix(c(0,0.2,0.4,0.5,0,0.6,0.5,0.8,0),
nrow = 3, ncol = 3,
dimnames=list(c("A","B","C"),c("A","B","C")))

set.seed(805)
test.nosoiA <- nosoiSim(type="single", popStructure="discrete",

length=20,
max.infected=100,
init.individuals=1,
init.structure="A",
structure.matrix=transition.matrix,
pMove=p_Move_fct,
param.pMove=NA,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,

42 singleNone

param.pExit=NA)

singleNone Single-host pathogen in a homogeneous host population

Description

This function, that can be wrapped within nosoiSim, runs a single-host transmission chain sim-
ulation, without any structure features in the host population. The simulation stops either at the
end of given time (specified by length.sim) or when the number of hosts infected threshold
(max.infected) is crossed.

Usage

singleNone(
length.sim,
max.infected,
init.individuals,
pExit,
param.pExit,
timeDep.pExit = FALSE,
nContact,
param.nContact,
timeDep.nContact = FALSE,
pTrans,
param.pTrans,
timeDep.pTrans = FALSE,
prefix.host = "H",
print.progress = TRUE,
print.step = 10

)

Arguments

length.sim specifies the length (in unit of time) over which the simulation should be run.

max.infected specifies the maximum number of hosts that can be infected in the simulation.
init.individuals

number of initially infected individuals.

pExit function that gives the probability to exit the simulation for an infected host
(either moving out, dying, etc.).

param.pExit parameter names (list of functions) for the pExit.

timeDep.pExit is pExit dependent on the absolute time of the simulation? (TRUE/FALSE)

nContact function that gives the number of potential transmission events per unit of time.

param.nContact parameter names (list of functions) for param.nContact.

singleNone 43

timeDep.nContact

is nContact dependent on the absolute time of the simulation? (TRUE/FALSE)

pTrans function that gives the probability of transmit a pathogen as a function of time
since infection.

param.pTrans parameter names (list of functions) for the pExit.

timeDep.pTrans is pTrans dependent on the absolute time of the simulation? (TRUE/FALSE)

prefix.host character(s) to be used as a prefix for the hosts identification number.

print.progress if TRUE, displays a progress bar (current time/length.sim).

print.step print.progress is TRUE, step with which the progress message will be printed.

Details

The pExit and pTrans functions should return a single probability (a number between 0 and 1),
and nContact a positive natural number (positive integer) or 0.

The param arguments should be a list of functions or NA. Each item name in the parameter list
should have the same name as the argument in the corresponding function.

The use of timeDep (switch to TRUE) makes the corresponding function use the argument prestime
(for "present time").

Value

An object of class nosoiSim, containing all results of the simulation.

Order of Arguments

The user specified function’s arguments should follow this order: t (mandatory), prestime (op-
tional, only if timeDep is TRUE), parameters specified in the list.

See Also

For simulations with a discrete structured host population, see singleDiscrete. For simulations
with a structured population in continuous space, singleContinuous

Examples

t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Exit_fct <- function(t){return(0.08)}

proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)
}

time_contact <- function(t){round(rnorm(1, 3, 1), 0)}

test.nosoi <- nosoiSim(type="single", popStructure="none",

44 singleNone

length=40,
max.infected=100,
init.individuals=1,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,

t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA)

test.nosoi

Index

ape, 26

data.table, 20–22, 24, 25, 29, 31
dualContinuous, 2, 14, 19, 27, 28
dualDiscrete, 8, 10, 19, 27, 28
dualNone, 8, 14, 16, 27, 28

getCumulative, 20, 28–30
getDynamic, 21, 28–30
getHostData, 21
getR0, 23, 28–30
getTableHosts, 22, 24, 28
getTableState, 22, 25, 28
getTransmissionTree, 25, 31, 33

nosoiSim, 7, 10, 14, 16, 18, 20, 21, 23–26, 27,
29, 31, 37, 38, 40, 42, 43

nosoiSummary, 28, 29

sampleTransmissionTree, 26, 30, 33
sampleTransmissionTreeFromExiting, 26,

31, 32
singleContinuous, 27, 28, 34, 41, 43
singleDiscrete, 27, 28, 37, 38, 43
singleNone, 27, 28, 37, 41, 42
summary.nosoiSim, 20, 21, 23
summary.nosoiSim (nosoiSummary), 29

treedata, 26, 31, 33

write.beast, 26, 31, 33

45

	dualContinuous
	dualDiscrete
	dualNone
	getCumulative
	getDynamic
	getHostData
	getR0
	getTableHosts
	getTableState
	getTransmissionTree
	nosoiSim
	nosoiSummary
	sampleTransmissionTree
	sampleTransmissionTreeFromExiting
	singleContinuous
	singleDiscrete
	singleNone
	Index

