
Package ‘oshka’
July 22, 2025

Title Recursive Quoted Language Expansion

Description Expands quoted language by recursively replacing any symbol that
points to quoted language with the language it points to. The recursive
process continues until only symbols that point to non-language objects
remain. The resulting quoted language can then be evaluated normally. This
differs from the traditional 'quote'/'eval' pattern because it resolves
intermediate language objects that would interfere with evaluation.

Version 0.1.2

Depends R (>= 3.3.2)

License GPL (>= 2)

LazyData true

URL https://github.com/brodieG/oshka

BugReports https://github.com/brodieG/oshka/issues

VignetteBuilder knitr

Imports utils

Suggests knitr, rmarkdown, unitizer, covr

RoxygenNote 6.0.1

NeedsCompilation no

Author Brodie Gaslam [aut, cre]

Maintainer Brodie Gaslam <brodie.gaslam@yahoo.com>

Repository CRAN

Date/Publication 2017-10-14 13:00:34 UTC

Contents
oshka-package . 2
expand . 2

Index 5

1

https://github.com/brodieG/oshka
https://github.com/brodieG/oshka/issues

2 expand

oshka-package Recursive Quoted Language Expansion

Description

Expands quoted language by recursively replacing any symbol that points to quoted language with
the language it points to. The recursive process continues until only symbols that point to non-
language objects remain. The resulting quoted language can then be evaluated normally. This
differs from the traditional ’quote’/’eval’ pattern because it resolves intermediate language objects
that would interfere with evaluation.

expand Recursively Expand Symbols in Quoted Language

Description

Finds symbols in quoted R language objects and recursively replaces them with any language ob-
jects that those symbols point to. This leads to an expanded language object that can be evaluated.
Language objects are objects of type "symbol", "language", or "expression", though only unclassed
language is expanded by default.

Usage

expand(expr, envir = parent.frame(), enclos = if (is.list(envir) ||
is.pairlist(envir)) parent.frame() else baseenv(),
class.shield = getOption("oshka.class.shield"),
name.shield = getOption("oshka.name.shield"))

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a list, a
data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted as
the base package environment, baseenv()) or an environment.

class.shield TRUE, FALSE, or character, determines what portions of quoted language are
shielded from expansion. TRUE, the default, means that any any classed lan-
guage (e.g. formula) will be left unexpanded. If FALSE all language will be ex-
panded, irrespective of class. If character, then any classed objects with classes
in the vector will be left unexpanded, and all others will be expanded.

name.shield character names of symbols that should not be expanded, which by default is
c("::", ":::"). If position 1 in a call (i.e. the function name) is a name in this
list , then the entire call is left unexpanded.

expand 3

Details

For more general documentation browseVignettes('oshka').

Value

If the input is a language object, that object with all symbols recursively expanded, otherwise the
input unchanged.

Programmable NSE

The expansion can be used to implement programmable Non-Standard Evaluation (NSE hereafter).
Users can create complex quoted language expressions from simple ones by combining them as
they would tokens in standard R expressions. Then, a programmable NSE aware function can use
expand to turn the quoted language into usable form. See examples.

Expansion mechanics

During the recursive expansion, symbols are looked up through the search path in the same way as
standard R evaluation looks up symbols. One subtlety is that if symbol A expands to a language
object B, the symbols in language object B are looked for starting from the environment that A
is bound to, not the initial evaluation environment. Expansion stops at symbols that point to non-
language objects.

Symbols at the first position in calls (e.g. fun in fun(x, y)) are expanded slightly differently: they
will continue to be expanded until an object of mode "function" is found. This is to follow the
semantics of symbol searches in R where a symbol pointing to a non-function object will not mask
a symbol pointing to a function object when it is used as the name of the function in a call.

You can prevent expansion on portions of language via shielding. Some language is not expanded
by default (see next section).

Shielding

There are two mechanisms for shielding language from expansion. The first one is to give language
a class. This is why formulas are not expanded by default. Be careful though that you do not give a
symbol a class as that is bad practice and will become an R runtime error in the future.

The second mechanism is to specify symbol names that should not be expanded. This is easier to
specify than the class based mechanism, but it is less precise as it applies to all instances of that
name. By default the symbols "::" and ":::" are not expanded. If a function call has a shielded
symbol for function name the entire call will be shielded.

See the class.shield and name.shield parameters, and examples.

Examples

xzw <- uvt <- NULL # make sure not lang objects
aaa <- quote(xzw > 3)
bbb <- quote(xzw < 10)
ccc <- quote(aaa & bbb)
expand(ccc)

4 expand

You can place list like objects in the search path
l <- list(bbb=quote(uvt < 9999))
expand(ccc, l)

But notice what happens if we use `quote(ccc)` instead of
just `ccc`. This is because in this case `expand` must
look for the `ccc` symbol in the search path, and once
it finds it it looks for `aaa` and `bbb` starting from the
environment `ccc` is bound to, so the `bbb` defined
inside `l` is skipped.
expand(quote(ccc), l)

Implementing an NSE fun (see vignettes for detailed
examples)
subset2 <- function(x, subset) {

subset <- expand(substitute(subset), x, parent.frame())
eval(bquote(base::subset(.(x), .(subset))), parent.frame())

}
subset2(iris, Sepal.Width > 4.3)
iris.sub <- quote(Sepal.Width > 4.3)
subset2(iris, iris.sub)

You can shield all instances of a symbol from expansion.
Note we append existing name shield list.

expand(ccc, name.shield=c(getOption('oshka.name.shield'), 'bbb'))

You can also shield by attaching classes to language
objects or portions thereof
expand(I(ccc)) # add the `AsIs` class to `ccc` with `I`
expand(ccc)

If you wish to shield a symbol with this method you
cannot do so directly. Note the `quote((bbb))` as
otherwise we would attach attributes to a symbol:
ccd <- bquote(aaa & .(I(quote((bbb)))))
expand(ccd)

Equivalently
cce <- ccc
cce[[3]] <- I(quote((bbb)))
expand(cce)

Formulas not expanded by default, but can be forced
to expand by setting `class.shield` to FALSE
expand(aaa ~ bbb)
expand(aaa ~ bbb, class.shield=FALSE)

Index

baseenv, 2

environment, 2
expand, 2

oshka-package, 2

sys.call, 2

5

	oshka-package
	expand
	Index

