Type: | Package |
Title: | Implements Measures for the Comparison of Two Partitions |
Version: | 0.2.6 |
Date: | 2023-08-23 |
Author: | Fabian Ball [aut, cre, cph, ctb], Andreas Geyer-Schulz [cph] |
Maintainer: | Fabian Ball <mail@fabian-ball.de> |
Description: | Provides several measures ((dis)similarity, distance/metric, correlation, entropy) for comparing two partitions of the same set of objects. The different measures can be assigned to three different classes: Pair comparison (containing the famous Jaccard and Rand indices), set based, and information theory based. Many of the implemented measures can be found in Albatineh AN, Niewiadomska-Bugaj M and Mihalko D (2006) <doi:10.1007/s00357-006-0017-z> and Meila M (2007) <doi:10.1016/j.jmva.2006.11.013>. Partitions are represented by vectors of class labels which allow a straightforward integration with existing clustering algorithms (e.g. kmeans()). The package is mostly based on the S4 object system. |
URL: | https://github.com/KIT-IISM-EM/partitionComparison |
BugReports: | https://github.com/KIT-IISM-EM/partitionComparison/issues |
Depends: | R (≥ 3.2.0) |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
RdMacros: | Rdpack |
Imports: | methods, Rdpack, lpSolve |
Suggests: | testthat |
NeedsCompilation: | no |
Packaged: | 2023-08-23 20:05:18 UTC; fabian |
Repository: | CRAN |
Date/Publication: | 2023-08-23 20:30:02 UTC |
partitionComparison: Implements Measures for the Comparison of Two Partitions
Description
Provides several measures ((dis)similarity, distance/metric, correlation, entropy) for comparing two partitions of the same set of objects. The different measures can be assigned to three different classes: Pair comparison (containing the famous Jaccard and Rand indices), set based, and information theory based. Many of the implemented measures can be found in Albatineh AN, Niewiadomska-Bugaj M and Mihalko D (2006) doi:10.1007/s00357-006-0017-z and Meila M (2007) doi:10.1016/j.jmva.2006.11.013. Partitions are represented by vectors of class labels which allow a straightforward integration with existing clustering algorithms (e.g. kmeans()). The package is mostly based on the S4 object system.
Details
This package provides a large collection of measures to compare two partitions. Some survey articles for these measures are cited below, the seminal papers for each individual measure is provided with the function definition.
Most functionality is implemented as S4 classes and methods so that an
adoption is easily possible for special needs and specifications.
The main class is Partition
which merely wraps an atomic
vector of length n
for storing the class label of each object.
The computation of all measures is designed to work on vectors
of class labels.
All partition comparison methods can be called in the
same way: <measure method>(p, q)
with p, q
being the two
partitions (as Partition
instances).
One often does not explicitly want to transform the vector of class labels
(as output of another package's function/algorithm) into
Partition
instances before using measures from this
package. For convenience, the function
registerPartitionVectorSignatures
exists which dynamically creates
versions of all measures that will directly work with plain R vectors.
Author(s)
Maintainer: Fabian Ball mail@fabian-ball.de [copyright holder, contributor]
Other contributors:
Andreas Geyer-Schulz andreas.geyer-schulz@kit.edu [copyright holder]
References
Albatineh AN, Niewiadomska-Bugaj M, Mihalko D (2006). “On Similarity Indices and Correction for Chance Agreement.” Journal of Classification, 23(2), 301–313. ISSN 0176-4268, doi:10.1007/s00357-006-0017-z.
Meila M (2007). “Comparing Clusterings–an Information Based Distance.” Journal of Multivariate Analysis, 98(5), 873–895. doi:10.1016/j.jmva.2006.11.013.
See Also
Useful links:
Report bugs at https://github.com/KIT-IISM-EM/partitionComparison/issues
Examples
# Generate some data
set.seed(42)
data <- cbind(x=c(rnorm(50), rnorm(30, mean=5)), y=c(rnorm(50), rnorm(30, mean=5)))
# Run k-means with two/three centers
data.km2 <- kmeans(data, 2)
data.km3 <- kmeans(data, 3)
# Load this library
library(partitionComparison)
# Register the measures to take ANY input
registerPartitionVectorSignatures(environment())
# Compare the clusters
randIndex(data.km2$cluster, data.km3$cluster)
# [1] 0.8101266
Method to retrieve the complex coefficient N
Description
It is defined as N = N_{11} + N_{10} + N_{01} + N_{00}
which equals
n \choose{2}
with n
the number of objects
Usage
N(obj)
## S4 method for signature 'PairCoefficients'
N(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the coefficient N_{00}
Description
Method to retrieve the coefficient N_{00}
Usage
N00(obj)
## S4 method for signature 'PairCoefficients'
N00(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the coefficient N_{01}
Description
Method to retrieve the coefficient N_{01}
Usage
N01(obj)
## S4 method for signature 'PairCoefficients'
N01(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the complex coefficient N'_{01}
Description
It is defined as N'_{01} = N_{00} + N_{01}
Usage
N01p(obj)
## S4 method for signature 'PairCoefficients'
N01p(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the coefficient N_{10}
Description
Method to retrieve the coefficient N_{10}
Usage
N10(obj)
## S4 method for signature 'PairCoefficients'
N10(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the complex coefficient N'_{10}
Description
It is defined as N'_{10} = N_{00} + N_{10}
Usage
N10p(obj)
## S4 method for signature 'PairCoefficients'
N10p(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the coefficient N_{11}
Description
Method to retrieve the coefficient N_{11}
Usage
N11(obj)
## S4 method for signature 'PairCoefficients'
N11(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the complex coefficient N_{12}
Description
It is defined as N_{12} = N_{11} + N_{01}
Usage
N12(obj)
## S4 method for signature 'PairCoefficients'
N12(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
Method to retrieve the complex coefficient N_{21}
Description
It is defined as N_{21} = N_{11} + N_{10}
Usage
N21(obj)
## S4 method for signature 'PairCoefficients'
N21(obj)
Arguments
obj |
Instance of PairCoefficients |
Author(s)
Fabian Ball fabian.ball@kit.edu
S4 class to represent coefficients of object pairs for the comparison of two
object partitions (say P
and Q
).
Description
S4 class to represent coefficients of object pairs for the comparison of two
object partitions (say P
and Q
).
Slots
N11
The number of object pairs that are in both partitions together in a cluster
N00
The number of object pairs that are in no partition together in a cluster
N10
The number of object pairs that are only in partition
P
together in a clusterN01
The number of object pairs that are only in partition
Q
together in a cluster
Author(s)
Fabian Ball fabian.ball@kit.edu
See Also
Simple S4 class to represent a partition of objects as vector of class labels.
Description
This class is a wrapper around a vector but allows only the atomic vectors logical, numeric, integer, complex, character, raw. The reason for this is that only those types seem to make sense as class labels. Furthermore, class labels are immutable.
Author(s)
Fabian Ball fabian.ball@kit.edu
Examples
p <- new("Partition", c(0, 0, 1, 1, 1))
q <- new("Partition", c("a", "a", "b", "b", "b"))
## Not run:
# This won't work:
new("Partition", c(list("a"), "a", "b", "b", "b"))
p[2] <- 2
## End(Not run)
Subsetting Partition instances
Description
This method overrides the standard subsetting to prevent alteration (makes partitions, i.e. class labels, immutable).
Usage
## S4 replacement method for signature 'Partition'
x[i, j] <- value
Arguments
x |
A Partition instance |
i |
|
j |
|
value |
Author(s)
Fabian Ball fabian.ball@kit.edu
Adjusted Rand Index
Description
Compute the Adjusted Rand Index (ARI)
\frac{2(N_{00}N_{11} - N_{10}N_{01})}{N'_{01}N_{12} + N'_{10}N_{21}}
Usage
adjustedRandIndex(p, q)
## S4 method for signature 'Partition,Partition'
adjustedRandIndex(p, q)
## S4 method for signature 'PairCoefficients,missing'
adjustedRandIndex(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
adjustedRandIndex(p = Partition, q = Partition)
: Compute given two partitions -
adjustedRandIndex(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Hubert L, Arabie P (1985). “Comparing Partitions.” Journal of Classification, 2(1), 193–218.
Examples
isTRUE(all.equal(adjustedRandIndex(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/6))
Baulieu Index 1
Description
Compute the index 1 of Baulieu
\frac{ N^2 - N(N_{10} + N_{01}) + (N_{10} - N_{01})^2 }{ N^2 }
Usage
baulieu1(p, q)
## S4 method for signature 'Partition,Partition'
baulieu1(p, q)
## S4 method for signature 'PairCoefficients,missing'
baulieu1(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
baulieu1(p = Partition, q = Partition)
: Compute given two partitions -
baulieu1(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Baulieu FB (1989). “A Classification of Presence/Absence Based Dissimilarity Coefficients.” Journal of Classification, 6(1), 233–246. ISSN 0176-4268, 1432-1343, doi:10.1007/BF01908601.
Examples
isTRUE(all.equal(baulieu1(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.76))
Baulieu Index 2
Description
Compute the index 2 of Baulieu
\frac{ N_{11}N_{00} - N_{10}N_{01} }{ N^2 }
Usage
baulieu2(p, q)
## S4 method for signature 'Partition,Partition'
baulieu2(p, q)
## S4 method for signature 'PairCoefficients,missing'
baulieu2(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
baulieu2(p = Partition, q = Partition)
: Compute given two partitions -
baulieu2(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Baulieu FB (1989). “A Classification of Presence/Absence Based Dissimilarity Coefficients.” Journal of Classification, 6(1), 233–246. ISSN 0176-4268, 1432-1343, doi:10.1007/BF01908601.
Examples
isTRUE(all.equal(baulieu2(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.04))
Classification Error Distance
Description
Compute the classification error distance
1 - \frac{1}{n} \max_{\sigma}{\sum_{C \in \cal{P}}{|C \cap \sigma(C)|}}
with \sigma
a weighted matching between the clusters of both partitions.
The nodes are the classes of each partition, the weights are the overlap of objects.
Usage
classificationErrorDistance(p, q)
## S4 method for signature 'Partition,Partition'
classificationErrorDistance(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
classificationErrorDistance(p = Partition, q = Partition)
: Compute given two partitions
Hint
This measure is implemented using lp.assign
from
the lpSolve
package to compute the maxmimal matching of a
weighted bipartite graph.
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Meila M, Heckerman D (2001). “An Experimental Comparison of Model-Based Clustering Methods.” Machine Learning, 42(1), 9–29.
Meila M (2005). “Comparing Clusterings: An Axiomatic View.” In Proceedings of the 22nd International Conference on Machine Learning, ICML '05, 577–584. ISBN 978-1-59593-180-1, doi:10.1145/1102351.1102424.
Examples
isTRUE(all.equal(classificationErrorDistance(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.2))
Compare two partitions with all measures
Description
Compute the comparison between two partitions for all available measures.
Usage
compareAll(p, q)
## S4 method for signature 'Partition,Partition'
compareAll(p, q)
Arguments
p |
The partition |
q |
The partition |
Value
Instance of data.frame
with columns measure
and value
Methods (by class)
-
compareAll(p = Partition, q = Partition)
: Compare given twoPartition
instances
Warning
This method will identify every generic S4 method that has a signature
"Partition", "Partition"
(including signatures with following "missing"
parameters, e.g. "Partition", "Partition", "missing"
) as a partition
comparison measure, except this method itself (otherwise: infinite
recursion). This means one has to take care when defining other methods with the same
signature in order not to produce unwanted side-effects!
Author(s)
Fabian Ball fabian.ball@kit.edu
Examples
compareAll(new("Partition", c(0, 0, 0, 1, 1)), new("Partition", c(0, 0, 1, 1, 1)))
## Not run:
measure value
1 adjustedRandIndex 0.166666667
2 baulieu1 0.760000000
3 baulieu2 0.040000000
4 classificationErrorDistance 0.200000000
5 czekanowski 0.500000000
6 dongensMetric 2.000000000
7 fagerMcGowan 0.250000000
8 folwkesMallowsIndex 0.500000000
9 gammaStatistics 0.166666667
10 goodmanKruskal 0.333333333
11 gowerLegendre 0.750000000
12 hamann 0.200000000
13 jaccardCoefficient 0.333333333
14 kulczynski 0.500000000
15 larsenAone 0.800000000
16 lermanIndex 0.436435780
17 mcconnaughey 0.000000000
18 minkowskiMeasure 1.000000000
19 mirkinMetric 8.000000000
20 mutualInformation 0.291103166
21 normalizedLermanIndex 0.166666667
22 normalizedMutualInformation 0.432538068
23 pearson 0.006944444
24 peirce 0.166666667
25 randIndex 0.600000000
26 rogersTanimoto 0.428571429
27 russelRao 0.200000000
28 rvCoefficient 0.692307692
29 sokalSneath1 0.583333333
30 sokalSneath2 0.200000000
31 sokalSneath3 0.333333333
32 variationOfInformation 0.763817002
33 wallaceI 0.500000000
34 wallaceII 0.500000000
## End(Not run)
Compute the four coefficients N_{11}
, N_{10}
,
N_{01}
, N_{00}
Description
Given two object partitions P and Q, of same length n,
each of them described as a vector of cluster ids,
compute the four coefficients (N_{11}
, N_{10}
,
N_{01}
, N_{00}
)
all of the pair comparison measures are based on.
Usage
computePairCoefficients(p, q)
Arguments
p |
The partition |
q |
The partition |
Author(s)
Fabian Ball fabian.ball@kit.edu
Examples
pc <- computePairCoefficients(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1)))
isTRUE(all.equal(N11(pc), 2))
isTRUE(all.equal(N10(pc), 2))
isTRUE(all.equal(N01(pc), 2))
isTRUE(all.equal(N00(pc), 4))
Czekanowski Index
Description
Compute the Czekanowski index
\frac{2N_{11}}{2N_{11} + N_{10} + N_{01}}
Usage
czekanowski(p, q)
## S4 method for signature 'Partition,Partition'
czekanowski(p, q)
## S4 method for signature 'PairCoefficients,missing'
czekanowski(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
czekanowski(p = Partition, q = Partition)
: Compute given two partitions -
czekanowski(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Czekanowski J (1932). “Coefficient of Racial Likeness" Und ,,Durchschnittliche Differenz".” Anthropologischer Anzeiger, 9(3/4), 227–249.
Examples
isTRUE(all.equal(czekanowski(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.5))
Dongen's Metric
Description
Compute Dongen's metric
2n - \sum_{C \in P} \max_{D \in Q} |C \cap D| - \sum_{D \in Q} \max_{C \in P} |C \cap D|
Usage
dongensMetric(p, q)
## S4 method for signature 'Partition,Partition'
dongensMetric(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
dongensMetric(p = Partition, q = Partition)
: Compute given two partitions
Author(s)
Fabian Ball fabian.ball@kit.edu
References
van Dongen S (2000). “Performance Criteria For Graph Clustering And Markov Cluster Experiments.” Technical Report INS-R 0012, CWI.
See Also
Examples
isTRUE(all.equal(dongensMetric(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 2))
Entropy
Description
Compute the Shannon entropy
-\sum_{i} p_i \log_b p_i
Usage
entropy(x, log_base)
## S4 method for signature 'numeric,numeric'
entropy(x, log_base)
## S4 method for signature 'Partition,numeric'
entropy(x, log_base)
## S4 method for signature 'ANY,missing'
entropy(x, log_base = exp(1))
Arguments
x |
A probability distribution |
log_base |
Optional base of the logarithm (default: |
Methods (by class)
-
entropy(x = Partition, log_base = numeric)
: Entropy of a partition represented byx
Hint
This method is used internally for measures based on information theory
Author(s)
Fabian Ball fabian.ball@kit.edu
Examples
isTRUE(all.equal(entropy(c(.5, .5)), log(2)))
isTRUE(all.equal(entropy(c(.5, .5), 2), 1))
isTRUE(all.equal(entropy(c(.5, .5), 4), .5))
# Entropy of a partition
isTRUE(all.equal(entropy(new("Partition", c(0, 0, 1, 1, 1))), entropy(c(2/5, 3/5))))
Fager & McGowan Index
Description
Compute the index of Fager and McGowan
\frac{N_{11}}{\sqrt{N_{21}N_{12}}} - \frac{1}{2\sqrt{N_{21}}}
Usage
fagerMcGowan(p, q)
## S4 method for signature 'Partition,Partition'
fagerMcGowan(p, q)
## S4 method for signature 'PairCoefficients,missing'
fagerMcGowan(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
fagerMcGowan(p = Partition, q = Partition)
: Compute given two partitions -
fagerMcGowan(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Fager EW, McGowan JOHNA (1963). “Zooplankton Species Groups in the North Pacific Co-Occurrences of Species Can Be Used to Derive Groups Whose Members React Similarly to Water-Mass Types.” Science, 140(3566), 453–460.
Examples
isTRUE(all.equal(fagerMcGowan(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.25))
Folwkes & Mallows Index
Description
Compute the index of Folwkes and Mallows
\sqrt{\frac{N_{11}}{N_{21}} \frac{N_{11}}{N_{12}}}
which is a combination of the two Wallace indices.
Usage
folwkesMallowsIndex(p, q)
## S4 method for signature 'Partition,Partition'
folwkesMallowsIndex(p, q)
## S4 method for signature 'PairCoefficients,missing'
folwkesMallowsIndex(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
folwkesMallowsIndex(p = Partition, q = Partition)
: Compute given two partitions -
folwkesMallowsIndex(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Fowlkes EB, Mallows CL (1983). “A Method for Comparing Two Hierarchical Clusterings.” Journal of the American Statistical Association, 78(383), 553–569.
See Also
Examples
isTRUE(all.equal(folwkesMallowsIndex(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.5))
Gamma Statistics
Description
Compute the Gamma statistics
\frac{N_{11}N_{00} - N_{10}N_{01}}{\sqrt{ N_{21}N_{12}N'_{10}N'_{01} }}
Usage
gammaStatistics(p, q)
## S4 method for signature 'Partition,Partition'
gammaStatistics(p, q)
## S4 method for signature 'PairCoefficients,missing'
gammaStatistics(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
gammaStatistics(p = Partition, q = Partition)
: Compute given two partitions -
gammaStatistics(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Yule GU (1900). “On the Association of Attributes in Statistics: With Illustrations from the Material of the Childhood Society, &c.” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 194, 257–319.
Examples
isTRUE(all.equal(gammaStatistics(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/6))
Goodman & Kruskal Index
Description
Compute the index of Goodman and Kruskal
\frac{N_{11}N_{00} - N_{10}N_{01}}{N_{11}N_{00} + N_{10}N_{01}}
Usage
goodmanKruskal(p, q)
## S4 method for signature 'Partition,Partition'
goodmanKruskal(p, q)
## S4 method for signature 'PairCoefficients,missing'
goodmanKruskal(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
goodmanKruskal(p = Partition, q = Partition)
: Compute given two partitions -
goodmanKruskal(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Goodman LA, Kruskal WH (1954). “Measures of Association for Cross Classifications.” Journal of the American Statistical Association, 49(268), 732–764. ISSN 0162-1459, doi:10.1080/01621459.1954.10501231.
Examples
isTRUE(all.equal(goodmanKruskal(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/3))
Gower & Legendre Index
Description
Compute the index of Gower and Legendre
\frac{N_{11} + N_{00}}{N_{11} + \frac{1}{2}\left(N_{10} + N_{01}\right) + N_{00}}
Usage
gowerLegendre(p, q)
## S4 method for signature 'Partition,Partition'
gowerLegendre(p, q)
## S4 method for signature 'PairCoefficients,missing'
gowerLegendre(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
gowerLegendre(p = Partition, q = Partition)
: Compute given two partitions -
gowerLegendre(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Gower JC, Legendre P (1986). “Metric and Euclidean Properties of Dissimilarity Coefficients.” Journal of Classification, 3(1), 5–48. ISSN 0176-4268, 1432-1343, doi:10.1007/BF01896809.
Examples
isTRUE(all.equal(gowerLegendre(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.75))
Hamann Coefficient
Description
Compute the Hamann coefficient
\frac{(N_{11} + N_{00}) - (N_{10} + N_{01})}{N}
Usage
hamann(p, q)
## S4 method for signature 'Partition,Partition'
hamann(p, q)
## S4 method for signature 'PairCoefficients,missing'
hamann(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
hamann(p = Partition, q = Partition)
: Compute given two partitions -
hamann(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Hamann U (1961). “Merkmalsbestand Und Verwandtschaftsbeziehungen Der Farinosae: Ein Beitrag Zum System Der Monokotyledonen.” Willdenowia, 2(5), 639–768. ISSN 0511-9618.
Examples
isTRUE(all.equal(hamann(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.2))
Jaccard Coefficient
Description
Compute the Jaccard coefficient
\frac{N_{11}}{N_{11} + N_{10} + N_{01}}
Usage
jaccardCoefficient(p, q)
## S4 method for signature 'Partition,Partition'
jaccardCoefficient(p, q)
## S4 method for signature 'PairCoefficients,missing'
jaccardCoefficient(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
jaccardCoefficient(p = Partition, q = Partition)
: Compute given two partitions -
jaccardCoefficient(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Jaccard P (1908). “Nouvelles Recherches Sur La Distribution Florale.” Bulletin de la Société Vaudoise des Sciences Naturelles, 44(163), 223–270.
Examples
isTRUE(all.equal(jaccardCoefficient(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/3))
Kulczynski Index
Description
Compute the Kulczynski index
\frac{1}{2} \left(\frac{N_{11}}{N_{21}} + \frac{N_{11}}{N_{12}} \right)
Usage
kulczynski(p, q)
## S4 method for signature 'Partition,Partition'
kulczynski(p, q)
## S4 method for signature 'PairCoefficients,missing'
kulczynski(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
kulczynski(p = Partition, q = Partition)
: Compute given two partitions -
kulczynski(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Kulczynski S (1927). “Zespoly Roslin w Pieninach.” Bull. Intern. Acad. Pol. Sci. Lett. Cl. Sci. Math. Nat., B (Sci. Nat.), 1927(Suppl 2), 57–203.
Examples
isTRUE(all.equal(kulczynski(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.5))
Larsen & Aone Measure
Description
Compute the measure of Larsen and Aone
\frac{1}{|\cal{P}|}
\sum_{C \in \cal{P}}{\max_{D \in \cal{Q}}{\frac{2|C \cap D|}{|C| + |D|}}}
Usage
larsenAone(p, q)
## S4 method for signature 'Partition,Partition'
larsenAone(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
larsenAone(p = Partition, q = Partition)
: Compute given two partitions
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Larsen B, Aone C (1999). “Fast and Effective Text Mining Using Linear-Time Document Clustering.” In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '99, 16–22. ISBN 1-58113-143-7, doi:10.1145/312129.312186.
Examples
isTRUE(all.equal(larsenAone(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.8))
Lerman Index
Description
Compute the Lerman index
\frac{N_{11} - E(N_{11})}{\sqrt{\sigma^2(N_{11})}}
Usage
lermanIndex(p, q, c = NULL)
## S4 method for signature 'Partition,Partition,missing'
lermanIndex(p, q, c = NULL)
## S4 method for signature 'Partition,Partition,PairCoefficients'
lermanIndex(p, q, c = NULL)
Arguments
p |
The partition |
q |
The partition |
c |
PairCoefficients or NULL |
Methods (by class)
-
lermanIndex(p = Partition, q = Partition, c = missing)
: Compute given two partitions -
lermanIndex(p = Partition, q = Partition, c = PairCoefficients)
: Compute given the partitions and pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Lerman IC (1988). “Comparing Partitions (Mathematical and Statistical Aspects).” In Bock H (ed.), Classification and Related Methods of Data Analysis, 121–132.
Hubert L, Arabie P (1985). “Comparing Partitions.” Journal of Classification, 2(1), 193–218.
Denøeud L, Guénoche A (2006). “Comparison of Distance Indices Between Partitions.” In Batagelj V, Bock H, Ferligoj A, Žiberna A (eds.), Data Science and Classification, Studies in Classification, Data Analysis, and Knowledge Organization, 21–28. Springer Berlin Heidelberg. ISBN 978-3-540-34415-5 978-3-540-34416-2.
See Also
Examples
isTRUE(all.equal(lermanIndex(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 2/sqrt(21)))
McConnaughey Index
Description
Compute the McConnaughey index
\frac{N_{11}^2 - N_{10}N_{01}}{N_{21}N_{12}}
Usage
mcconnaughey(p, q)
## S4 method for signature 'Partition,Partition'
mcconnaughey(p, q)
## S4 method for signature 'PairCoefficients,missing'
mcconnaughey(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
mcconnaughey(p = Partition, q = Partition)
: Compute given two partitions -
mcconnaughey(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
McConnaughey BH, Laut LP (1964). The Determination and Analysis of Plankton Communities. Lembaga Penelitian Laut.
Examples
isTRUE(all.equal(mcconnaughey(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0))
Minkowski Measure
Description
Compute the Minkowski measure
\sqrt{ \frac{N_{10} + N_{01}}{N_{11} + N_{10}} }
Usage
minkowskiMeasure(p, q)
## S4 method for signature 'Partition,Partition'
minkowskiMeasure(p, q)
## S4 method for signature 'PairCoefficients,missing'
minkowskiMeasure(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
minkowskiMeasure(p = Partition, q = Partition)
: Compute given two partitions -
minkowskiMeasure(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Minkowski H (1911). Gesammelte Abhandlungen von Hermann Minkowski, Zweiter Band, number 2. B. G. Teubner, Leipzig, Berlin.
Examples
isTRUE(all.equal(minkowskiMeasure(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1))
Mirkin Metric
Description
Compute the Mirkin metric
2(N_{10} + N_{01})
Usage
mirkinMetric(p, q)
## S4 method for signature 'Partition,Partition'
mirkinMetric(p, q)
## S4 method for signature 'PairCoefficients,missing'
mirkinMetric(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
mirkinMetric(p = Partition, q = Partition)
: Compute given two partitions -
mirkinMetric(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Mirkin BG, Chernyi LB (1970). “Measurement of the Distance Between Partitions of a Finite Set of Objects.” Automation and Remote Control, 31(5), 786–792.
Examples
isTRUE(all.equal(mirkinMetric(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 8))
Mutual Information
Description
Compute the mutual information
\sum_{C \in P} \sum_{D \in Q} {\frac{|C \cap D|}{n} \log n\frac{|C \cap D|}{|C| |D|}}
Usage
mutualInformation(p, q)
## S4 method for signature 'Partition,Partition'
mutualInformation(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
mutualInformation(p = Partition, q = Partition)
: Compute given two partitions
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Vinh NX, Epps J, Bailey J (2010). “Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance.” Journal of Machine Learning Research, 11, 2837–2854.
See Also
Examples
isTRUE(all.equal(mutualInformation(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 4/5*log(5/3) + 1/5*log(5/9)))
Normalized Lerman Index
Description
Compute the normalized Lerman index
L(P, Q) / \sqrt{L(P, P)L(Q, Q)}
where L
is the Lerman index.
Usage
normalizedLermanIndex(p, q, c = NULL)
## S4 method for signature 'Partition,Partition,missing'
normalizedLermanIndex(p, q, c = NULL)
## S4 method for signature 'Partition,Partition,PairCoefficients'
normalizedLermanIndex(p, q, c = NULL)
Arguments
p |
The partition |
q |
The partition |
c |
PairCoefficients or NULL |
Methods (by class)
-
normalizedLermanIndex(p = Partition, q = Partition, c = missing)
: Compute given two partitions -
normalizedLermanIndex(p = Partition, q = Partition, c = PairCoefficients)
: Compute given the partitions and pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Lerman IC (1988). “Comparing Partitions (Mathematical and Statistical Aspects).” In Bock H (ed.), Classification and Related Methods of Data Analysis, 121–132.
Hubert L, Arabie P (1985). “Comparing Partitions.” Journal of Classification, 2(1), 193–218.
See Also
Examples
isTRUE(all.equal(normalizedLermanIndex(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/6))
Normalized Mutual Information
Description
Compute the mutual information (MI
) which is normalized either by the
minimum/maximum partition entropy (H
)
\frac{MI(P, Q)}{\varphi(H(P), H(Q))},\ \varphi \in \{\min, \max\}
or the sum
\frac{2 \cdot MI(P, Q)}{H(P) + H(Q)}
Usage
normalizedMutualInformation(p, q, type = c("min", "max", "sum"))
## S4 method for signature 'Partition,Partition,character'
normalizedMutualInformation(p, q, type = c("min", "max", "sum"))
## S4 method for signature 'Partition,Partition,missing'
normalizedMutualInformation(p, q, type = NULL)
Arguments
p |
The partition |
q |
The partition |
type |
One of "min" (default), "max" or "sum" |
Methods (by class)
-
normalizedMutualInformation(p = Partition, q = Partition, type = character)
: Compute given two partitions -
normalizedMutualInformation(p = Partition, q = Partition, type = missing)
: Compute given two partitions withtype="min"
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Kvalseth TO (1987). “Entropy and Correlation: Some Comments.” IEEE Transactions on Systems, Man and Cybernetics, 17(3), 517–519. ISSN 0018-9472, doi:10.1109/TSMC.1987.4309069.
See Also
Examples
isTRUE(all.equal(normalizedMutualInformation(
new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1)), "min"),
normalizedMutualInformation(
new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1)), "max")
))
Pearson Index
Description
Compute the Pearson index
\frac{N_{11}N_{00} - N_{10}N_{01}}{N_{21}N_{12}N'_{01}N'_{10}}
Usage
pearson(p, q)
## S4 method for signature 'Partition,Partition'
pearson(p, q)
## S4 method for signature 'PairCoefficients,missing'
pearson(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
pearson(p = Partition, q = Partition)
: Compute given two partitions -
pearson(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Pearson K (1926). “On the Coefficient of Racial Likeness.” Biometrika, 18(1/2), 105–117. ISSN 0006-3444, doi:10.2307/2332498.
Examples
isTRUE(all.equal(pearson(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/144))
Peirce Index
Description
Compute the Peirce index
\frac{N_{11}N_{00} - N_{10}N_{01}}{N_{21}N'_{01}}
Usage
peirce(p, q)
## S4 method for signature 'Partition,Partition'
peirce(p, q)
## S4 method for signature 'PairCoefficients,missing'
peirce(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
peirce(p = Partition, q = Partition)
: Compute given two partitions -
peirce(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Peirce CS (1884). “The Numerical Measure of the Success of Predictions.” Science, 4(93), 453–454.
Examples
isTRUE(all.equal(peirce(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/6))
Compute the projection number of two partitions
Description
Given two partitions (p, q) represented as vectors of cluster ids,
compute the projection number which is the sum of maximum
cluster overlaps for all clusters of P
to any cluster of Q
.
Usage
projectionNumber(p, q)
Arguments
p |
Partition |
q |
Partition |
Author(s)
Fabian Ball fabian.ball@kit.edu
See Also
Examples
isTRUE(all.equal(projectionNumber(c(0, 0, 0, 1, 1), c(0, 0, 1, 1, 1)), 4))
Rand Index
Description
Compute the Rand index
\frac{N_{11} + N_{00}}{N}
Usage
randIndex(p, q)
## S4 method for signature 'Partition,Partition'
randIndex(p, q)
## S4 method for signature 'PairCoefficients,missing'
randIndex(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
randIndex(p = Partition, q = Partition)
: Compute given two partitions -
randIndex(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Rand WM (1971). “Objective Criteria for the Evaluation of Clustering Algorithms.” Journal of the American Statistical Association, 66(336), 846–850.
Examples
isTRUE(all.equal(randIndex(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.6))
Make comparison measures usable with any vectors
Description
The comparison measures are defined to use the class Partition as parameters. If you do not want to explicitly convert an arbitrary vector of class labels (probably as a result from another package's algorithm) into a Partition instance, calling this function will create methods for all measures that allow "ANY" input which is implicitly converted to Partition.
Usage
registerPartitionVectorSignatures(e)
Arguments
e |
The environment to register the methods in
(mostly |
Author(s)
Fabian Ball fabian.ball@kit.edu
Examples
library(partitionComparison)
randIndex(new("Partition", c(0, 0, 0, 1, 1)), new("Partition", c(0, 0, 1, 1, 1)))
# [1] 0.6
## Not run: randIndex(c(0, 0, 0, 1, 1), c(0, 0, 1, 1, 1))
# Error in (function (classes, fdef, mtable) :
# unable to find an inherited method for function 'randIndex' for signature '"numeric", "numeric"'
registerPartitionVectorSignatures(environment())
randIndex(c(0, 0, 0, 1, 1), c(0, 0, 1, 1, 1))
# [1] 0.6
Rogers & Tanimoto Index
Description
Compute the index of Rogers and Tanimoto
\frac{N_{11} + N_{00}}{N_{11} + 2(N_{10} + N_{01}) + N_{00}}
Usage
rogersTanimoto(p, q)
## S4 method for signature 'Partition,Partition'
rogersTanimoto(p, q)
## S4 method for signature 'PairCoefficients,missing'
rogersTanimoto(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
rogersTanimoto(p = Partition, q = Partition)
: Compute given two partitions -
rogersTanimoto(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Rogers DJ, Tanimoto TT (1960). “A Computer Program for Classifying Plants.” Science, 132(3434), 1115–1118. ISSN 0036-8075, 1095-9203, doi:10.1126/science.132.3434.1115.
Examples
isTRUE(all.equal(rogersTanimoto(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 3/7))
Russel & Rao Index
Description
Compute the index of Russel and Rao
\frac{N_{11}}{N}
Usage
russelRao(p, q)
## S4 method for signature 'Partition,Partition'
russelRao(p, q)
## S4 method for signature 'PairCoefficients,missing'
russelRao(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
russelRao(p = Partition, q = Partition)
: Compute given two partitions -
russelRao(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Russel PF, Rao TR (1940). “On Habitat and Association of Species of Anopheline Larvae in South-Eastern Madras.” Journal of the Malaria Institute of India, 3(1), 153–178.
Examples
isTRUE(all.equal(russelRao(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.2))
RV Coefficient
Description
Compute the RV coefficient
\frac{n + 2N_{11}(p)}{\sqrt{(2N_{21}(p) + n) (2N_{12}(p) + n)}}
Usage
rvCoefficient(p, q)
## S4 method for signature 'Partition,Partition'
rvCoefficient(p, q)
## S4 method for signature 'PairCoefficients,missing'
rvCoefficient(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
rvCoefficient(p = Partition, q = Partition)
: Compute the RV coefficient given two partitions -
rvCoefficient(p = PairCoefficients, q = missing)
: Compute the RV coefficient given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Robert P, Escoufier Y (1976). “A Unifying Tool for Linear Multivariate Statistical Methods: The RV- Coefficient.” Journal of the Royal Statistical Society. Series C (Applied Statistics), 25(3), 257–265. ISSN 00359254.
Youness G, Saporta G (2004). “Some Measures of Agreement between Close Partitions.” Student, 51, 1–12.
Examples
isTRUE(all.equal(rvCoefficient(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 9/13))
Sokal & Sneath Index 1
Description
Compute the index 1 of Sokal and Sneath
\frac{1}{4} \left( \frac{N_{11}}{N_{21}} + \frac{N_{11}}{N_{12}} +
\frac{N_{00}}{N'_{10}} + \frac{N_{00}}{N'_{01}} \right)
Usage
sokalSneath1(p, q)
## S4 method for signature 'Partition,Partition'
sokalSneath1(p, q)
## S4 method for signature 'PairCoefficients,missing'
sokalSneath1(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
sokalSneath1(p = Partition, q = Partition)
: Compute given two partitions -
sokalSneath1(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Sokal RR, Sneath PHA (1963). Principles of numerical taxonomy.. Freeman, San Francisco.
Examples
isTRUE(all.equal(sokalSneath1(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 7/12))
Sokal & Sneath Index 2
Description
Compute the index 2 of Sokal and Sneath
\frac{N_{11}}{N_{11} + 2(N_{10} + N_{01})}
Usage
sokalSneath2(p, q)
## S4 method for signature 'Partition,Partition'
sokalSneath2(p, q)
## S4 method for signature 'PairCoefficients,missing'
sokalSneath2(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
sokalSneath2(p = Partition, q = Partition)
: Compute given two partitions -
sokalSneath2(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Sokal RR, Sneath PHA (1963). Principles of numerical taxonomy.. Freeman, San Francisco.
Examples
isTRUE(all.equal(sokalSneath2(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.2))
Sokal & Sneath Index 3
Description
Compute the index 3 of Sokal and Sneath
\frac{N_{11}N_{00}}{\sqrt{N_{21}N_{12}N'_{01}N'_{10}}}
Usage
sokalSneath3(p, q)
## S4 method for signature 'Partition,Partition'
sokalSneath3(p, q)
## S4 method for signature 'PairCoefficients,missing'
sokalSneath3(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
sokalSneath3(p = Partition, q = Partition)
: Compute given two partitions -
sokalSneath3(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Sokal RR, Sneath PHA (1963). Principles of numerical taxonomy.. Freeman, San Francisco.
Examples
isTRUE(all.equal(sokalSneath3(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 1/3))
Variation of Information
Description
Compute the variation of information
H(P) + H(Q) - 2MI(P, Q)
where MI
is the mutual information, H
the partition entropy
Usage
variationOfInformation(p, q)
## S4 method for signature 'Partition,Partition'
variationOfInformation(p, q)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
variationOfInformation(p = Partition, q = Partition)
: Compute given two partitions
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Meila M (2003). “Comparing Clusterings by the Variation of Information.” In Schölkopf B, Warmuth MK (eds.), Learning Theory and Kernel Machines, volume 2777 of Lecture Notes in Computer Science, 173–187. Springer Berlin / Heidelberg. ISBN 978-3-540-40720-1.
Meila M (2007). “Comparing Clusterings–an Information Based Distance.” Journal of Multivariate Analysis, 98(5), 873–895. doi:10.1016/j.jmva.2006.11.013.
See Also
Examples
isTRUE(all.equal(variationOfInformation(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))),
0.763817))
Wallace I
Description
Compute Wallace' index I
\frac{N_{11}}{N_{21}}
Usage
wallaceI(p, q)
## S4 method for signature 'Partition,Partition'
wallaceI(p, q)
## S4 method for signature 'PairCoefficients,missing'
wallaceI(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
wallaceI(p = Partition, q = Partition)
: Compute given two partitions -
wallaceI(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Wallace DL (1983). “A Method for Comparing Two Hierarchical Clusterings: Comment.” Journal of the American Statistical Association, 78(383), 569–576.
See Also
Examples
isTRUE(all.equal(wallaceI(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.5))
Wallace II
Description
Compute Wallace' index II
\frac{N_{11}}{N_{12}}
Usage
wallaceII(p, q)
## S4 method for signature 'Partition,Partition'
wallaceII(p, q)
## S4 method for signature 'PairCoefficients,missing'
wallaceII(p, q = NULL)
Arguments
p |
The partition |
q |
The partition |
Methods (by class)
-
wallaceII(p = Partition, q = Partition)
: Compute given two partitions -
wallaceII(p = PairCoefficients, q = missing)
: Compute given the pair coefficients
Author(s)
Fabian Ball fabian.ball@kit.edu
References
Wallace DL (1983). “A Method for Comparing Two Hierarchical Clusterings: Comment.” Journal of the American Statistical Association, 78(383), 569–576.
See Also
Examples
isTRUE(all.equal(wallaceII(new("Partition", c(0, 0, 0, 1, 1)),
new("Partition", c(0, 0, 1, 1, 1))), 0.5))