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Expm Riemannian HPD exponential map

Description

Expm(P, H) computes the projection of a Hermitian matrix H from the tangent space at a Hermitian
PD matrix P to the manifold of Hermitian PD matrices equipped with the affine-invariant Rieman-
nian metric via the exponential map as in e.g., (Pennec et al. 2006). This is the unique inverse of
the Riemannian logarithmic map Logm.

Usage

Expm(P, H)
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Arguments

P a Hermitian positive definite matrix.

H a Hermitian matrix (of equal dimension as P).

References

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Interna-
tional Journal of Computer Vision, 66(1), 41–66.

See Also

Logm, pdParTrans

Examples

## Generate random Hermitian matrix
H <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
diag(H) <- rnorm(3)
H[lower.tri(H)] <- t(Conj(H))[lower.tri(H)]
## Generate random HPD matrix
p <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
P <- t(Conj(p)) %*% p
## Compute exponential map
Expm(P, H)

H.coeff Orthonormal basis expansion of a Hermitian matrix

Description

H.coeff expands a (d, d)-dimensional Hermitian matrix H with respect to an orthonormal (in terms
of the Frobenius inner product) basis of the space of Hermitian matrices. That is, H.coeff trans-
forms H into a numeric vector of d2 real-valued basis coefficients, which is possible as the space of
Hermitian matrices is a real vector space. Let Enm be a (d, d)-dimensional zero matrix with a 1 at
location (1, 1) ≤ (n,m) ≤ (d, d). The orthonormal basis contains the following matrix elements;
let 1 ≤ n ≤ d and 1 ≤ m ≤ d,

If n == m the real matrix element Enn

If n < m the complex matrix element 2i/
√
2Enm

If n > m the real matrix element 2/
√
2Enm

The orthonormal basis coefficients are ordered by scanning through the matrix H in a row-by-row
fashion.

Usage

H.coeff(H, inverse = FALSE)



4 InvWavTransf1D

Arguments

H if inverse = FALSE, a (d, d)-dimensional Hermitian matrix; if inverse = TRUE,
a numeric vector of length d2 with d an integer.

inverse a logical value that determines whether the forward basis transform (inverse =
FALSE) or the inverse basis transform (inverse = TRUE) should be applied.

Value

If inverse = FALSE takes as input a (d, d)-dimensional Hermitian matrix and outputs a numeric vec-
tor of length d2 containing the real-valued basis coefficients. If inverse = TRUE takes as input a d2-
dimensional numeric vector of basis coefficients and outputs the corresponding (d, d)-dimensional
Hermitian matrix.

Examples

## random Hermitian matrix
H <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
diag(H) <- rnorm(3)
H[lower.tri(H)] <- t(Conj(H))[lower.tri(H)]

## orthonormal basis expansion
h <- H.coeff(H)
H1 <- H.coeff(h, inverse = TRUE) ## reconstructed Hermitian matrix
all.equal(H, H1)

InvWavTransf1D Inverse AI wavelet transform for curve of HPD matrices

Description

InvWavTransf1D computes an inverse intrinsic average-interpolation (AI) wavelet transform map-
ping an array of coarsest-scale HPD midpoints combined with a pyramid of Hermitian wavelet
coefficients to a curve in the manifold of HPD matrices equipped with a metric specified by the
user, as described in (Chau and von Sachs 2019) and Chapter 3 of (Chau 2018). This is the inverse
operation of the function WavTransf1D.

Usage

InvWavTransf1D(D, M0, order = 5, jmax, periodic = FALSE,
metric = "Riemannian", ...)

Arguments

D a list of arrays containing the pyramid of wavelet coefficients, where each array
contains the (d, d)-dimensional wavelet coefficients from the coarsest wavelet
scale j = 0 up to the finest wavelet scale j = jmax. This is the same format as
the $D component given as output by WavTransf1D.
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M0 a numeric array containing the midpoint(s) at the coarsest scale j = 0 in the
midpoint pyramid. This is the same format as the $M0 component given as output
by WavTransf1D.

order an odd integer larger or equal to 1 corresponding to the order of the intrinsic AI
refinement scheme, defaults to order = 5. Note that if order > 9, the computa-
tional cost significantly increases as the wavelet transform no longer uses a fast
wavelet refinement scheme based on pre-determined weights.

jmax the maximum scale (resolution) up to which the HPD midpoints (i.e. scaling
coefficients) are reconstructed. If jmax is not specified it is set equal to the
resolution in the finest wavelet scale jmax = length(D).

periodic a logical value determining whether the curve of HPD matrices can be reflected
at the boundary for improved wavelet refinement schemes near the boundaries
of the domain. This is useful for spectral matrix estimation, where the spectral
matrix is a symmetric and periodic curve in the frequency domain. Defaults to
periodic = FALSE.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean", "Euclidean" or "Riemannian-Rahman". See also the De-
tails section below.

... additional arguments for internal use.

Details

The input list of arrays D and array M0 correspond to a pyramid of wavelet coefficients and the
coarsest-scale HPD midpoints respectively, both are structured in the same way as in the output of
WavTransf1D. As in the forward AI wavelet transform, if the refinement order is an odd integer
smaller or equal to 9, the function computes the inverse wavelet transform using a fast wavelet
refinement scheme based on weighted intrinsic averages with pre-determined weights as explained
in (Chau and von Sachs 2019) and Chapter 3 of (Chau 2018). If the refinement order is an odd
integer larger than 9, the wavelet refinement scheme uses intrinsic polynomial prediction based on
Neville’s algorithm in the Riemannian manifold (via pdNeville).
The function computes the inverse intrinsic AI wavelet transform in the space of HPD matrices
equipped with one of the following metrics: (i) the affine-invariant Riemannian metric (default) as
detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); (ii) the log-Euclidean metric, the
Euclidean inner product between matrix logarithms; (iii) the Cholesky metric, the Euclidean inner
product between Cholesky decompositions; (iv) the Euclidean metric; or (v) the root-Euclidean
metric. The default choice of metric (affine-invariant Riemannian) satisfies several useful properties
not shared by the other metrics, see (Chau and von Sachs 2019) or (Chau 2018) for more details.
Note that this comes at the cost of increased computation time in comparison to one of the other
metrics.

Value

Returns a (d, d,m)-dimensional array corresponding to a length m curve of (d, d)-dimensional HPD
matrices.
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References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

WavTransf1D, pdSpecEst1D, pdNeville

Examples

P <- rExamples1D(2^8, example = "bumps")
P.wt <- WavTransf1D(P$f) ## forward transform
P.f <- InvWavTransf1D(P.wt$D, P.wt$M0) ## backward transform
all.equal(P.f, P$f)

InvWavTransf2D Inverse AI wavelet transform for surface of HPD matrices

Description

InvWavTransf2D computes the inverse intrinsic average-interpolation (AI) wavelet transform map-
ping an array of coarsest-scale HPD midpoints combined with a 2D pyramid of Hermitian wavelet
coefficients to a surface in the manifold of HPD matrices equipped with a metric specified by
the user, as described in Chapter 5 of (Chau 2018). This is the inverse operation of the function
WavTransf2D.

Usage

InvWavTransf2D(D, M0, order = c(3, 3), jmax, metric = "Riemannian",
...)

Arguments

D a list of arrays containing the 2D pyramid of wavelet coefficients, where each ar-
ray contains the (d, d)-dimensional wavelet coefficients from the coarsest wavelet
scale j = 0 up to the finest wavelet scale j = jmax. This is the same format as
the $D component given as output by WavTransf2D.

https://doi.org/10.1080/01621459.2019.1700129
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M0 a numeric array containing the midpoint(s) at the coarsest scale j = 0 in the 2D
midpoint pyramid. This is the same format as the $M0 component given as output
by WavTransf2D.

order a 2-dimensional numeric vector (1, 1) ≤ order ≤ (9, 9) corresponding to the
marginal orders of the intrinsic 2D AI refinement scheme, defaults to order =
c(3, 3).

jmax the maximum scale (resolution) up to which the 2D surface of HPD midpoints
(i.e. scaling coefficients) are reconstructed. If jmax is not specified it is set equal
to the resolution in the finest wavelet scale jmax = length(D).

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean" or "Euclidean". See also the Details section below.

... additional arguments for internal use.

Details

The input list of arrays D and array M0 correspond to a 2D pyramid of wavelet coefficients and the
coarsest-scale HPD midpoints respectively, both are structured in the same way as in the output
of WavTransf2D. As in the forward AI wavelet transform, the marginal refinement orders should
be smaller or equal to 9, and the function computes the wavelet transform using a fast wavelet
refinement scheme based on weighted intrinsic averages with pre-determined weights as explained
in Chapter 5 of (Chau 2018). By default WavTransf2D computes the inverse intrinsic 2D AI wavelet
transform equipping the space of HPD matrices with (i) the affine-invariant Riemannian metric as
detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006). Instead, the space of HPD
matrices can also be equipped with one of the following metrics; (ii) the Log-Euclidean metric, the
Euclidean inner product between matrix logarithms; (iii) the Cholesky metric, the Euclidean inner
product between Cholesky decompositions; (iv) the Euclidean metric and (v) the root-Euclidean
metric. The default choice of metric (affine-invariant Riemannian) satisfies several useful properties
not shared by the other metrics, see (Chau 2018) for more details. Note that this comes at the cost
of increased computation time in comparison to one of the other metrics.

Value

Returns a (d, d, n1, n2)-dimensional array corresponding to a rectangular surface of size n1 by n2

of (d, d)-dimensional HPD matrices.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

WavTransf2D, pdSpecEst2D, pdNeville
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Examples

P <- rExamples2D(c(2^4, 2^4), 2, example = "tvar")
P.wt <- WavTransf2D(P$f) ## forward transform
P.f <- InvWavTransf2D(P.wt$D, P.wt$M0) ## backward transform
all.equal(P.f, P$f)

Logm Riemannian HPD logarithmic map

Description

Logm(P, Q) computes the projection of a Hermitian PD matrix Q in the manifold of HPD matrices
equipped with the affine-invariant Riemannian metric to the tangent space attached at the Hermitian
PD matrix P via the logarithmic map as in e.g., (Pennec et al. 2006). This is the unique inverse of
the exponential map Expm.

Usage

Logm(P, Q)

Arguments

P a Hermitian positive definite matrix.

Q a Hermitian positive definite matrix (of equal dimension as P).

References

Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric mea-
surements. Journal of Mathematical Imaging and Vision 25(1), 127-154.

See Also

Expm, pdParTrans

Examples

## Generate two random HPD matrices
q <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
Q <- t(Conj(q)) %*% q
p <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
P <- t(Conj(p)) %*% p
## Compute logarithmic map
Logm(P, Q)
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Mid Geodesic midpoint between HPD matrices

Description

Mid calculates the geodesic midpoint between two HPD matrices under the affine-invariant Rieman-
nian metric as in (Bhatia 2009)[Chapter 6].

Usage

Mid(A, B)

Arguments

A, B Hermitian positive definite matrices (of equal dimension).

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

See Also

pdMean

Examples

## Generate two random HPD matrices
a <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
A <- t(Conj(a)) %*% a
b <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
B <- t(Conj(b)) %*% b
## Compute midpoint
Mid(A, B)
## Midpoint coincides with two-point intrinsic Karcher mean
all.equal(pdMean(array(c(A, B), dim = c(3, 3, 2))), Mid(A, B))

pdCART Tree-structured trace thresholding of wavelet coefficients

Description

pdCART performs hard tree-structured thresholding of the Hermitian matrix-valued wavelet coef-
ficients obtained with WavTransf1D or WavTransf2D based on the trace of the whitened wavelet
coefficients, as explained in (Chau and von Sachs 2019) or (Chau 2018). This function is primarily
written for internal use in other functions and is typically not used as a stand-alone function.
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Usage

pdCART(D, D.white, order, alpha = 1, tree = TRUE, ...)

Arguments

D a list of wavelet coefficients as obtained from the $D component of WavTransf1D
or WavTransf2D .

D.white a list of whitened wavelet coefficients as obtained from the $D.white component
of WavTransf1D or WavTransf2D.

order the order(s) of the intrinsic 1D or 2D AI refinement scheme as in WavTransf1D
and WavTransf2D.

alpha tuning parameter specifying the penalty/sparsity parameter as alpha times the
universal threshold.

tree logical value, if tree = TRUE performs tree-structured thresholding, otherwise
performs non-tree-structured hard thresholding of the coefficients.

... additional arguments for internal use.

Details

Depending on the structure of the input list of arrays D the function performs 1D or 2D tree-
structured thresholding of wavelet coefficients. The optimal tree of wavelet coefficients is found by
minimization of the complexity penalized residual sum of squares (CPRESS) criterion in (Donoho
1997), via a fast tree-pruning algorithm. By default, the penalty parameter in the optimization pro-
cedure is set equal to alpha times the universal threshold σw

√
(2 log(n)), where σ2

w is the noise
variance of the traces of the whitened wavelet coefficients determined from the finest wavelet scale
and n is the total number of coefficients. By default, alpha = 1, if alpha = 0, the penalty parameter
is zero and the coefficients remain untouched.

Value

Returns a list with two components:

w a list of logical values specifying which coefficients to keep, with each list com-
ponent corresponding to an individual wavelet scale starting from the coarsest
wavelet scale j = 0.

D_w the list of thresholded wavelet coefficients, with each list component corre-
sponding to an individual wavelet scale.

Note

For thresholding of 1D wavelet coefficients, the noise variance of the traces of the whitened wavelet
coefficients is constant across scales as seen in (Chau and von Sachs 2019). For thresholding of
2D wavelet coefficients, there is a discrepancy between the constant noise variance of the traces
of the whitened wavelet coefficients at the first abs(J1 - J2) scales and the remaining scales, as
discussed in Chapter 5 of (Chau 2018), where J1 = log2(n1) and J2 = log2(n2) with n1 and n2

the dyadic number of observations in each marginal direction of the 2D rectangular tensor grid.
The reason is that the variances of the traces of the whitened coefficients are not homogeneous
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between: (i) scales at which the 1D wavelet refinement scheme is applied and (ii) scales at which
the 2D wavelet refinement scheme is applied. To correct for this discrepancy, the variances of
the coefficients at the 2D wavelet scales are normalized by the noise variance determined from
the finest wavelet scale. The variances of the coefficients at the 1D wavelet scales are normalized
using the analytic noise variance of the traces of the whitened coefficients for a grid of complex
random Wishart matrices, which corresponds to the asymptotic distributional behavior of the HPD
periodogram matrices obtained with e.g., pdPgram2D. Note that if the time-frequency grid is square,
i.e., n1 = n2, the variances of the traces of the whitened coefficients are again homogeneous across
all wavelet scales.

References

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

Donoho D (1997). “CART and best-ortho-basis: a connection.” The Annals of Statistics, 25(5),
1870–1911.

See Also

WavTransf1D, InvWavTransf1D, WavTransf2D, InvWavTransf2D

Examples

## 1D tree-structured trace thresholding
P <- rExamples1D(2^8, example = "bumps")$P
Coeffs <- WavTransf1D(P)
pdCART(Coeffs$D, Coeffs$D.white, order = 5)$w ## logical tree of non-zero coefficients

## Not run:
## 2D tree-structured trace thresholding
P <- rExamples2D(c(2^6, 2^6), 2, example = "tvar")$P
Coeffs <- WavTransf2D(P)
pdCART(Coeffs$D, Coeffs$D.white, order = c(3, 3))$w

## End(Not run)

pdDepth Data depth for HPD matrices

Description

pdDepth calculates the data depth of a HPD matrix with respect to a given data cloud (i.e., a sample
or collection) of HPD matrices, or the integrated data depth of a sequence (curve) of HPD matrices
with respect to a given data cloud of sequences (curves) of HPD matrices as detailed in (Chau et al.
2019).

https://doi.org/10.1080/01621459.2019.1700129


12 pdDepth

Usage

pdDepth(y = NULL, X, method = "gdd", metric = "Riemannian")

Arguments

y either a (d, d)-dimensional HPD matrix, or a (d, d, n)-dimensional array corre-
sponding to a sequence or curve of HPD matrices. Defaults to NULL, in which
case the data depth of each individual object in X with respect to the data cloud
X itself is calculated.

X depending on the input y, X is either a (d, d, S)-dimensional array correspond-
ing to a data cloud of S individual HPD matrices, or a (d, d, n, S)-dimensional
array corresponding to a data cloud of S sequences or curves of n individual
Hermitian PD matrices.

method the data depth measure, one of 'gdd', 'zonoid' or 'spatial' corresponding
to the geodesic distance depth, intrinsic zonoid depth, and intrinsic spatial depth
respectively.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean" or "Euclidean". See also the Details section below.

Details

Available pointwise or integrated intrinsic data depth functions for samples of HPD matrices are:
(i) geodesic distance depth, (ii) intrinsic zonoid depth and (iii) intrinsic spatial depth. The various
data depth measures and their theoretical properties are described in (Chau et al. 2019). If y is a
(d, d)-dimensional HPD matrix, X should be a (d, d, S)-dimensional array corresponding to a length
S sequence of (d, d)-dimensional HPD matrices and the pointwise data depth values are computed.
If y is a sequence of (d, d)-dimensional HPD matrices of length n (i.e., (d, d, n)-dimensional ar-
ray), X should be a (d, d, n, S)-dimensional array of replicated sequences of HPD matrices and the
integrated data depth values according to (Chau et al. 2019) are computed. If is.null(y), the data
depth of each individual object (i.e., a HPD matrix or a sequence of HPD matrices) in X is computed
with respect to the data cloud X.
The function computes the intrinsic data depth values based on the metric space of HPD matrices
equipped with one of the following metrics: (i) Riemannian metric (default) as detailed in e.g.,
(Bhatia 2009)[Chapter 6] or (Pennec et al. 2006), (ii) log-Euclidean metric, the Euclidean inner
product between matrix logarithms, (iii) Cholesky metric, the Euclidean inner product between
Cholesky decompositions, (iv) Euclidean metric and (v) root-Euclidean metric. The default choice
(Riemannian) has several properties not shared by the other metrics, see (Chau et al. 2019) for more
details.

Value

If !is.null(y), pdDepth returns the numeric depth value of y with respect to X. If is.null(y),
pdDepth returns a numeric vector of length S corresponding to the vector of depth values for each
individual object in X with respect to X itself.
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Note

The function does not check for positive definiteness of the input matrices, and may fail if matrices
are close to being singular.

The data depth computations under the Riemannian metric are more involved than under the other
metrics, and may therefore result in (significantly) higher computation times.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J, Ombao H, von Sachs R (2019). “Intrinsic data depth for Hermitian positive definite
matrices.” Journal of Computational and Graphical Statistics, 28(2), 427–439. doi: 10.1080/
10618600.2018.1537926.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdDist, pdRankTests

Examples

## Pointwise depth
X1 <- replicate(50, Expm(diag(2), H.coeff(rnorm(4), inverse = TRUE)))
pdDepth(y = diag(2), X = X1) ## depth of one point
pdDepth(X = X1) ## depth of each point in the data cloud

## Integrated depth
X2 <- replicate(50, replicate(5, Expm(diag(2), H.coeff(rnorm(4), inverse = TRUE))))
pdDepth(y = replicate(5, diag(2)), X2, method = "zonoid", metric = "logEuclidean")
pdDepth(X = X2, method = "zonoid", metric = "logEuclidean")

pdDist Compute distance between two HPD matrices

Description

pdDist calculates a distance between two Hermitian PD matrices.

Usage

pdDist(A, B, metric = "Riemannian")

https://doi.org/10.1080/10618600.2018.1537926
https://doi.org/10.1080/10618600.2018.1537926
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Arguments

A, B Hermitian positive definite matrices (of equal dimension).

metric the distance measure, one of 'Riemannian', 'logEuclidean', 'Cholesky',
'Euclidean', 'rootEuclidean' or 'Procrustes'. Defaults to 'Riemannian'.

Details

Available distance measures between two HPD matrices are: (i) the affine-invariant Riemannian
distance (default) as in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); (ii) the Log-
Euclidean distance, the Euclidean distance between matrix logarithms; (iii) the Cholesky distance,
the Euclidean distance between Cholesky decompositions; (iv) the Euclidean distance; (v) the root-
Euclidean distance; and (vi) the Procrustes distance as in (Dryden et al. 2009). In particular, pdDist
generalizes the function shapes::distcov, to compute the distance between two symmetric pos-
itive definite matrices, in order to compute the distance between two Hermitian positive definite
matrices.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Dryden I, Koloydenko A, Zhou D (2009). “Non-Euclidean statistics for covariance matrices, with
applications to diffusion tensor imaging.” The Annals of Applied Statistics, 3(3), 1102–1123.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

Examples

a <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
A <- t(Conj(a)) %*% a
b <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
B <- t(Conj(b)) %*% b
pdDist(A, B) ## Riemannian distance

pdkMeans K-means clustering for HPD matrices

Description

pdkMeans performs (fuzzy) k-means clustering for collections of HPD matrices, such as covariance
or spectral density matrices, based on a number of different metrics in the space of HPD matrices.

Usage

pdkMeans(X, K, metric = "Riemannian", m = 1, eps = 1e-05,
max_iter = 100, centroids)
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Arguments

X a (d, d, S)-dimensional array of (d, d)-dimensional HPD matrices for S different
subjects. Also accepts a (d, d, n, S)-dimensional array, which is understood to
be an array of n-dimensional sequences of (d, d)-dimensional HPD matrices for
S different subjects.

K the number of clusters, a positive integer larger than 1.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean" or "Euclidean". Additional details are given below.

m a fuzziness parameter larger or equal to 1. If m = 1 the cluster assignments are
no longer fuzzy, i.e., the procedure performs hard clustering. Defaults to m = 1.

eps an optional tolerance parameter determining the stopping criterion. The k-means
algorithm terminates if the intrinsic distance between cluster centers is smaller
than eps, defaults to eps = 1e-05.

max_iter an optional parameter tuning the maximum number of iterations in the k-means
algorithm, defaults to max_iter = 100.

centroids an optional (d, d,K)- or (d, d, n,K)-dimensional array depending on the input
array X specifying the initial cluster centroids. If not specified, K initial cluster
centroids are randomly sampled without replacement from the input array X.

Details

The input array X corresponds to a collection of (d, d)-dimensional HPD matrices for S different
subjects. If the fuzziness parameter satisfies m > 1, the S subjects are assigned to K different clus-
ters in a probabilistic fashion according to a fuzzy k-means algorithm as detailed in classical texts,
such as (Bezdek 1981). If m = 1, the S subjects are assigned to the K clusters in a non-probabilistic
fashion according to a standard (hard) k-means algorithm. If not specified by the user, the K clus-
ter centers are initialized by random sampling without replacement from the input array of HPD
matrices X. The distance measure in the (fuzzy) k-means algorithm is induced by the metric on the
space of HPD matrices specified by the user. By default, the space of HPD matrices is equipped
with (i) the affine-invariant Riemannian metric (metric = 'Riemannian') as detailed in e.g., (Bha-
tia 2009)[Chapter 6] or (Pennec et al. 2006). Instead, this can also be one of: (ii) the log-Euclidean
metric (metric = 'logEuclidean'), the Euclidean inner product between matrix logarithms; (iii)
the Cholesky metric (metric = 'Cholesky'), the Euclidean inner product between Cholesky de-
compositions; (iv) the Euclidean metric (metric = 'Euclidean'); or (v) the root-Euclidean metric
(metric = 'rootEuclidean'). The default choice of metric (affine-invariant Riemannian) satisfies
several useful properties not shared by the other metrics, see e.g., C18pdSpecEst for more details.
Note that this comes at the cost of increased computation time in comparison to one of the other
metrics.

Value

Returns a list with two components:

cl.assignments an (S,K)-dimensional matrix, where the value at position (s, k) in the matrix cor-
responds to the (probabilistic or binary) cluster membership assignment of subject s with
respect to cluster k.
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cl.centroids either a (d, d,K)- or (d, d, n,K)-dimensional array depending on the input array X
corresponding respectively to the K (d, d)- or (d, d, n)-dimensional final cluster centroids.

References

Bezdek J (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,
New York.

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdDist, pdSpecClust1D, pdSpecClust2D

Examples

## Generate 20 random HPD matrices in 2 groups
m <- function(rescale){
x <- matrix(complex(real = rescale * rnorm(9), imaginary = rescale * rnorm(9)), nrow = 3)
t(Conj(x)) %*% x

}
X <- array(c(replicate(10, m(0.25)), replicate(10, m(1))), dim = c(3, 3, 20))

## Compute fuzzy k-means cluster assignments
cl <- pdkMeans(X, K = 2, m = 2)$cl.assignments

pdMean Weighted Karcher mean of HPD matrices

Description

pdMean calculates an (approximate) weighted Karcher or Frechet mean of a sample of (d, d)-
dimensional HPD matrices intrinsic to a user-specified metric. In the case of the affine-invariant Rie-
mannian metric as detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006), the weighted
Karcher mean is either approximated via the fast recursive algorithm in (Ho et al. 2013) or com-
puted via the slower, but more accurate, gradient descent algorithm in (Pennec 2006). By default,
the unweighted Karcher mean is computed.

Usage

pdMean(M, w, metric = "Riemannian", grad_desc = FALSE, maxit = 1000,
reltol)
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Arguments

M a (d, d, S)-dimensional array corresponding to a sample of (d, d)-dimensional
HPD matrices of size S.

w an S-dimensional nonnegative weight vector, such that sum(w) = 1.
metric the distance measure, one of 'Riemannian', 'logEuclidean', 'Cholesky',

'Euclidean' or 'rootEuclidean'. Defaults to 'Riemannian'.
grad_desc if metric = "Riemannian", a logical value indicating if the gradient descent

algorithm in (Pennec 2006) should be used, defaults to FALSE.
maxit maximum number of iterations in gradient descent algorithm, only used if grad_desc

= TRUE and metric = "Riemannian". Defaults to 1000

reltol optional tolerance parameter in gradient descent algorithm, only used if grad_desc
= TRUE and metric = "Riemannian". Defaults to 1E-10.

Note

The function does not check for positive definiteness of the input matrices, and (depending on the
specified metric) may fail if matrices are close to being singular.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Ho J, Cheng G, Salehian H, Vemuri B (2013). “Recursive Karcher expectation estimators and
recursive law of large numbers.” Artificial Intelligence and Statistics, 325–332.

Pennec X (2006). “Intrinsic statistics on Riemannian manifolds: Basic tools for geometric mea-
surements.” Journal of Mathematical Imaging and Vision, 25(1), 127–154.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

Mid, pdMedian

Examples

## Generate random sample of HPD matrices
m <- function(){
X <- matrix(complex(real=rnorm(9), imaginary=rnorm(9)), nrow=3)
t(Conj(X)) %*% X

}
M <- replicate(100, m())
z <- rnorm(100)
## Generate random weight vector
w <- abs(z)/sum(abs(z))
## Compute weighted (Riemannian) Karcher mean
pdMean(M, w)
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pdMedian Weighted intrinsic median of HPD matrices

Description

pdMedian calculates a weighted intrinsic median of a sample of (d, d)-dimensional HPD matrices
based on a Weiszfeld algorithm intrinsic to the chosen metric.In the case of the affine-invariant
Riemannian metric as detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006), the intrinsic
Weiszfeld algorithm in (Fletcher et al. 2009) is used. By default, the unweighted intrinsic median
is computed.

Usage

pdMedian(M, w, metric = "Riemannian", maxit = 1000, reltol)

Arguments

M a (d, d, S)-dimensional array corresponding to a sample of (d, d)-dimensional
HPD matrices of size S.

w an S-dimensional nonnegative weight vector, such that sum(w) = 1.

metric the distance measure, one of 'Riemannian', 'logEuclidean', 'Cholesky',
'Euclidean' or 'rootEuclidean'. Defaults to 'Riemannian'.

maxit maximum number of iterations in gradient descent algorithm. Defaults to 1000

reltol optional tolerance parameter in gradient descent algorithm. Defaults to 1E-10.

Note

The function does not check for positive definiteness of the input matrices, and (depending on the
specified metric) may fail if matrices are close to being singular.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Fletcher P, Venkatasubramanian S, Joshi S (2009). “The geometric median on Riemannian mani-
folds with application to robust atlas estimation.” NeuroImage, 45(1), S143–S152.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdMean
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Examples

## Generate random sample of HPD matrices
m <- function(){
X <- matrix(complex(real=rnorm(9), imaginary=rnorm(9)), nrow=3)
t(Conj(X)) %*% X

}
M <- replicate(100, m())
## Generate random weight vector
z <- rnorm(100)
w <- abs(z)/sum(abs(z))
## Compute weighted intrinsic (Riemannian) median
pdMedian(M, w)

pdNeville Polynomial interpolation of curves (1D) or surfaces (2D) of HPD ma-
trices

Description

pdNeville performs intrinsic polynomial interpolation of curves or surfaces of HPD matrices in
the metric space of HPD matrices equipped with the affine-invariant Riemannian metric (see (Bha-
tia 2009)[Chapter 6] or (Pennec et al. 2006)) via Neville’s algorithm based on iterative geodesic
interpolation detailed in (Chau and von Sachs 2019) and in Chapter 3 and 5 of (Chau 2018).

Usage

pdNeville(P, X, x, metric = "Riemannian")

Arguments

P for polynomial curve interpolation, a (d, d,N)-dimensional array correspond-
ing to a length N sequence of (d, d)-dimensional HPD matrices (control points)
through which the interpolating polynomial curve passes. For polynomial sur-
face interpolation, a (d, d,N1, N2)-dimensional array corresponding to a tensor
product grid of (d, d)-dimensional HPD matrices (control points) through which
the interpolating polynomial surface passes.

X for polynomial curve interpolation, a numeric vector of length N specifying the
time points at which the interpolating polynomial passes through the control
points P. For polynomial surface interpolation, a list with as elements two nu-
meric vectors x and y of length N1 and N2 respectively. The numeric vectors
specify the time points on the tensor product grid expand.grid(X$x, X$y) at
which the interpolating polynomial passes trough the control points P.

x for polynomial curve interpolation, a numeric vector specifying the time points
(locations) at which the interpolating polynomial is evaluated. For polynomial
surface interpolation, a list with as elements two numeric vectors x and y speci-
fying the time points (locations) on the tensor product grid expand.grid(x$x,
x$y) at which the interpolating polynomial surface is evaluated.
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metric the metric on the space of HPD matrices, by default metric = "Riemannian",
but instead of the Riemannian metric this can also be set to metric = "Euclidean"
to perform (standard) Euclidean polynomial interpolation of curves or surfaces
in the space of HPD matrices.

Details

For polynomial curve interpolation, given N control points (i.e., HPD matrices), the degree of the
interpolated polynomial is N − 1. For polynomial surface interpolation, given N1 × N2 control
points (i.e., HPD matrices) on a tensor product grid, the interpolated polynomial surface is of bi-
degree (N1 − 1, N2 − 1). Depending on the input array P, the function decides whether polynomial
curve or polynomial surface interpolation is performed.

Value

For polynomial curve interpolation, a (d, d, length(x))-dimensional array corresponding to the
interpolating polynomial curve of (d, d)-dimensional matrices of degree N − 1 evaluated at times
x and passing through the control points P at times X. For polynomial surface interpolation, a
(d, d, length(x$x), length(x$y))-dimensional array corresponding to the interpolating poly-
nomial surface of (d, d)-dimensional matrices of bi-degree N1 − 1, N2 − 1 evaluated at times
expand.grid(x$x, x$y) and passing through the control points P at times expand.grid(X$x,
X$y).

Note

If metric = "Euclidean", the interpolating curve or surface may not be positive definite every-
where as the space of HPD matrices equipped with the Euclidean metric has its boundary at a finite
distance.

The function does not check for positive definiteness of the input matrices, and may fail if metric
= "Riemannian" and the input matrices are close to being singular.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdPolynomial

https://doi.org/10.1080/01621459.2019.1700129
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Examples

### Polynomial curve interpolation
P <- rExamples1D(50, example = 'gaussian')$f[, , 10*(1:5)]
P.poly <- pdNeville(P, (1:5)/5, (1:50)/50)
## Examine matrix-component (1,1)
plot((1:50)/50, Re(P.poly[1, 1, ]), type = "l") ## interpolated polynomial
lines((1:5)/5, Re(P[1, 1, ]), col = 2) ## control points

### Polynomial surface interpolation
P.surf <- array(P[, , 1:4], dim = c(2,2,2,2)) ## control points
P.poly <- pdNeville(P.surf, list(x = c(0, 1), y = c(0, 1)), list(x = (0:10)/10, y = (0:10)/10))

pdParTrans Riemannian HPD parallel transport

Description

pdParTrans computes the parallel transport on the manifold of HPD matrices equipped with the
affine-invariant Riemannian metric as described in e.g., Chapter 2 of (Chau 2018). That is, the
function computes the parallel transport of a Hermitian matrix W in the tangent space at the HPD
matrix P along a geodesic curve in the direction of the Hermitian matrix V in the tangent space at P
for a unit time step.

Usage

pdParTrans(P, V, W)

Arguments

P a (d, d)-dimensional HPD matrix.

V a (d, d)-dimensional Hermitian matrix corresponding to a vector in the tangent
space of P.

W a (d, d)-dimensional Hermitian matrix corresponding to a vector in the tangent
space of P.

Value

a (d, d)-dimensional Hermitian matrix corresponding to the parallel transportation of W in the direc-
tion of V along a geodesic curve for a unit time step.

References

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.
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See Also

Expm, Logm

Examples

## Transport the vector W to the tangent space at the identity
W <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
diag(W) <- rnorm(3)
W[lower.tri(W)] <- t(Conj(W))[lower.tri(W)]
p <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
P <- t(Conj(p)) %*% p

pdParTrans(P, Logm(P, diag(3)), W) ## whitening transport

pdPgram Multitaper HPD periodogram matrix

Description

Given a multivariate time series, pdPgram computes a multitapered HPD periodogram matrix based
on averaging raw Hermitian PSD periodogram matrices of tapered multivariate time series seg-
ments.

Usage

pdPgram(X, B, method = c("multitaper", "bartlett"), bias.corr = F,
nw = 3)

Arguments

X an (n, d)-dimensional matrix corresponding to a multivariate time series, with
the d columns corresponding to the components of the time series.

B depending on the argument method, either the number of orthogonal DPSS ta-
pers, or the number of non-overlapping segments to compute Bartlett’s averaged
periodogram. By default, B = d, such that the averaged periodogram is guaran-
teed to be positive definite.

method the tapering method, either "multitaper" or "bartlett" explained in the De-
tails section below. Defaults to "multitaper".

bias.corr should an asymptotic bias-correction under the affine-invariant Riemannian met-
ric be applied to the HPD periodogram matrix? Defaults to FALSE.

nw a positive numeric value corresponding to the time-bandwidth parameter of the
DPSS tapering functions, see also dpss, defaults to nw = 3.
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Details

If method = "multitaper", pdPgram calculates a (d, d)-dimensional multitaper periodogram ma-
trix based on B DPSS (Discrete Prolate Spheroidal Sequence or Slepian) orthogonal tapering func-
tions as in dpss applied to the d-dimensional time series X. If method = "bartlett", pdPgram
computes a Bartlett spectral estimator by averaging the periodogram matrices of B non-overlapping
segments of the d-dimensional time series X. Note that Bartlett’s spectral estimator is a specific
(trivial) case of a multitaper spectral estimator with uniform orthogonal tapering windows.
In the case of subsequent periodogram matrix denoising in the space of HPD matrices equipped
with the affine-invariant Riemannian metric, one should set bias.corr = T, thereby correcting for
the asymptotic bias of the periodogram matrix in the manifold of HPD matrices equipped with the
affine-invariant metric as explained in (Chau and von Sachs 2019) and Chapter 3 of (Chau 2018).
The pre-smoothed HPD periodogram matrix (i.e., an initial noisy HPD spectral estimator) can be
given as input to the function pdSpecEst1D to perform intrinsic wavelet-based spectral matrix esti-
mation. In this case, set bias.corr = F (the default) as the appropriate bias-corrections are applied
internally by the function pdSpecEst1D.

Value

A list containing two components:

freq vector of n/2 frequencies in the range [0, 0.5) at which the periodogram is eval-
uated.

P a (d, d, n/2)-dimensional array containing the (d, d)-dimensional multitaper pe-
riodogram matrices at frequencies corresponding to freq.

References

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

See Also

pdPgram2D, dpss

Examples

## ARMA(1,1) process: Example 11.4.1 in (Brockwell and Davis, 1991)
Phi <- array(c(0.7, 0, 0, 0.6, rep(0, 4)), dim = c(2, 2, 2))
Theta <- array(c(0.5, -0.7, 0.6, 0.8, rep(0, 4)), dim = c(2, 2, 2))
Sigma <- matrix(c(1, 0.71, 0.71, 2), nrow = 2)
ts.sim <- rARMA(200, 2, Phi, Theta, Sigma)
ts.plot(ts.sim$X) # plot generated time series traces
pgram <- pdPgram(ts.sim$X)

https://doi.org/10.1080/01621459.2019.1700129
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pdPgram2D Multitaper HPD time-varying periodogram matrix

Description

Given a multivariate time series, pdPgram2D computes a multitapered HPD time-varying peri-
odogram matrix based on averaging raw Hermitian PSD time-varying periodogram matrices of
tapered multivariate time series segments.

Usage

pdPgram2D(X, B, tf.grid, method = c("dpss", "hermite"), nw = 3,
bias.corr = F)

Arguments

X an (n, d)-dimensional matrix corresponding to a multivariate time series, with
the d columns corresponding to the components of the time series.

B depending on the argument method, either the number of orthogonal DPSS or
Hermite tapering functions. By default, B = d, such that the multitaper peri-
odogram is guaranteed to be positive definite.

tf.grid a list with two components tf.grid$time and tf.grid$frequency specify-
ing the rectangular grid of time-frequency points at which the multitaper pe-
riodogram is evaluated. tf.grid$time should be a numeric vector of rescaled
time points in the range (0,1). tf.grid$frequency should be a numeric vector
of frequency points in the range (0,0.5), with 0.5 corresponding to the Nyquist
frequency.

method the tapering method, either "dpss" or "hermite" explained in the Details sec-
tion below. Defaults to method = "dpss".

nw a positive numeric value corresponding to the time-bandwidth parameter of the
tapering functions, see also dpss, defaults to nw = 3. Both the DPSS and Hermite
tapers are rescaled with the same time-bandwidth parameter.

bias.corr should an asymptotic bias-correction under the affine-invariant Riemannian met-
ric be applied to the HPD periodogram matrix? Defaults to FALSE.

Details

If method = "dpss", pdPgram2D calculates a (d, d)-dimensional multitaper time-varying periodogram
matrix based on sliding B DPSS (Discrete Prolate Spheroidal Sequence or Slepian) orthogonal ta-
pering functions as in dpss applied to the d-dimensional time series X. If B ≥ d, the multitaper
time-varying periodogram matrix is guaranteed to be positive definite at each time-frequency point
in the grid expand.grid(tf.grid$time, tf.grid$frequency). In short, the function pdPgram2D
computes a multitaper periodogram matrix (as in pdPgram) in each of a number of non-overlapping
time series segments of X, with the time series segments centered around the (rescaled) time points
in tf.grid$time. If method = "hermite", the function calculates a multitaper time-varying pe-
riodogram matrix replacing the DPSS tapers by orthogonal Hermite tapering functions as in e.g.,
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(Bayram and Baraniuk 1996).
In the case of subsequent periodogram matrix denoising in the space of HPD matrices equipped
with the affine-invariant Riemannian metric, one should set bias.corr = T, thereby correcting for
the asymptotic bias of the periodogram matrix in the manifold of HPD matrices equipped with the
affine-invariant metric as explained in (Chau and von Sachs 2019) and Chapter 3 and 5 of (Chau
2018). The pre-smoothed HPD periodogram matrix (i.e., an initial noisy HPD spectral estimator)
can be given as input to the function pdSpecEst2D to perform intrinsic wavelet-based time-varying
spectral matrix estimation. In this case, set bias.corr = F (the default) as the appropriate bias-
corrections are applied internally by the function pdSpecEst2D.

Value

A list containing two components:

tf.grid a list with two components corresponding to the rectangular grid of time-frequency
points at which the multitaper periodogram is evaluated.

P a (d, d,m1,m2)-dimensional array with m_1 = length(tf.grid$time) and m_2
= length(tf.grid$frequency) corresponding to the (d, d)-dimensional tapered
periodogram matrices evaluated at the time-frequency points in tf.grid.

References

Bayram M, Baraniuk R (1996). “Multiple window time-frequency analysis.” In Proceedings of the
IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 173–176.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

See Also

pdPgram, dpss

Examples

## Coefficient matrices
Phi1 <- array(c(0.4, 0, 0, 0.8, rep(0, 4)), dim = c(2, 2, 2))
Phi2 <- array(c(0.8, 0, 0, 0.4, rep(0, 4)), dim = c(2, 2, 2))
Theta <- array(c(0.5, -0.7, 0.6, 0.8, rep(0, 4)), dim = c(2, 2, 2))
Sigma <- matrix(c(1, 0.71, 0.71, 2), nrow = 2)

## Generate piecewise stationary time series
ts.Phi <- function(Phi) rARMA(2^9, 2, Phi, Theta, Sigma)$X
ts <- rbind(ts.Phi(Phi1), ts.Phi(Phi2))

pgram <- pdPgram2D(ts)

https://doi.org/10.1080/01621459.2019.1700129
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pdPolynomial Generate intrinsic HPD polynomial curves

Description

pdPolynomial generates intrinsic polynomial curves in the manifold of HPD matrices equipped
with the affine-invariant Riemannian metric (see (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006))
according to the numerical integration procedure in (Hinkle et al. 2014). Given an initial starting
point p0 (i.e., a HPD matrix) in the Riemannian manifold and covariant derivatives up to order
k−1 at p0, pdPolynomial approximates the uniquely existing intrinsic polynomial curve of degree
k passing through p0 with the given covariant derivatives up to order k − 1 and vanishing higher
order covariant derivatives.

Usage

pdPolynomial(p0, v0, delta.t = 0.01, steps = 100)

Arguments

p0 a (d, d)-dimensional HPD matrix specifying the starting point of the polynomial
curve.

v0 a (d, d, k)-dimensional array corresponding to a sequence of (d, d)-dimensional
Hermitian matrix-valued covariant derivatives from order zero up to order k− 1
at the starting point p0.

delta.t a numeric value determining the incrementing step size in the numerical integra-
tion procedure. A smaller step size results in a higher resolution and therefore
a more accurate approximation of the polynomial curve, defaults to delta.t =
0.01.

steps number of incrementing steps in the numerical integration procedure, defaults
to steps = 100.

Value

A (d, d, length(steps))-dimensional array corresponding to a generated (approximate) intrinsic
polynomial curve in the space of (d, d)-dimensional HPD matrices of degree k passing through p0
with the given covariant derivatives v0 up to order k − 1 and vanishing higher order covariant
derivatives.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Hinkle J, Fletcher P, Joshi S (2014). “Intrinsic polynomials for regression on Riemannian mani-
folds.” Journal of Mathematical Imaging and Vision, 50(1-2), 32–52.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.
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See Also

pdNeville, pdParTrans

Examples

## First-order polynomial
p0 <- diag(3) ## HPD starting point
v0 <- array(H.coeff(rnorm(9), inverse = TRUE), dim = c(3, 3, 1)) ## zero-th order cov. derivative
P.poly <- pdPolynomial(p0, v0)

## First-order polynomials coincide with geodesic curves
P.geo <- sapply(seq(0, 1, length = 100), function(t) Expm(p0, t * Logm(p0, P.poly[, , 100])),

simplify = "array")
all.equal(P.poly, P.geo)

pdRankTests Rank-based hypothesis tests for HPD matrices

Description

pdRankTests performs a number of generalized rank-based hypothesis tests in the metric space of
HPD matrices equipped with the affine-invariant Riemannian metric or Log-Euclidean metric for
samples of HPD matrices or samples of sequences (curves) of HPD matrices as described in Chapter
4 of (Chau 2018).

Usage

pdRankTests(data, sample_sizes, test = c("rank.sum", "krusk.wall",
"signed.rank", "bartels"), depth = c("gdd", "zonoid", "spatial"),
metric = c("Riemannian", "logEuclidean"))

Arguments

data either a (d, d, S)-dimensional array corresponding to an array of pooled individ-
ual samples of (d, d)-dimensional HPD matrices, or a (d, d, n, S)-dimensional
array corresponding to an array of pooled individual samples of length n se-
quences of (d, d)-dimensional HPD matrices.

sample_sizes a numeric vector specifying the individual sample sizes in the pooled sam-
ple data, such that sum(sample_sizes) is equal to S. Not required for tests
"signed-rank" and "bartels", as the sample sizes are automatically deter-
mined from the input array data.

test rank-based hypothesis testing procedure, one of "rank.sum", "krusk.wall",
"signed.rank", "bartels" explained in the Details section below.
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depth data depth measure used in the rank-based tests, one of "gdd", "zonoid", or
"spatial" corresponding to the geodesic distance depth, intrinsic zonoid depth
and intrinsic spatial depth respectively. Defaults to "gdd". Not required for test
"signed.rank". See the documentation of the function pdDepth for additional
details about the different depth measures.

metric the metric that the space of HPD matrices is equipped with, either "Riemannian"
or "logEuclidean". Defaults to "Riemannian".

Details

For samples of (d, d)-dimensional HPD matrices with pooled sample size S, the argument data
is a (d, d, S)-dimensional array of (d, d)-dimensional HPD matrices, where the individual samples
are combined along the third array dimension. For samples of sequences of (d, d)-dimensional
HPD matrices with pooled sample size S, the argument data is a (d, d, n, S)-dimensional array of
length n sequences of (d, d)-dimensional HPD matrices, where the individual samples are combined
along the fourth array dimension. The argument sample_sizes specifies the sizes of the individual
samples so that sum(sample_sizes) is equal to S.
The available generalized rank-based testing procedures (specified by the argument test) are:

"rank.sum" Intrinsic Wilcoxon rank-sum test to test for homogeneity of distributions of two in-
dependent samples of HPD matrices or samples of sequences of HPD matrices. The usual
univariate ranks are replaced by data depth induced ranks obtained with pdDepth.

"krusk.wall" Intrinsic Kruskal-Wallis test to test for homogeneity of distributions of more than
two independent samples of HPD matrices or samples of sequences of HPD matrices. The
usual univariate ranks are replaced by data depth induced ranks obtained with pdDepth.

"signed.rank" Intrinsic signed-rank test to test for homogeneity of distributions of independent
paired or matched samples of HPD matrices. The intrinsic signed-rank test is not based on
data depth induced ranks, but on a specific difference score in the Riemannian manifold of
HPD matrices equipped with either the affine-invariant Riemannian or Log-Euclidean metric.

"bartels" Intrinsic Bartels-von Neumann test to test for randomness (i.e., exchangeability) within
a single independent sample of HPD matrices or a sample of sequences of HPD matrices. The
usual univariate ranks are replaced by data depth induced ranks obtained with pdDepth.

The function computes the generalized rank-based test statistics in the complete metric space of
HPD matrices equipped with one of the following metrics: (i) the Riemannian metric (default) as
detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); or (ii) the Log-Euclidean metric,
the Euclidean inner product between matrix logarithms. The default Riemannian metric is invariant
under congruence transformation by any invertible matrix, whereas the Log-Euclidean metric is
only invariant under congruence transformation by unitary matrices, see (Chau 2018)[Chapter 4]
for more details.

Value

The function returns a list with five components:

test name of the rank-based test

p.value p-value of the test

statistic computed test statistic



pdRankTests 29

null.distr distribution of the test statistic under the null hypothesis

depth.values computed data depth values (if available)

Note

The intrinsic signed-rank test also provides a valid test for equivalence of spectral matrices of two
multivariate stationary time series based on the HPD periodogram matrices obtained via pdPgram,
see (Chau 2018)[Chapter 4] for the details.

The function does not check for positive definiteness of the input matrices, and may fail if matrices
are close to being singular.

The data depth computations under the Riemannian metric are more involved than under the Log-
Euclidean metric, and may therefore result in (significantly) higher computation times.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdDepth, pdPgram

Examples

## null hypothesis is true
data <- replicate(100, Expm(diag(2), H.coeff(rnorm(4), inverse = TRUE)))
pdRankTests(data, sample_sizes = c(50, 50), test = "rank.sum") ## homogeneity 2 samples
pdRankTests(data, sample_sizes = rep(25, 4), test = "krusk.wall") ## homogeneity 4 samples
pdRankTests(data, test = "bartels") ## randomness

## null hypothesis is false
data1 <- array(c(data, replicate(50, Expm(diag(2), H.coeff(0.5 * rnorm(4), inverse = TRUE)))),

dim = c(2,2,150))
pdRankTests(data1, sample_sizes = c(100, 50), test = "rank.sum")
pdRankTests(data1, sample_sizes = rep(50, 3), test = "krusk.wall")
pdRankTests(data1, test = "bartels")

## Not run:
## signed-rank test for equivalence of spectra of multivariate time series
## ARMA(1,1) process: Example 11.4.1 in (Brockwell and Davis, 1991)
Phi <- array(c(0.7, 0, 0, 0.6, rep(0, 4)), dim = c(2, 2, 2))
Theta <- array(c(0.5, -0.7, 0.6, 0.8, rep(0, 4)), dim = c(2, 2, 2))
Sigma <- matrix(c(1, 0.71, 0.71, 2), nrow = 2)
pgram <- function(Sigma) pdPgram(rARMA(2^8, 2, Phi, Theta, Sigma)$X)$P
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## null is true
pdRankTests(array(c(pgram(Sigma), pgram(Sigma)), dim = c(2,2,2^8)), test = "signed.rank")
## null is false
pdRankTests(array(c(pgram(Sigma), pgram(0.5 * Sigma)), dim = c(2,2,2^8)), test = "signed.rank")

## End(Not run)

pdSpecClust1D Intrinsic wavelet HPD spectral matrix clustering

Description

pdSpecClust1D performs clustering of HPD spectral matrices corrupted by noise (e.g. HPD peri-
odograms) by combining wavelet thresholding and fuzzy clustering in the intrinsic wavelet coeffi-
cient domain according to the following steps:

1. Transform a collection of noisy HPD spectral matrices to the intrinsic wavelet domain and
denoise the HPD matrix curves by (tree-structured) thresholding of wavelet coefficients with
pdSpecEst1D.

2. Apply an intrinsic fuzzy c-means algorithm to the coarsest midpoints at scale j = 0 across
subjects.

3. Taking into account the fuzzy cluster assignments in the previous step, apply a weighted fuzzy
c-means algorithm to the nonzero thresholded wavelet coefficients across subjects from scale
j = 1 up to j = jmax.

More details can be found in Chapter 3 of (Chau 2018) and the accompanying vignettes.

Usage

pdSpecClust1D(P, K, jmax, metric = "Riemannian", m = 2, d.jmax = 0.1,
eps = c(1e-04, 1e-04), tau = 0.5, max_iter = 50,
return.centers = FALSE, ...)

Arguments

P a (d, d, n, S)-dimensional array of HPD matrices, corresponding to a collection
of sequences of (d, d)-dimensional HPD matrices of length n, with n = 2J for
some J > 0, for S different subjects.

K the number of clusters, a positive integer larger than 1.

jmax an upper bound on the maximum wavelet scale to be considered in the clustering
procedure. If jmax is not specified, it is set equal to the maximum (i.e., finest)
wavelet scale minus 2.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean" or "Euclidean". Additional details are given below.
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m the fuzziness parameter for both fuzzy c-means algorithms. m should be larger
or equal to 1. If m = 1 the cluster assignments are no longer fuzzy, i.e., the
procedure performs hard clustering.

d.jmax a proportion that is used to determine the maximum wavelet scale to be consid-
ered in the clustering procedure. A larger value d.jmax leads to less wavelet
coefficients being taken into account, and therefore lower computational effort
in the procedure. If d.jmax is not specified, by default d.jmax = 0.1.

eps an optional vector with two components determining the stopping criterion. The
first step in the cluster procedure terminates if the (integrated) intrinsic distance
between cluster centers is smaller than eps[1]. The second step in the clus-
ter procedure terminates if the (integrated) Euclidean distance between cluster
centers is smaller than eps[2]. By default eps = c(1e-04, 1e-04).

tau an optional argument tuning the weight given to the cluster assignments obtained
in the first step of the clustering algorithm. If tau is not specified, by default tau
= 0.5.

max_iter an optional argument tuning the maximum number of iterations in both the first
and second step of the clustering algorithm, defaults to max_iter = 50.

return.centers should the cluster centers transformed back the space of HPD matrices also be
returned? Defaults to return.centers = FALSE.

... additional arguments passed on to pdSpecEst1D.

Details

The input array P corresponds to a collection of initial noisy HPD spectral estimates of the (d, d)-
dimensional spectral matrix at n different frequencies, with n = 2J for some J > 0, for S different
subjects. These can be e.g., multitaper HPD periodograms given as output by the function pdPgram.
First, for each subject s = 1, . . . , S, thresholded wavelet coefficients in the intrinsic wavelet do-
main are calculated by pdSpecEst1D, see the function documentation for additional details on the
wavelet thresholding procedure.
The maximum wavelet scale taken into account in the clustering procedure is determined by the
arguments jmax and d.jmax. The maximum scale is set to the minimum of jmax and the wavelet
scale j for which the proportion of nonzero thresholded wavelet coefficients (averaged across sub-
jects) is smaller than d.jmax.
The S subjects are assigned to K different clusters in a probabilistic fashion according to a two-step
procedure:

1. In the first step, an intrinsic fuzzy c-means algorithm, with fuzziness parameter m is applied
to the S coarsest midpoints at scale j = 0 in the subject-specific midpoint pyramids. Note that
the distance function in the intrinsic c-means algorithm relies on the chosen metric on the
space of HPD matrices.

2. In the second step, a weighted fuzzy c-means algorithm based on the Euclidean distance func-
tion, also with fuzziness parameter m, is applied to the nonzero thresholded wavelet coeffi-
cients of the S different subjects. The tuning parameter tau controls the weight given to the
cluster assignments obtained in the first step of the clustering algorithm.

The function computes the forward and inverse intrinsic AI wavelet transform in the space of HPD
matrices equipped with one of the following metrics: (i) the affine-invariant Riemannian metric
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(default) as detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); (ii) the log-Euclidean
metric, the Euclidean inner product between matrix logarithms; (iii) the Cholesky metric, the Eu-
clidean inner product between Cholesky decompositions; (iv) the Euclidean metric; or (v) the root-
Euclidean metric. The default choice of metric (affine-invariant Riemannian) satisfies several useful
properties not shared by the other metrics, see (Chau and von Sachs 2019) or (Chau 2018) for more
details. Note that this comes at the cost of increased computation time in comparison to one of the
other metrics.
If return.centers = TRUE, the function also returns the K HPD spectral matrix curves correspond-
ing to the cluster centers based on the given metric by applying the intrinsic inverse AI wavelet
transform ( InvWavTransf1D) to the cluster centers in the wavelet domain.

Value

Depending on the input the function returns a list with five or six components:

cl.prob an (S,K)-dimensional matrix, where the value at position (s, k) in the matrix corresponds
to the probabilistic cluster membership assignment of subject s with respect to cluster k.

cl.centers.D a list of K wavelet coefficient pyramids, where each pyramid of wavelet coefficients
is associated to a cluster center.

cl.centers.M0 a list of K arrays of coarse-scale midpoints at scale j = 0, where each array is asso-
ciated to a cluster center.

cl.centers.f only available if return.centers = TRUE, returning a list of K (d, d, n)-dimensional
arrays, where each array corresponds to a length n curve of (d, d)-dimensional HPD matrices
associated to a cluster center.

cl.jmax the maximum wavelet scale taken into account in the clustering procedure determined by
the input arguments jmax and d.jmax.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdSpecEst1D, pdSpecClust2D, pdkMeans

Examples

## ARMA(1,1) process: Example 11.4.1 in (Brockwell and Davis, 1991)
Phi1 <- array(c(0.5, 0, 0, 0.6, rep(0, 4)), dim = c(2, 2, 2))
Phi2 <- array(c(0.7, 0, 0, 0.4, rep(0, 4)), dim = c(2, 2, 2))

https://doi.org/10.1080/01621459.2019.1700129
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Theta <- array(c(0.5, -0.7, 0.6, 0.8, rep(0, 4)), dim = c(2, 2, 2))
Sigma <- matrix(c(1, 0.71, 0.71, 2), nrow = 2)

## Generate periodogram data for 10 subjects in 2 groups
pgram <- function(Phi) pdPgram(rARMA(2^9, 2, Phi, Theta, Sigma)$X)$P
P <- array(c(replicate(5, pgram(Phi1)), replicate(5, pgram(Phi2))), dim=c(2,2,2^8,10))

cl <- pdSpecClust1D(P, K = 2, metric = "logEuclidean")

pdSpecClust2D Intrinsic wavelet HPD time-varying spectral clustering

Description

pdSpecClust2D performs clustering of HPD time-varying spectral matrices corrupted by noise (e.g.
HPD time-varying periodograms) by combining wavelet thresholding and fuzzy clustering in the
intrinsic wavelet coefficient domain according to the following steps:

1. Transform a collection of noisy HPD time-varying spectral matrices to the intrinsic wavelet
domain and denoise the HPD matrix surfaces by (tree-structured) thresholding of wavelet
coefficients with pdSpecEst2D.

2. Apply an intrinsic fuzzy c-means algorithm to the coarsest midpoints at scale j = 0 across
subjects.

3. Taking into account the fuzzy cluster assignments in the previous step, apply a weighted fuzzy
c-means algorithm to the nonzero thresholded wavelet coefficients across subjects from scale
j = 1 up to j = jmax.

More details can be found in Chapter 3 of (Chau 2018) and the accompanying vignettes.

Usage

pdSpecClust2D(P, K, jmax, metric = "Riemannian", m = 2, d.jmax = 0.1,
eps = c(1e-04, 1e-04), tau = 0.5, max_iter = 50,
return.centers = FALSE, ...)

Arguments

P a (d,d,n[1],n[2],S)-dimensional array of HPD matrices, corresponding to a
collection of surfaces of (d, d)-dimensional HPD matrices of size n1 × n2, with
n1 = 2J1 and n2 = 2J2 for some J1, J2 > 0, for S different subjects.

K the number of clusters, a positive integer larger than 1.

jmax an upper bound on the maximum wavelet scale to be considered in the clustering
procedure. If jmax is not specified, it is set equal to the maximum (i.e., finest)
wavelet scale minus 2.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean" or "Euclidean". Additional details are given below.
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m the fuzziness parameter for both fuzzy c-means algorithms. m should be larger
or equal to 1. If m = 1 the cluster assignments are no longer fuzzy, i.e., the
procedure performs hard clustering.

d.jmax a proportion that is used to determine the maximum wavelet scale to be consid-
ered in the clustering procedure. A larger value d.jmax leads to less wavelet
coefficients being taken into account, and therefore lower computational effort
in the procedure. If d.jmax is not specified, by default d.jmax = 0.1.

eps an optional vector with two components determining the stopping criterion. The
first step in the cluster procedure terminates if the (integrated) intrinsic distance
between cluster centers is smaller than eps[1]. The second step in the clus-
ter procedure terminates if the (integrated) Euclidean distance between cluster
centers is smaller than eps[2]. By default eps = c(1e-04, 1e-04).

tau an optional argument tuning the weight given to the cluster assignments obtained
in the first step of the clustering algorithm. If tau is not specified, by default tau
= 0.5.

max_iter an optional argument tuning the maximum number of iterations in both the first
and second step of the clustering algorithm, defaults to max_iter = 50.

return.centers should the cluster centers transformed back the space of HPD matrices also be
returned? Defaults to return.centers = FALSE.

... additional arguments passed on to pdSpecEst2D.

Details

The input array P corresponds to a collection of initial noisy HPD time-varying spectral estimates of
the (d, d)-dimensional time-varying spectral matrix at n1 × n2 time-frequency points, with n1, n2

dyadic numbers, for S different subjects. These can be e.g., multitaper HPD time-varying peri-
odograms given as output by the function pdPgram2D.
First, for each subject s = 1, . . . , S, thresholded wavelet coefficients in the intrinsic wavelet do-
main are calculated by pdSpecEst2D, see the function documentation for additional details on the
wavelet thresholding procedure.
The maximum wavelet scale taken into account in the clustering procedure is determined by the
arguments jmax and d.jmax. The maximum scale is set to the minimum of jmax and the wavelet
scale j for which the proportion of nonzero thresholded wavelet coefficients (averaged across sub-
jects) is smaller than d.jmax.
The S subjects are assigned to K different clusters in a probabilistic fashion according to a two-step
procedure:

1. In the first step, an intrinsic fuzzy c-means algorithm, with fuzziness parameter m is applied
to the S coarsest midpoints at scale j = 0 in the subject-specific 2D midpoint pyramids. Note
that the distance function in the intrinsic c-means algorithm relies on the chosen metric on the
space of HPD matrices.

2. In the second step, a weighted fuzzy c-means algorithm based on the Euclidean distance func-
tion, also with fuzziness parameter m, is applied to the nonzero thresholded wavelet coeffi-
cients of the S different subjects. The tuning parameter tau controls the weight given to the
cluster assignments obtained in the first step of the clustering algorithm.

The function computes the forward and inverse intrinsic 2D AI wavelet transform in the space
of HPD matrices equipped with one of the following metrics: (i) the affine-invariant Riemannian
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metric (default) as detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); (ii) the log-
Euclidean metric, the Euclidean inner product between matrix logarithms; (iii) the Cholesky metric,
the Euclidean inner product between Cholesky decompositions; (iv) the Euclidean metric; or (v) the
root-Euclidean metric. The default choice of metric (affine-invariant Riemannian) satisfies several
useful properties not shared by the other metrics, see (Chau 2018) for more details. Note that this
comes at the cost of increased computation time in comparison to one of the other metrics.
If return.centers = TRUE, the function also returns the K HPD time-varying spectral matrices
corresponding to the cluster centers based on the given metric by applying the intrinsic inverse 2D
AI wavelet transform ( InvWavTransf2D) to the cluster centers in the wavelet domain.

Value

Depending on the input the function returns a list with five or six components:

cl.prob an (S,K)-dimensional matrix, where the value at position (s, k) in the matrix corresponds
to the probabilistic cluster membership assignment of subject s with respect to cluster k.

cl.centers.D a list of K wavelet coefficient pyramids, where each 2D pyramid of wavelet coeffi-
cients is associated to a cluster center.

cl.centers.M0 a list of K arrays of coarse-scale midpoints at scale j = 0, where each array is asso-
ciated to a cluster center.

cl.centers.f only available if return.centers = TRUE, returning a list of K (d,d,n[1],n[2])-
dimensional arrays, where each array corresponds to ann1×n2-sized surface of (d, d)-dimensional
HPD matrices associated to a cluster center.

cl.jmax the maximum wavelet scale taken into account in the clustering procedure determined by
the input arguments jmax and d.jmax.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdSpecEst2D, WavTransf2D, pdDist, pdPgram2D

Examples

## Not run:
## Generate noisy HPD surfaces for 6 subjects in 2 groups
n <- c(2^5, 2^5)
P <- array(c(rExamples2D(n, example = "tvar", replicates = 3)$P,

rExamples2D(n, example = "tvar", replicates = 3)$P), dim = c(2, 2, n, 6))
cl <- pdSpecClust2D(P, K = 2, metric = "logEuclidean")
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## End(Not run)

pdSpecEst pdSpecEst: An Analysis Toolbox for Hermitian Positive Definite Ma-
trices

Description

The pdSpecEst (positive definite Spectral Estimation) package provides data analysis tools for
samples of symmetric or Hermitian positive definite matrices, such as collections of positive definite
covariance matrices or spectral density matrices.

Details

The tools in this package can be used to perform:

• Intrinsic wavelet transforms for curves (1D) and surfaces (2D) of Hermitian positive definite
matrices, with applications to for instance: dimension reduction, denoising and clustering
for curves or surfaces of Hermitian positive definite matrices, such as (time-varying) Fourier
spectral density matrices. These implementations are based in part on the paper (Chau and
von Sachs 2019) and Chapters 3 and 5 of (Chau 2018).

• Exploratory data analysis and inference for samples of Hermitian positive definite matrices by
means of intrinsic data depth and depth rank-based hypothesis tests. These implementations
are based on the paper (Chau et al. 2019) and Chapter 4 of (Chau 2018).

For more details and examples on how to use the package see the accompanying vignettes in the
vignettes folder. An R-Shiny app to demonstrate and test the implemented functionality in the
package is available here.

Author and maintainer: Joris Chau (<j.chau@uclouvain.be>).

Install the current development version via devtools::install_github("JorisChau/pdSpecEst").

References

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, Ombao H, von Sachs R (2019). “Intrinsic data depth for Hermitian positive definite
matrices.” Journal of Computational and Graphical Statistics, 28(2), 427–439. doi: 10.1080/
10618600.2018.1537926.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

https://jchau.shinyapps.io/pdSpecEst/
https://doi.org/10.1080/10618600.2018.1537926
https://doi.org/10.1080/10618600.2018.1537926
https://doi.org/10.1080/01621459.2019.1700129
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pdSpecEst1D Intrinsic wavelet HPD spectral estimation

Description

pdSpecEst1D calculates a (d, d)-dimensional HPD wavelet-denoised spectral matrix estimator by
applying the following steps to an initial noisy HPD spectral estimate (obtained with e.g., pdPgram):

1. a forward intrinsic AI wavelet transform, with WavTransf1D,

2. (tree-structured) thresholding of the wavelet coefficients, with pdCART,

3. an inverse intrinsic AI wavelet transform, with InvWavTransf1D.

The complete estimation procedure is described in more detail in (Chau and von Sachs 2019) or
Chapter 3 of (Chau 2018).

Usage

pdSpecEst1D(P, order = 5, metric = "Riemannian", alpha = 1,
return_val = "f", ...)

Arguments

P a (d, d,m)-dimensional array of HPD matrices, corresponding to a sequence of
(d, d)-dimensional HPD matrices of length m, with m = 2J for some J > 0.

order an odd integer larger or equal to 1 corresponding to the order of the intrinsic AI
refinement scheme, defaults to order = 5. Note that if order > 9, the computa-
tional cost significantly increases as the wavelet transform no longer uses a fast
wavelet refinement scheme based on pre-determined weights.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean", "Euclidean" or "Riemannian-Rahman". See also the De-
tails section below.

alpha an optional tuning parameter in the wavelet thresholding procedure. The penalty
(or sparsity) parameter in the tree-structured wavelet thresholding procedure in
pdCART is set to alpha times the estimated universal threshold, defaults to alpha
= 1.

return_val an optional argument that specifies whether the denoised spectral estimator is
returned or not. See the Details section below.

... additional arguments for internal use.

Details

The input array P corresponds to an initial noisy HPD spectral estimate of the (d, d)-dimensional
spectral matrix at m different frequencies, with m = 2J for some J > 0. This can be e.g., a multi-
taper HPD periodogram given as output by the function pdPgram.
P is transformed to the wavelet domain by the function WavTransf1D, which applies an intrinsic
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1D AI wavelet transform based on a metric specified by the user. The noise is removed by tree-
structured thresholding of the wavelet coefficients based on the trace of the whitened coefficients
with pdCART by minimization of a complexity penalized residual sum of squares (CPRESS) crite-
rion via the fast tree-pruning algorithm in (Donoho 1997). The penalty or sparsity parameter in the
optimization procedure is set equal to alpha times the universal threshold, where the noise variance
of the traces of the whitened wavelet coefficients are determined from the finest wavelet scale. See
(Chau and von Sachs 2019) and Chapter 3 of (Chau 2018) for further details.
The function computes the forward and inverse intrinsic AI wavelet transform in the space of HPD
matrices equipped with one of the following metrics: (i) the affine-invariant Riemannian metric
(default) as detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); (ii) the log-Euclidean
metric, the Euclidean inner product between matrix logarithms; (iii) the Cholesky metric, the Eu-
clidean inner product between Cholesky decompositions; (iv) the Euclidean metric; or (v) the root-
Euclidean metric. The default choice of metric (affine-invariant Riemannian) satisfies several useful
properties not shared by the other metrics, see (Chau and von Sachs 2019) or (Chau 2018) for more
details. Note that this comes at the cost of increased computation time in comparison to one of the
other metrics.
If return_val = 'f' the thresholded wavelet coefficients are transformed back to the frequency do-
main by the inverse intrinsic 1D AI wavelet transform via InvWavTransf1D, returning the wavelet-
denoised HPD spectral estimate.

Value

The function returns a list with the following five components:

f a (d, d,m)-dimensional array of HPD matrices, corresponding to the HPD wavelet-
denoised estimate of the same resolution as the input array P. If return_val !=
'f', the inverse wavelet transform of the thresholded wavelet coefficients is not
computed and f is set equal to NULL.

D the pyramid of threshold wavelet coefficients. This is a list of arrays, where each
array contains the (d, d)-dimensional thresholded wavelet coefficients from the
coarsest wavelet scale j = 0 up to the finest wavelet scale j = jmax.

M0 a numeric array containing the midpoint(s) at the coarsest scale j = 0 in the
midpoint pyramid.

tree.weights a list of logical values specifying which coefficients to keep, with each list com-
ponent corresponding to an individual wavelet scale starting from the coarsest
wavelet scale j = 0.

D.raw the pyramid of non-thresholded wavelet coefficients in the same format as the
component $D.

Note

The function does not check for positive definiteness of the input matrices, and (depending on the
specified metric) may fail if matrices are close to being singular.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.
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Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

Donoho D (1997). “CART and best-ortho-basis: a connection.” The Annals of Statistics, 25(5),
1870–1911.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdPgram, WavTransf1D, InvWavTransf1D, pdCART

Examples

P <- rExamples1D(2^8, example = "bumps")$P
f <- pdSpecEst1D(P)

pdSpecEst2D Intrinsic wavelet HPD time-varying spectral estimation

Description

pdSpecEst2D calculates a (d, d)-dimensional HPD wavelet-denoised time-varying spectral matrix
estimator by applying the following steps to an initial noisy HPD time-varying spectral estimate
(obtained with e.g., pdPgram2D):

1. a forward intrinsic AI wavelet transform, with WavTransf2D,

2. (tree-structured) thresholding of the wavelet coefficients, with pdCART,

3. an inverse intrinsic AI wavelet transform, with InvWavTransf2D.

The complete estimation procedure is described in more detail in Chapter 5 of (Chau 2018).

Usage

pdSpecEst2D(P, order = c(3, 3), metric = "Riemannian", alpha = 1,
return_val = "f", ...)

https://doi.org/10.1080/01621459.2019.1700129
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Arguments

P a (d, d, n1, n2)-dimensional array of HPD matrices corresponding to a rectangu-
lar surface of (d, d)-dimensional HPD matrices of size n1 × n2, with n1 = 2J1

and n2 = 2J2 for some J1, J2 > 0.
order a 2-dimensional numeric vector (1, 1) ≤ order ≤ (9, 9) corresponding to the

marginal orders of the intrinsic 2D AI refinement scheme, defaults to order =
c(3, 3).

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean" or "Euclidean". See also the Details section below.

alpha an optional tuning parameter in the wavelet thresholding procedure. The penalty
(or sparsity) parameter in the tree-structured wavelet thresholding procedure in
pdCART is set to alpha times the estimated universal threshold, defaults to alpha
= 1.

return_val an optional argument that specifies whether the denoised spectral estimator is
returned or not. See the Details section below.

... additional arguments for internal use.

Details

The input array P corresponds to an initial noisy HPD time-varying spectral estimate of the (d, d)-
dimensional spectral matrix at a time-frequency grid of size m1 × m2, with m1,m2 dyadic num-
bers. This can be e.g., a multitaper HPD time-varying periodogram given as output by the function
pdPgram2D.
P is transformed to the wavelet domain by the function WavTransf2D, which applies an intrinsic
2D AI wavelet transform based on a metric specified by the user. The noise is removed by tree-
structured thresholding of the wavelet coefficients based on the trace of the whitened coefficients
with pdCART by minimization of a complexity penalized residual sum of squares (CPRESS) crite-
rion via the fast tree-pruning algorithm in (Donoho 1997). The penalty (i.e., sparsity) parameter
in the optimization procedure is set equal to alpha times the universal threshold, where the noise
variance of the traces of the whitened wavelet coefficients are determined from the finest wavelet
scale. See Chapter 5 of (Chau 2018) for further details.
The function computes the forward and inverse intrinsic 2D AI wavelet transform in the space
of HPD matrices equipped with one of the following metrics: (i) the affine-invariant Riemannian
metric (default) as detailed in e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); (ii) the log-
Euclidean metric, the Euclidean inner product between matrix logarithms; (iii) the Cholesky metric,
the Euclidean inner product between Cholesky decompositions; (iv) the Euclidean metric; or (v) the
root-Euclidean metric. The default choice of metric (affine-invariant Riemannian) satisfies several
useful properties not shared by the other metrics, see (Chau and von Sachs 2019) or (Chau 2018)
for more details. Note that this comes at the cost of increased computation time in comparison to
one of the other metrics.
If return_val = 'f' the thresholded wavelet coefficients are transformed back to the time-frequency
domain by the inverse intrinsic 2D AI wavelet transform via InvWavTransf2D, returning the wavelet-
denoised HPD time-varying spectral estimate.

Value

The function returns a list with the following five components:
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f a (d, d,m1,m2)-dimensional array of HPD matrices, corresponding to the HPD
wavelet-denoised estimate on the same resolution grid of size m1×m2 as speci-
fied by the input array P. If return_val != 'f', the inverse wavelet transform of
the thresholded wavelet coefficients is not computed and f is set equal to NULL.

D the 2D pyramid of threshold wavelet coefficients. This is a list of arrays, where
each array contains the rectangular grid (d, d)-dimensional thresholded wavelet
coefficients from the coarsest wavelet scale j = 0 up to the finest wavelet scale j
= jmax.

M0 a numeric array containing the midpoint(s) at the coarsest scale j = 0 in the 2D
midpoint pyramid.

tree.weights a list of logical values specifying which coefficients to keep, with each list com-
ponent corresponding to an individual wavelet scale starting from the coarsest
wavelet scale j = 0.

D.raw the 2D pyramid of non-thresholded wavelet coefficients in the same format as
the component $D.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

Donoho D (1997). “CART and best-ortho-basis: a connection.” The Annals of Statistics, 25(5),
1870–1911.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

pdPgram2D, WavTransf2D, InvWavTransf2D, pdCART

Examples

## Not run:
P <- rExamples2D(c(2^6, 2^6), 2, example = "tvar")$P
f <- pdSpecEst2D(P)

## End(Not run)

https://doi.org/10.1080/01621459.2019.1700129
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pdSplineReg Cubic smoothing spline regression for HPD matrices

Description

pdSplineReg() performs cubic smoothing spline regression in the space of HPD matrices equipped
with the affine-invariant Riemannian metric through minimization of a penalized regression objec-
tive function using a geometric conjugate gradient descent method as outlined in (Boumal and Absil
2011a) and (Boumal and Absil 2011b). This is a specific implementation of the more general algo-
rithm in (Boumal and Absil 2011a) and (Boumal and Absil 2011b), setting the part in the objective
function based on the first-order finite geometric differences to zero, such that the solutions of the
regression problem are approximating cubic splines.

Usage

pdSplineReg(P, f0, lam = 1, Nd, ini_step = 1, max_iter = 100,
eps = 0.001, ...)

Arguments

P a (d, d, n)-dimensional array corresponding to a length n sequence of (d, d)-
dimensional noisy HPD matrices.

f0 a (d, d, n)-dimensional array corresponding to an initial estimate of the smooth
target curve of (d, d)-dimensional HPD matrices.

lam a smoothness penalty, defaults to lam = 1. If lam = 0, the penalized curve esti-
mate coincides with geodesic interpolation of the data points with respect to the
Riemannian metric. If lam increases to ∞, the penalized regression estimator is
approximately a fitted geodesic curve.

Nd a numeric value (Nd <= n) determining a lower resolution of the cubic spline
regression estimator to speed up computation time, defaults to n.

ini_step initial candidate step size in a backtracking line search based on the Armijo-
Goldstein condition, defaults to ini_step = 1.

max_iter maximum number of gradient descent iterations, defaults to max_iter = 100.
eps optional tolerance parameter in gradient descent algorithm. The gradient descent

procedure exits if the absolute difference between consecutive evaluations of the
objective function is smaller than eps, defaults to eps = 1E-3.

... additional arguments for internal use.

Value

A list with three components:

f a (d, d,Nd)-dimensional array corresponding to a length Nd estimated cubic
smoothing spline curve of (d, d)-dimensional HPD matrices.

cost a numeric vector containing the costs of the objective function at each gradient
descent iteration.

total_iter total number of gradient descent iterations.



rARMA 43

Note

This function does not check for positive definiteness of the matrices given as input, and may fail if
matrices are close to being singular.

References

Boumal N, Absil P (2011a). “Discrete regression methods on the cone of positive-definite matri-
ces.” In IEEE ICASSP, 2011, 4232–4235.

Boumal N, Absil P (2011b). “A discrete regression method on manifolds and its application to
data on SO(n).” IFAC Proceedings Volumes, 44(1), 2284–2289.

Examples

## Not run:
set.seed(2)
P <- rExamples1D(50, example = 'gaussian', noise.level = 0.1)
P.spline <- pdSplineReg(P$P, P$P, lam = 0.5, Nd = 25)

## Examine matrix-component (1,1)
plot((1:50)/50, Re(P$P[1, 1, ]), type = "l", lty = 2) ## noisy observations
lines((1:25)/25, Re(P.spline$f[1, 1, ])) ## estimate
lines((1:50)/50, Re(P$f[1, 1, ]), col = 2, lty = 2) ## smooth target

## End(Not run)

rARMA Simulate vARMA(2,2) time series

Description

rARMA generates d-dimensional time series observations from a vARMA(2,2) (vector-autoregressive-
moving-average) process based on Gaussian white noise for testing and simulation purposes.

Usage

rARMA(n, d, Phi, Theta, Sigma, burn = 100, freq = NULL)

Arguments

n number of time series observations to be generated.

d dimension of the multivariate time series.

Phi a (d, d, 2)-dimensional array, with Phi[, , 1] and Phi[, , 2] the autoregressive
(AR) coefficient matrices.

Theta a (d, d, 2)-dimensional array, with Theta[, , 1] and Theta[, , 2] the moving-
average (MA) coefficient matrices.

Sigma the covariance matrix of the Gaussian white noise component.
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burn a burn-in period when generating the time series observations, by default burn
= 100.

freq an optional vector of frequencies, if !is.null(freq) the function also returns
the underlying Fourier spectral matrix of the stationary generating process eval-
uated at the frequencies in freq.

Value

The function returns a list with two components:

X generated time series observations, the d columns correspond to the components
of the multivariate time series.

f if !is.null(freq), f is a (d, d, length(freq))-dimensional array correspond-
ing to the underlying Fourier spectral matrix curve of (d, d)-dimensional HPD
matrices evaluated at the frequencies in freq. If is.null(freq), f is set to
NULL.

References

Brockwell P, Davis R (2006). Time Series: Theory and Methods. Springer, New York.

Examples

## ARMA(1,1) process: Example 11.4.1 in (Brockwell and Davis, 1991)
freq <- seq(from = pi / 100, to = pi, length = 100)
Phi <- array(c(0.7, 0, 0, 0.6, rep(0, 4)), dim = c(2, 2, 2))
Theta <- array(c(0.5, -0.7, 0.6, 0.8, rep(0, 4)), dim = c(2, 2, 2))
Sigma <- matrix(c(1, 0.71, 0.71, 2), nrow = 2)
ts.sim <- rARMA(200, 2, Phi, Theta, Sigma, freq = freq)
ts.plot(ts.sim$X) # plot generated time series traces.

rExamples1D Several example curves of HPD matrices

Description

rExamples1D() generates several example (locally) smooth target curves of HPD matrices cor-
rupted by noise in a manifold of HPD matrices for testing and simulation purposes. For more
details, see also Chapter 2 and 3 in (Chau 2018).

Usage

rExamples1D(n, d = 3, example = c("bumps", "two-cats", "heaviSine",
"gaussian", "mix-gaussian", "arma", "peaks", "blocks"), user.f = NULL,
return.ts = FALSE, replicates = 1, noise = "riem-gaussian",
noise.level = 1, df.wishart = NULL, nblocks = 10)
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Arguments

n number of sampled matrices to be generated.

d row- (resp. column-)dimension of the generated matrices. Defaults to d = 3.

example the example target HPD matrix curve, one of 'bumps', 'two-cats', 'heaviSine',
'gaussian', 'mix-gaussian', 'arma', 'peaks' or 'blocks'.

user.f user-specified target HPD matrix curve, should be a (d, d, n)-dimensional array,
corresponding to a length n curve of (d, d)-dimensional HPD matrices.

return.ts a logical value, if return.ts = TRUE the function also returns time series obser-
vations generated via the Cramer representation based on the transfer function
of the example HPD spectral matrix and complex normal random variates. De-
faults to return.ts = FALSE.

replicates a positive integer specifying the number of replications of noisy HPD matrix
curves to be generated based on the target curve of HPD matrices. Defaults to
replicates = 1

noise noise distribution for the generated noisy curves of HPD matrices, one of 'riem-gaussian',
'log-gaussian', 'wishart', 'log-wishart' or 'periodogram', defaults to
'riem-gaussian'. Additional details are given below.

noise.level parameter to tune the signal-to-noise ratio for the generated noisy HPD matrix
observations, only used if noise != 'periodogram'. If noise.level = 0, the
noise distributions are degenerate and the noisy HPD matrix observations coin-
cide with the target HPD matrices. Defaults to noise.level = 1.

df.wishart optional parameter to specify the degrees of freedom in the case of a Wishart
noise distribution (noise = 'wishart' or noise = 'log-wishart'); or the num-
ber of DPSS tapers in the case of generated periodogram matrices if noise =
'periodogram'. By default df.wishart is equal to the dimension d to guaran-
tee positive definiteness of the generated noisy matrices.

nblocks optional parameter to specify the number of constant segments in the 'blocks'
HPD matrix curve. Only used if example = 'blocks'.

Details

The examples include: (i) a (3, 3)-dimensional 'bumps' HPD matrix curve containing peaks and
bumps of various smoothness degrees; (ii) a (3, 3)-dimensional 'two-cats' HPD matrix curve vi-
sualizing the contour of two side-by-side cats, with inhomogeneous smoothness across the domain;
(iii) a (3, 3)-dimensional 'heaviSine' HPD matrix curve consisting of smooth sinosoids with a
break; (iv) a (2, 2)-dimensional 'gaussian' HPD matrix curve consisting of smooth Gaussian
functions; (v) a (d, d)-dimensional 'mix-gaussian' HPD matrix curve consisting of a weighted
linear combination of smooth Gaussian functions; (vi) a (2, 2)-dimensional 'arma' HPD matrix
curve generated from the smooth spectral matrix of a 2-dimensional stationary ARMA(1,1)-process;
(vii) a (d, d)- dimensional 'peaks' HPD matrix curve containing several sharp peaks across the do-
main; and (viii) a (d, d)-'blocks' HPD matrix curve generated from locally constant segments of
HPD matrices.
In addition to the smooth target curve of HPD matrices, the function also returns a noisy version
of the target curve of HPD matrices, corrupted by a user-specified noise distribution. By default,
the noisy HPD matrix observations follow an intrinsic signal plus i.i.d. noise model with respect
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to the affine-invariant Riemannian metric, with a matrix log-Gaussian noise distribution (noise =
'riem-gaussian'), such that the Riemannian Karcher means of the observations coincide with the
target curve of HPD matrices. Additional details can be found in Chapters 2, 3, and 5 of (Chau
2018). Other available signal-noise models include: (ii) a Log-Euclidean signal plus i.i.d. noise
model, with a matrix log-Gaussian noise distribution (noise = 'log-gaussian'); (iii) a Rieman-
nian signal plus i.i.d. noise model, with a complex Wishart noise distribution (noise = 'wishart');
(iv) a Log-Euclidean signal plus i.i.d. noise model, with a complex Wishart noise distribution
(noise = 'log-wishart'); and (v) noisy periodogram observations obtained with pdPgram from a
stationary time series generated via the Cramer representation based on the transfer function of the
target HPD spectral matrix curve and complex normal random variates (noise = 'periodogram').
If return.ts = TRUE, the function also returns the generated time series observations, which are
not generated by default if noise != 'periodogram'.

Value

Depending on the input arguments returns a list with two or three components:

f a (d, d, n)-dimensional array, corresponding to the length n example target curve
of (d, d)-dimensional HPD matrices.

P a (d, d, n)-dimensional array, corresponding to a length n curve of noisy (d, d)-
dimensional HPD matrices centered around the smooth target HPD matrix curve
f. If replicates > 1, P is a (d,d,n,length(replicates))-dimensional ar-
ray, corresponding to a collection of replicated length n curves of noisy (d, d)-
dimensional HPD matrices centered around the smooth target HPD matrix curve
f.

ts generated d-dimensional time series observations, only available if return.ts
= TRUE.

Note

If noise = 'wishart', the generated noisy HPD matrix observations are independent complex
Wishart matrices, which can be interpreted informally as pseudo-periodogram matrix observations,
as the periodogram matrices based on strictly stationary time series observations obtained with
noise = 'periodogram' are asymptotically independent and asymptotically complex Wishart dis-
tributed, see e.g., (Brillinger 1981).

References

Brillinger D (1981). Time Series: Data Analysis and Theory. Holden-Day, San Francisco.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

See Also

rExamples2D, pdPgram, rARMA
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Examples

example <- rExamples1D(100, example = "bumps", return.ts = TRUE)
plot.ts(Re(example$ts), main = "3-d time series") # plot generated time series

rExamples2D Several example surfaces of HPD matrices

Description

rExamples2D() generates several example (locally) smooth target surfaces of HPD matrices cor-
rupted by noise in a manifold of HPD matrices for testing and simulation purposes. For more
details, see also Chapter 2 and 5 in (Chau 2018).

Usage

rExamples2D(n, d = 2, example = c("smiley", "tvar", "facets", "peak"),
replicates = 1, noise = "riem-gaussian", noise.level = 1,
df.wishart = NULL)

Arguments

n integer vector c(n1, n2) specifying the number of sampled matrices to be gen-
erated on a rectangular surface.

d row- (resp. column-)dimension of the generated matrices. Defaults to d = 2.

example the example target HPD matrix surface, one of 'smiley', 'tvar', 'facets' or
'peak'.

replicates a positive integer specifying the number of replications of noisy HPD matrix
surfaces to be generated based on the target surface of HPD matrices. Defaults
to replicates = 1

noise noise distribution for the generated noisy surfaces of HPD matrices, one of
'riem-gaussian', 'log-gaussian', 'wishart', 'log-wishart' or 'periodogram',
defaults to 'riem-gaussian'. Additional details are given below.

noise.level parameter to tune the signal-to-noise ratio for the generated noisy HPD matrix
observations. If noise.level = 0, the noise distributions are degenerate and the
noisy HPD matrix observations coincide with the target HPD matrices. Defaults
to noise.level = 1.

df.wishart optional parameter to specify the degrees of freedom in the case of a Wishart
noise distribution (noise = 'wishart' or noise = 'log-wishart'). By default
df.wishart is equal to the dimension d to guarantee positive definiteness of the
generated noisy matrices.



48 rExamples2D

Details

The examples include: (i) a (d, d)-dimensional 'smiley' HPD matrix surface consisting of con-
stant surfaces of random HPD matrices in the shape of a smiley face; (ii) a (d, d)-dimensional
'tvar' HPD matrix surface generated from a time-varying vector-auto- regressive process of or-
der 1 with random time-varying coefficient matrix (Φ); (iii) a (d, d)-dimensional 'facets' HPD
matrix surface consisting of several facets generated from random geodesic surfaces; and (iv) a
(d, d)-dimensional 'peak' HPD matrix surface containing a pronounced peak in the center of its
2-d (e.g., time-frequency) domain.
In addition to the (locally) smooth target surface of HPD matrices, the function also returns a noisy
version of the target surface of HPD matrices, corrupted by a user-specified noise distribution. By
default, the noisy HPD matrix observations follow an intrinsic signal plus i.i.d. noise model with
respect to the affine-invariant Riemannian metric, with a matrix log-Gaussian noise distribution
(noise = 'riem-gaussian'), such that the Riemannian Karcher means of the observations coin-
cide with the target surface of HPD matrices. Additional details can be found in Chapters 2, 3,
and 5 of (Chau 2018). Other available signal-noise models include: (ii) a Log-Euclidean signal
plus i.i.d. noise model, with a matrix log-Gaussian noise distribution (noise = 'log-gaussian');
(iii) a Riemannian signal plus i.i.d. noise model, with a complex Wishart noise distribution (noise
= 'wishart'); (iv) a Log-Euclidean signal plus i.i.d. noise model, with a complex Wishart noise
distribution (noise = 'log-wishart').

Value

Returns a list with two components:

f a (d,d,n[1],n[2])-dimensional array, corresponding to the (n1 × n2)-sized
example target surface of (d, d)-dimensional HPD matrices.

P a (d,d,n[1],n[2])-dimensional array, corresponding to the (n1×n2)-sized sur-
face of noisy (d, d)-dimensional HPD matrices centered around the smooth tar-
get HPD matrix surface f. If replicates > 1, P is a (d,d,n[1],n[2],length(replicates))-
dimensional array, corresponding to a collection of replicated (n1 × n2)-sized
surfaces of noisy (d, d)-dimensional HPD matrices centered around the smooth
target HPD matrix surface f.

References

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

See Also

rExamples1D, pdPgram2D

Examples

example <- rExamples2D(n = c(32, 32), example = "smiley")
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WavTransf1D Forward AI wavelet transform for curve of HPD matrices

Description

WavTransf1D computes a forward intrinsic average-interpolating (AI) wavelet transform for a curve
in the manifold of HPD matrices equipped with a metric specified by the user, such as the affine-
invariant Riemannian metric, as described in (Chau and von Sachs 2019) and Chapter 3 of (Chau
2018).

Usage

WavTransf1D(P, order = 5, jmax, periodic = FALSE,
metric = "Riemannian", ...)

Arguments

P a (d, d,m)-dimensional array of HPD matrices, corresponding to a sequence of
(d, d)-dimensional HPD matrices of length m, with m = 2J for some J > 0.

order an odd integer larger or equal to 1 corresponding to the order of the intrinsic AI
refinement scheme, defaults to order = 5. Note that if order > 9, the computa-
tional cost significantly increases as the wavelet transform no longer uses a fast
wavelet refinement scheme based on pre-determined weights.

jmax the maximum scale up to which the wavelet coefficients are computed. If jmax
is not specified, it is set equal to the maximum possible scale jmax = J-1, where
J = log2(m).

periodic a logical value determining whether the curve of HPD matrices can be reflected
at the boundary for improved wavelet refinement schemes near the boundaries of
the domain. This is useful for spectral matrix estimation, in which case the spec-
tral matrix is a symmetric and periodic curve in the frequency domain. Defaults
to periodic = FALSE.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can also be one of: "logEuclidean", "Cholesky",
"rootEuclidean", "Euclidean" or "Riemannian-Rahman". See also the De-
tails section below.

... additional arguments for internal use.

Details

The input array P corresponds to a discretized curve of (d, d)-dimensional HPD matrices of dyadic
length. WavTransf1D then computes the intrinsic AI wavelet transform of P based on the given
refinement order and the chosen metric. If the refinement order is an odd integer smaller or equal
to 9, the function computes the wavelet transform using a fast wavelet refinement scheme based
on weighted intrinsic averages with pre-determined weights as explained in (Chau and von Sachs
2019) and Chapter 3 of (Chau 2018). If the refinement order is an odd integer larger than 9, the
wavelet refinement scheme uses intrinsic polynomial prediction based on Neville’s algorithm in the
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Riemannian manifold (via pdNeville).
The function computes the intrinsic AI wavelet transform in the space of HPD matrices equipped
with one of the following metrics: (i) the affine-invariant Riemannian metric (default) as detailed in
e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006); (ii) the log-Euclidean metric, the Euclidean
inner product between matrix logarithms; (iii) the Cholesky metric, the Euclidean inner product
between Cholesky decompositions; (iv) the Euclidean metric; or (v) the root-Euclidean metric. The
default choice of metric (affine-invariant Riemannian) satisfies several useful properties not shared
by the other metrics, see (Chau and von Sachs 2019) or (Chau 2018) for more details. Note that this
comes at the cost of increased computation time in comparison to one of the other metrics.

Value

The function returns a list with three components:

D the pyramid of wavelet coefficients. This is a list of arrays, where each array
contains the (d, d)-dimensional Hermitian wavelet coefficients from the coarsest
wavelet scale j = 0 up to the finest wavelet scale j = jmax

.

D.white the pyramid of whitened wavelet coefficients. The structure of D.white is the
same as D, but with the wavelet coefficients replaced by their whitened counter-
parts as explained in (Chau and von Sachs 2019).

M0 a numeric array containing the midpoint(s) at the coarsest scale j = 0 in the
midpoint pyramid.

Note

The function does not check for positive definiteness of the input matrices, and (depending on the
specified metric) may fail if matrices are close to being singular.

References

Bhatia R (2009). Positive Definite Matrices. Princeton University Press, New Jersey.

Chau J (2018). Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time
Series. phdthesis, Universite catholique de Louvain.

Chau J, von Sachs R (2019). “Intrinsic wavelet regression for curves of Hermitian positive definite
matrices.” Journal of the American Statistical Association. doi: 10.1080/01621459.2019.1700129.

Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” Inter-
national Journal of Computer Vision, 66(1), 41–66.

See Also

InvWavTransf1D, pdSpecEst1D, pdNeville

https://doi.org/10.1080/01621459.2019.1700129
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Examples

P <- rExamples1D(2^8, example = "bumps")
P.wt <- WavTransf1D(P$f, periodic = FALSE)

WavTransf2D Forward AI wavelet transform for surface of HPD matrices

Description

WavTransf2D computes a forward intrinsic average-interpolation (AI) wavelet transform for a rect-
angular surface in the manifold of HPD matrices equipped with a metric specified by the user, such
as the affine-invariant Riemannian metric, as described in Chapter 5 of (Chau 2018).

Usage

WavTransf2D(P, order = c(3, 3), jmax, metric = "Riemannian", ...)

Arguments

P a (d, d, n1, n2)-dimensional array of HPD matrices corresponding to a rectangu-
lar surface of (d, d)-dimensional HPD matrices of size n1 × n2, with n1 = 2J1

and n2 = 2J2 for some J1, J2 > 0.

order a 2-dimensional numeric vector (1, 1) ≤ order ≤ (9, 9) corresponding to the
marginal orders of the intrinsic 2D AI refinement scheme, defaults to order =
c(3, 3).

jmax the maximum scale up to which the wavelet coefficients are computed. If jmax
is not specified, it is set equal to the maximum possible scale jmax = max(J1,
J2) - 1.

metric the metric that the space of HPD matrices is equipped with. The default choice
is "Riemannian", but this can be one of: "Riemannian", "logEuclidean",
"Cholesky", "rootEuclidean" or "Euclidean". See also the Details section
below.

... additional arguments for internal use.

Details

The 4-dimensional array P corresponds to a discretized rectangular surface of (d, d)-dimensional
HPD matrices. The rectangular surface is of size n1 by n2, where both n1 and n2 are supposed
to be dyadic numbers. WavTransf2D then computes the intrinsic AI wavelet transform of P based
on the given refinement orders and the chosen metric. The marginal refinement orders should be
smaller or equal to 9, and the function computes the wavelet transform using a fast wavelet re-
finement scheme based on weighted intrinsic averages with pre-determined weights as explained in
Chapter 5 of (Chau 2018). By default WavTransf2D computes the intrinsic 2D AI wavelet transform
equipping the space of HPD matrices with (i) the affine-invariant Riemannian metric as detailed in
e.g., (Bhatia 2009)[Chapter 6] or (Pennec et al. 2006). Instead, the space of HPD matrices can
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also be equipped with one of the following metrics; (ii) the Log-Euclidean metric, the Euclidean
inner product between matrix logarithms; (iii) the Cholesky metric, the Euclidean inner product be-
tween Cholesky decompositions; (iv) the Euclidean metric and (v) the root-Euclidean metric. The
default choice of metric (affine-invariant Riemannian) satisfies several useful properties not shared
by the other metrics, see (Chau 2018) for more details. Note that this comes at the cost of increased
computation time in comparison to one of the other metrics.

Value

The function returns a list with three components:

D the 2D pyramid of wavelet coefficients. This is a list of arrays, where each 4-
dimensional array contains the (d, d)-dimensional wavelet coefficients in a 2D
grid of locations from the coarsest wavelet scale j = 0 up to the finest wavelet
scale j = jmax.

D.white the 2D pyramid of whitened wavelet coefficients. The structure of D.white
is the same as D, but with the wavelet coefficients replaced by their whitened
counterparts as explained in Chapter 5 of (Chau 2018).

M0 a numeric array containing the midpoint(s) at the coarsest scale j = 0 in the 2D
midpoint pyramid.

Note

The function does not check for positive definiteness of the input matrices, and (depending on the
specified metric) may fail if matrices are close to being singular.
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See Also

InvWavTransf2D, pdSpecEst2D, pdNeville

Examples

P <- rExamples2D(c(2^4, 2^4), 2, example = "tvar")
P.wt <- WavTransf2D(P$f)
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