
Package ‘plot3D’
July 23, 2025

Version 1.4.1

Title Plotting Multi-Dimensional Data

Author Karline Soetaert <karline.soetaert@nioz.nl>

Maintainer Karline Soetaert <karline.soetaert@nioz.nl>

Depends R (>= 2.15)

Imports misc3d, stats, graphics, grDevices, methods

Description Functions for viewing 2-D and 3-D data, including perspective plots, slice plots, sur-
face plots, scatter plots, etc. Includes data sets from oceanography.

License GPL (>= 3.0)

LazyData yes

NeedsCompilation no

Repository CRAN

Date/Publication 2024-02-06 13:20:02 UTC

Contents
plot3D-package . 2
2-D data set . 4
2D image and contour plots . 6
3-D arrows, segments, polygons, boxes, rectangles . 13
3-D contours . 20
3-D data set . 23
3-D perspectives . 25
3-D surfaces . 34
3-D volume visualisation . 40
Color key legend . 48
Colors . 52
Composite plots . 55
images in 3D frame . 61
Mesh generation . 64
Perspective box . 65
plots with legend or colorkeys . 68

1

2 plot3D-package

Scatter plots . 73
trans3D . 84

Index 86

plot3D-package Plotting multi-dimensional data.

Description

Functions for visualising 2-D and 3-D data.

Many of the functions are extensions of R’s persp or image function.

Other packages that provide visualisation of 3-D data (and which might be better suited) are: rgl,
scatterplot3D, misc3D.

Note

This package is dedicated to Carlo.

Note

Some of the functions based on persp will not work properly for all values of phi (which turns
the plots upside-down). This is because an assumption is made as to how the perspective plots are
viewed.

Author(s)

Karline Soetaert

References

https://www.rforscience.com/oceanview.html

https://www.rforscience.com/plot3d.html

See Also

Functions that are based on the persp function:

• persp3D: an extended version of persp.

• ribbon3D: a perspective plot as ribbons.

• hist3D: 3-D histograms.

• scatter3D, points3D, lines3D: colored points, lines, ... in 3-D.

• slice3D, slicecont3D: slices from a full 3-D data set.

• isosurf3D: isosurfaces from a full 3-D data set as triangles.

• voxel3D: isosurfaces from a full 3-D data set as points.

• surf3D, spheresurf3D: 3-D shapes or surfaces.

https://www.rforscience.com/oceanview.html
https://www.rforscience.com/plot3d.html

plot3D-package 3

• arrows3D: arrows in 3-D.

• segments3D: line segments in 3-D.

• polygon3D: 3-D polygons.

• box3D, border3D, rect3D: boxes and rectangles in 3-D.

• text3D: labels in 3-D.

Functions defined on the image function:

• image2D, for an image function to visualise 2-D or 3-D data.

• ImageOcean: an image of the ocean’s bathymetry.

Other plotting functions:

• contour2D, for a contour function to visualise 2-D data and that have a color key.

• scatter2D: colored points, lines, ... in 2-D.

• text2D, arrows2D, segments2D, rect2D, polygon2D for other 2D functions that have a color
key.

Colors and colorkey:

• colkey: adds a color legend.

• jet.col, ramp.col, gg.col, alpha.col: suitable colors, shade and lighting.

Utility functions:

• mesh: to generate rectangular (x, y) or (x, y, z) meshes.

Data sets:

• Oxsat: 3-D data set with the ocean’s oxygen saturation values.

• Hypsometry: 2-D data set with the worlds elevation and ocean’s bathymetry.

Examples

run all examples
Not run:
example(persp3D)
example(surf3D)
example(slice3D)
example(scatter3D)
example(segments3D)
example(image2D)
example(image3D)
example(contour3D)
example(colkey)
example(jet.col)
example(perspbox)
example(mesh)
example(trans3D)
example(plot.plist)
example(ImageOcean)

4 2-D data set

example(Oxsat)

End(Not run)

2-D data set The earths hypsometry (land elevation) and the ocean’s bathymetry

Description

Hypsometry is a relatively crude data set of the earths land elevation (positive) and ocean depth
(negative), at 1 dg intervals.

ImageOcean plots the ocean’s bathymetry.

Usage

ImageOcean (...)
Hypsometry

Arguments

... arguments passed to function image2D.

Format

A list with the bathymetry (depth) and hypsometry (altitude) of the world. It contains:

x the latitude,

y the longitude,

z the height (m).

Details

Hypsometry is based on dataset Bathymetry from the R-package marelac.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

image2D, for the image function that visualises the bathymetry

2-D data set 5

Examples

save plotting parameters
pm <- par("mfrow")
mar <- par("mar")

===
Images of the hypsometry
===

par(mfrow = c(2, 2))
image2D(Hypsometry, asp = TRUE, xlab = expression(degree*E),
ylab = expression(degree*N), contour = TRUE)

remove ocean
zz <- Hypsometry$z
zz[zz < 0] <- NA
image2D(zz, x = Hypsometry$x, y = Hypsometry$y, NAcol = "black")

===
A short version for plotting the Ocean's bathymetry
===

ImageOcean(asp = TRUE, contour = TRUE)
ImageOcean(col = "white",
contour = list(levels = seq(-6000, 0, by = 2000)))

===
A complex image of part of the ocean
===

elaborate version
par(mfrow = c(1, 1), mar = c(2, 2, 2, 2))
ii <- which(Hypsometry$x > -50 & Hypsometry$x < -20)
jj <- which(Hypsometry$y > 10 & Hypsometry$y < 40)

Draw empty persp box
zlim <- c(-10000, 0)
pmat <- perspbox(z = Hypsometry$z[ii, jj],

xlab = "longitude", ylab = "latitude", zlab = "depth",
expand = 0.5, d = 2, zlim = zlim, phi = 20, theta = 30,
colkey = list(side = 1))

A function that makes a black panel with grey edge:
panelfunc <- function(x, y, z) {

XY <- trans3D(x, y, z, pmat = pmat)
polygon(XYx, XYy, col = "black", border = "grey")

}

left panel
panelfunc(x = c(0, 0, 0, 0), y = c(0, 0, 1, 1),

z = c(zlim[1], zlim[2], zlim[2], zlim[1]))

6 2D image and contour plots

back panel
panelfunc(x = c(0, 0, 1, 1), y = c(1, 1, 1, 1),

z = c(zlim[1], zlim[2], zlim[2], zlim[1]))

bottom panel
panelfunc(x = c(0, 0, 1, 1), y = c(0, 1, 1, 0),

z = c(zlim[1], zlim[1], zlim[1], zlim[1]))

Actual bathymetry, 2 times increased resolution, with contours
persp3D(z = Hypsometry$z[ii,jj], add = TRUE, resfac = 2,

contour = list(col = "grey", side = c("zmin", "z")),
zlim = zlim, clab = "depth, m",
colkey = list(side = 1, length = 0.5, dist = -0.1))

shorter alternative for same plot, higher resolution
Not run:
persp3D(z = Hypsometry$z[ii,jj], resfac = 4,

contour = list(col = "grey", side = c("zmin", "z")),
zlim = zlim, clab = "depth, m", bty = "bl2",
xlab = "longitude", ylab = "latitude", zlab = "depth",
expand = 0.5, d = 2, phi = 20, theta = 30,
colkey = list(side = 1, length = 0.5, dist = -0.1))

End(Not run)

reset plotting parameters
par(mfrow = pm)
par(mar = mar)

2D image and contour plots

Extended image and contour plots for 2-D (and 3-D) data.

Description

image2D extends R’s image function. Input can be a matrix (2-D) or an array (3-D) or a list.

contour2D extends R’s contour function.

Usage

image2D (z, ...)
contour2D (z, x = seq(0, 1, length.out = nrow(z)),

y = seq(0, 1, length.out = ncol(z)), ...,
col = NULL, NAcol = NULL,
colkey = NULL, resfac = 1,
clab = NULL, add = FALSE, plot = TRUE)

S3 method for class 'matrix'
image2D(z, x = seq(0, 1, length.out = nrow(z)),

2D image and contour plots 7

y = seq(0, 1, length.out = ncol(z)), colvar = z, ...,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, contour = FALSE,
colkey = NULL, resfac = 1, clab = NULL,
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
theta = 0, rasterImage = FALSE,
add = FALSE, plot = TRUE)

S3 method for class 'array'
image2D(z, margin = c(1, 2), subset, ask = NULL, ...)
S3 method for class 'list'
image2D(z, ...)

Arguments

z Matrix (2-D) or array (3-D) or a list with matrices or arrays, with z-values. By
default colvar is equal to z, hence z also defines the variable used to color the
image. Only when shade or lighting is toggled on does it make sense to use z
different from colvar.

x, y Vectors or matrix with x and y values. If a vector x should be of length equal
to nrow(z) and y should be of length equal to ncol(z). If a matrix (only
for image2D), they should have the same dimension as z or be of dimension
= dim(z)+1.

colvar Only used when shade or lighting is toggled on. The variable used to color
the image.

col Color palette to be used for the image function or for the contours. See details.

NAcol Color to be used for NA values of z; for image2D, the default is “white”, for
contour2D, the default is to do nothing.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

contour If TRUE, then a contour plot will be added to the image plot, unless x, y are a
matrix. Also allowed is to pass a list with arguments for the contour function.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

8 2D image and contour plots

clab Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

resfac Resolution factor, one value or a vector of two numbers, for the x and y- values
respectively. A value > 1 will increase the resolution. For instance, if resfac
equals 3 then for each adjacent pair of x- and y-values, z will be interpolated to
two intermediary points. This uses simple linear interpolation. If resfac is one
number then the resolution will be increased similarly in x and y-direction.

lighting If not FALSE the facets will be illuminated, and colors may appear more bright.
To switch on lighting, the argument lighting should be either set to TRUE (using
default settings) or it can be a list with specifications of one of the following:
ambient, diffuse, specular, exponent, sr and alpha.
Will overrule shade not equal to NA.
See examples in jet.col.

shade the degree of shading of the surface facets. Values of shade close to one yield
shading similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to daylight
illumination. See persp.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as though
it was being illuminated from the direction specified by azimuth ltheta and
colatitude lphi. See persp.

theta The angle defining the azimuthal direction. Implemented for consistency with
the other functions based on persp.

border The color of the lines drawn around the surface facets. The default, NA, will
disable the drawing of borders.

facets If TRUE, then col denotes the color of the surface facets. If FALSE, then the
surface facets are colored “white” and the border will be colored as specified
by col. If NA then the facets will be transparent. It is usually faster to draw with
facets = FALSE.

rasterImage If TRUE, the function rasterImage will be used for plotting rather than image or
polygon. This requires the x and y to be a vector with equally spaced elements.
Note that by default, rasterImage linearly interpolates the image, so it will appear
smoother.

add Logical. If TRUE, then the points will be added to the current plot. If FALSE a
new plot is started.

plot Logical. If TRUE (default), a plot is created, otherwise (for 3D plots) the viewing
transformation matrix is returned (as invisible).

margin A vector giving the subscripts which the image function will be applied over.
The image function will loop over the index that is not in margin. For instance,
c(1, 2), indicates to plot rows(x) and columns(y) and to loop over index 3;
c(2, 1) will do the same but the image will be transposed. margin should be a
vector with two numbers inbetween 1, and 3.

ask A logical; if TRUE, the user is asked before each plot, if NULL the user is only
asked if more than one page of plots is necessary and the current graphics device
is set interactive, see par(ask) and dev.interactive.

2D image and contour plots 9

subset Either a logical expression indicating over which elements to loop, or a vector or
integers denoting the indices of the elements over which to loop. Missing values
are taken as FALSE.

... additional arguments passed to the plotting methods image, rasterImage, poly-
gon and contour.
alpha can be given a value inbetween 0 and 1 to make colors transparent.
The arguments after . . . must be matched exactly.

Details

image2D is an extension to the default image plot that has the possibility to add a color key and
contourlines, and to increase the resolution in order to make smoother images. It also uses a different
color scheme, it can deal with decreasing x- and y- values and x and y can be a matrix. In the latter
case, the image will be drawn as a set of polygons; if x and y are a vector, either R-function image
or rasterImage will be used.

image2D.array and image2D.list are versions that accept a 3 dimensional array respectively a
list with z-matrices as their first argument to produce multiple plots.

For argument col of the image2D function, both NA and NULL are allowed, in which case the color
will be white, and no color key will be drawn.

To set the ranges of the z-variable, both arguments zlim (as in image) and clim (as in the other
plot3D functions) are accepted.

Upon returning from the image2D and contour2D functions, the figure coordinates are defined by
the main figure (excluding the color key). Thus, one can safely add other plotting elements.

Value

Returns nothing.

Note

The first argument, z generally determines the color variable. For consistency with the other func-
tions, another variable, colvar is also defined and set by default equal to z. colvar will only
be used if shade or lighting are toggled on. In this case, z will be used to define the shading
(orientation of each facet), while colvar will define the color.

When x and y is a vector, the function uses R-function image. This means that the x- and y- axis
will extend the x- and y- values with half a grid cell.

In contrast, when x and y are a matrix, the axis will not extend the x- or y- values. See first example.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

jet.col, ImageOcean, Oxsat, persp3D, scatter2D for other examples where image2D is used.

image and contour for the original R functions.

plot.image from the fields package.

10 2D image and contour plots

Examples

save plotting parameters
pm <- par("mfrow")

===
Difference between x or y a vector/matrix and rasterImage
===

par(mfrow = c(2, 2))
x <- y <- 1:3
z <- matrix (nrow = 3, ncol = 3, data = 1:9)
image2D(z, x, y, border = "black")
image2D(z, x, y, rasterImage = TRUE, border = "black")
image2D(z, x = matrix(nrow = 3, ncol = 3, data = rep(x, times = 3)),

y, border = "black")
image2D(z, x, y, border = "black", theta = 45)

===
shading, light, adding contours, points and lines
===

par(mfrow = c(2, 2))
nr <- nrow(volcano)
nc <- ncol(volcano)

image2D(volcano, x = 1:nr, y = 1:nc, lighting = TRUE,
main = "volcano", clab = "height, m")

abline(v = seq(10, 80, by = 10))
abline(h = seq(10, 60, by = 10))
points(50, 30, pch = 3, cex = 5, lwd = 3, col = "white")

image2D(z = volcano, x = 1:nr, y = 1:nc, lwd = 2, shade = 0.2,
main = "volcano", clab = "height, m")

image2D(volcano, x = 1:nr, y = 1:nc, contour = TRUE, shade = 0.5, lphi = 0,
col = "lightblue", main = "volcano")

breaks <- seq(90, 200, by = 10)
image2D(volcano, x = 1:nr, y = 1:nc, col = jet.col(length(breaks)-1),

main = "volcano", clab = "height, m", breaks = breaks)

===
Contour plots
===

par(mfrow = c(2, 2))
V <- volcano - 150

default, no color key
contour2D(z = V, colkey = FALSE, lwd = 2)

2D image and contour plots 11

imposed levels
contour2D(z = V, lwd = 2, levels = seq(-40, 40, by = 20))

negative levels dashed
contour2D(z = V, col = "black", lwd = 2,

levels = seq(0, 40, by = 20))
contour2D(z = V, col = "black", lwd = 2, lty = 2,

levels = seq(-40, -20, by = 20), add = TRUE)

no labels, imposed number of levels, colorkey
contour2D(z = V, lwd = 2, nlevels = 20, drawlabels = FALSE,

colkey = list(at = seq(-40, 40, by = 20)))

===
A large data set, input is an array
===

par(mfrow = c(1, 1))
image2D(z = Oxsat$val[, , 1], x = Oxsat$lon, y = Oxsat$lat,

main = "surface oxygen saturation data 2005", NAcol = "black",
clab = c("","","%"))

images at first 9 depths - use subset to select them
image2D(z = Oxsat$val, subset = 1:9,

x = Oxsat$lon, y = Oxsat$lat,
margin = c(1, 2), NAcol = "black",
xlab = "longitude", ylab = "latitude",
zlim = c(0, 115),
main = paste("depth ", Oxsat$depth[1:9], " m"),
mfrow = c(3, 3))

images at latitude - depth section - increase resolution
z <- Oxsat$val[, Oxsat$lat > - 5 & Oxsat$lat < 5,]
image2D(z = z, x = Oxsat$lon, y = Oxsat$depth,

margin = c(1, 3), NAcol = "black",
resfac = 3, ylim = c(5000, 0))

show position of transects
image2D(z = Oxsat$val[, ,1],

x = Oxsat$lon, y = Oxsat$lat,
NAcol = "black")

abline(h = Oxsat$lat[Oxsat$lat > - 5 & Oxsat$lat < 5])

===
Image of a list of matrices
===

listvolcano <- list(volcano = volcano, logvolcano = log(volcano))
image2D(listvolcano, x = 1:nr, y = 1:nc, contour = TRUE,

main = c("volcano", "log(volcano)"),
clab = list("height, m", "log(m)"),
zlim = list(c(80, 200), c(4.4, 5.5)))

12 2D image and contour plots

===
Image of a list of arrays
===

Not run:
crude conversion from oxsat to oxygen
listoxygen <- list(Oxsat$val, Oxsat$val/100 * 360)

image2D(z = listoxygen,
x = Oxsat$lon, y = Oxsat$lat,
margin = c(1, 2), NAcol = "black",
main = c("Oxygen saturation ", " Oxygen concentration"),
mtext = paste("depth ", Oxsat$depth, " m")
)

End(Not run)

===
'x', 'y' and 'z' are matrices
===

par(mfrow = c(2, 1))

tilted x- and y-coordinates of 'volcano'
volcx <- matrix(nrow = 87, ncol = 61, data = rep(1:87, times=61))
volcx <- volcx + matrix(nrow = 87, ncol = 61, byrow = TRUE,

data = rep(seq(0., 15, length.out=61), times=87))

volcy <- matrix(ncol = 87, nrow = 61, data = rep(1:61, times=87))
volcy <- t(volcy + matrix(ncol = 87, nrow = 61, byrow = TRUE,

data = rep(seq(0., 25, length.out=87), times=61)))

image2D(volcano, x = volcx, y = volcy)

x and y can also be of dimension dim(z)+1:
Not run:
tilted x- and y-coordinates of 'volcano'
volcx <- matrix(nrow = 88, ncol = 62, data = rep(1:88, times=62))
volcx <- volcx + matrix(nrow = 88, ncol = 62, byrow = TRUE,

data = rep(seq(0., 15, length.out=62), times=88))

volcy <- matrix(ncol = 88, nrow = 62, data = rep(1:62, times=88))
volcy <- t(volcy + matrix(ncol = 88, nrow = 62, byrow = TRUE,

data = rep(seq(0., 25, length.out=88), times=62)))

image2D(volcano, x = volcx, y = volcy)

End(Not run)

use of panel function
image2D(volcano, x = volcx, y = volcy, NAcol = "black",

panel.first = substitute(box(col = "lightgrey", lwd = 30)))

3-D arrows, segments, polygons, boxes, rectangles 13

===
Image with NAs and logs
===

par(mfrow = c(2, 2))
normal volcano
image2D(volcano, clab = c("height", "m"))

logarithmic z-axis
image2D(volcano, log = "z", clab = c("height", "m"),

main = "log='z'")

Including NAs
VOLC <- volcano - 110
VOLC [VOLC <= 0] <- NA
image2D(VOLC, main = "including NAs and rescaled")

both
image2D(VOLC, NAcol = "black", log = "z", zlim = c(1, 100),

main = "NAs and log = 'z'")

===
Image with contour specification (alpha sets the transparency)
===

par(mfrow = c(1, 1))
image2D(volcano, shade = 0.2, rasterImage = TRUE,
contour = list(col = "white", labcex = 0.8, lwd = 3, alpha = 0.5))

same:
Not run:
image2D(z = volcano, shade = 0.2, rasterImage = TRUE)
contour2D(z = volcano, col = "white", labcex = 0.8,
lwd = 3, alpha = 0.5, add = TRUE)

End(Not run)
reset plotting parameters
par(mfrow = pm)

3-D arrows, segments, polygons, boxes, rectangles

Plots arrows, segments, points, lines, polygons, rectangles and boxes
in a 3D perspective plot or in 2D.

Description

Functions arrows3D and segments3D draw arrows and line segments between pairs of points.

Functions box3D and border3D draw boxes between pairs of points.

polygon3D draws polygons; rect3D draws rectangles.

The 2D functions arrows2D, segments2D, rect2D and polygon2D are included for their side effect
of having a color key.

14 3-D arrows, segments, polygons, boxes, rectangles

Usage

arrows3D (x0, y0, z0, x1 = x0, y1 = y0, z1 = z0, ...,
colvar = NULL, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b", type = "triangle",
add = FALSE, plot = TRUE)

segments3D (x0, y0, z0, x1 = x0, y1 = y0, z1 = z0, ...,
colvar = NULL, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
add = FALSE, plot = TRUE)

box3D (x0, y0, z0, x1, y1, z1, ...,
colvar = NULL, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
panel.first = NULL, clim = NULL, clab = NULL, bty = "b",
add = FALSE, plot = TRUE)

border3D(x0, y0, z0, x1, y1, z1, ...,
colvar = NULL, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
add = FALSE, plot = TRUE)

rect3D (x0, y0, z0, x1 = NULL, y1 = NULL, z1 = NULL, ...,
colvar = NULL, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
panel.first = NULL, clim = NULL, clab = NULL, bty = "b",
add = FALSE, plot = TRUE)

polygon3D (x, y, z, ...,
colvar = NULL, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
panel.first = NULL, clim = NULL, clab = NULL, bty = "b",
add = FALSE, plot = TRUE)

arrows2D (x0, y0, x1 = x0, y1 = y0, ..., colvar = NULL,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, clim = NULL, clab = NULL,
type = "triangle", add = FALSE, plot = TRUE)

3-D arrows, segments, polygons, boxes, rectangles 15

segments2D (x0, y0, x1 = x0, y1 = y0, ..., colvar = NULL,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, clim = NULL, clab = NULL,
add = FALSE, plot = TRUE)

rect2D (x0, y0, x1 = x0, y1 = y0, ..., colvar = NULL,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, clim = NULL, clab = NULL,
add = FALSE, plot = TRUE)

polygon2D (x, y, ..., colvar = NULL,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE,
colkey = NULL, clim = NULL, clab = NULL,
add = FALSE, plot = TRUE)

Arguments

x0, y0, z0 coordinates of points from which to draw.

x1, y1, z1 coordinates of points to which to draw. For arrows3D and segments3D, at least
one must be supplied. For rect3D exactly one must be NULL.

x, y, z coordinates of the vertices of the polygon. The polygon will be closed by joining
the last point to the first point. The coordinates can contain missing values (NA).
These NA values break the polygon into several complete polygons.

colvar The variable used for coloring. It need not be present, but if specified, it should
be a vector of dimension equal to the coordinates or to the number of polygons.
Values of NULL, NA, or FALSE will toggle off coloration according to colvar.

theta, phi the angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. See persp.

col Color palette to be used for coloring the arrows or segments as specified by the
colvar variable. If col is NULL and colvar is specified, then a red-yellow-blue
colorscheme (jet.col) will be used. If col is NULL and colvar is not specified,
then col will be "black".

NAcol Colors to be used for colvar values that are NA.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.

16 3-D arrows, segments, polygons, boxes, rectangles

The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

border The color of the lines drawn around the surface facets. The default, NA, will
disable the drawing of borders.

facets If TRUE, then col denotes the color of the surface facets. If FALSE, then the
surface facets are colored “white” and the border (if NA) will be colored as
specified by col. If NA then the facets will be transparent. It is usually faster to
draw with facets = FALSE.

panel.first A function to be evaluated after the plot axes are set up but before any plotting
takes place. This can be useful e.g. for drawing background grids or scatterplot
smooths. The function should have as argument the transformation matrix, e.g.
it should be defined as function(pmat). See example of persp3D and last
example of voxel3D.

clab Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

clim Only if colvar is specified, the range of the color variable, used for the color
key. Values of colvar that extend the range will be put to NA.

bty The type of the perspective box, the default draws only the back panels. Only
effective if the persp argument (box) equals TRUE (this is the default). See per-
spbox.

type The type of the arrow head, one of "simple" (which uses R-function arrows),
"curved" or "triangle" and "cone". The latter two are the same in plot3D
(but differ in package plot3Drgl).

add Logical. If TRUE, then the arrows, segments, ... will be added to the current plot.
If FALSE a new plot is started.

plot Logical. If TRUE (default), a plot is created, otherwise the viewing transforma-
tion matrix is returned (as invisible).

... additional arguments passed to the plotting methods.
The following persp arguments can be specified: xlim, ylim, zlim, xlab,
ylab, zlab, main, sub, r, d, scale, expand, box, axes, nticks, ticktype.
The arguments xlim, ylim, zlim only affect the axes for 3D plots. All objects
will be plotted, including those that fall out of these ranges. To select objects
only within the axis limits, use plotdev.
shade and lighting arguments will have no effect.
alpha can be given a value inbetween 0 and 1 to make colors transparent.
In addition, the perspbox arguments col.axis, col.panel, lwd.panel, col.grid,
lwd.grid can also be given a value.
For arrows3D, the following arrows arguments can be specified: length, code,
angle.
For polygon3D, the following polygon arguments can be specified: border.
For all the functions, arguments lty, lwd can be specified.
The arguments after . . . must be matched exactly.

3-D arrows, segments, polygons, boxes, rectangles 17

Value

Returns the viewing transformation matrix.

See trans3D.

See Also

arrows for the 2-D arrows function on which arrows3D is based.

segments for the 2-D arrows function on which segments3D is based.

Examples

save plotting parameters
pm <- par("mfrow")

==
arrows, points, segments, box
==

Create a grid of x, y, and z values
xx <- yy <- seq(-0.8, 0.8, by = 0.2)
zz <- seq(-0.8, 0.8, by = 0.8)

M <- mesh(xx, yy, zz)
x0 <- M$x; y0 <- M$y; z0 <- M$z
x1 <- x0 + 0.1

Col <- c("red", "blue", "green")
arrows3D(x0, y0, z0, x1 = x1, colvar = z0, lwd = 2,

d = 2, clab = "z-value", col = Col, length = 0.1,
xlim = c(-0.8, 0.8), ylim = c(-0.8, 0.8),
main = "arrows3D, points3D, segments3D, border3D")

add starting point of arrows
points3D(x0, y0, z0, add = TRUE, colvar = z0,

colkey = FALSE, pch = ".", cex = 3, col = Col)

use segments to add section
x0 <- c(-0.8, 0.8, 0.8, -0.8)
x1 <- c(0.8, 0.8, -0.8, -0.8)

y0 <- c(-0.8, -0.8, 0.8, -0.8)
y1 <- c(-0.8, 0.8, 0.8, 0.8)

z0 <- c(0., 0., 0., 0.)
segments3D(x0, y0, z0, x1, y1, z1 = z0,

add = TRUE, col = "black", lwd = 2)

add a box
border3D(-0.8, -0.8, -0.8, 0.8, 0.8, 0.8,

col = "orange", add = TRUE, lwd = 3)

18 3-D arrows, segments, polygons, boxes, rectangles

==
boxes, cubes
==

borders are boxes without facets
border3D(x0 = seq(-0.8, -0.1, by = 0.1),

y0 = seq(-0.8, -0.1, by = 0.1),
z0 = seq(-0.8, -0.1, by = 0.1),
x1 = seq(0.8, 0.1, by = -0.1),
y1 = seq(0.8, 0.1, by = -0.1),
z1 = seq(0.8, 0.1, by = -0.1),
col = gg.col(8), lty = 2,
lwd = c(1, 4), phi = 20, main = "border3D")

box3D(x0 = -0.8, y0 = -0.8, z0 = -0.8,
x1 = 0.8, y1 = 0.8, z1 = 0.8,
border = "black", lwd = 2,
col = gg.col(1, alpha = 0.8),
main = "box3D")

box3D(x0 = seq(-0.8, -0.1, by = 0.1),
y0 = seq(-0.8, -0.1, by = 0.1),
z0 = seq(-0.8, -0.1, by = 0.1),
x1 = seq(0.8, 0.1, by = -0.1),
y1 = seq(0.8, 0.1, by = -0.1),
z1 = seq(0.8, 0.1, by = -0.1),
col = rainbow(n = 8, alpha = 0.1),
border = "black", lwd = 2, phi = 20)

here the perspective does not always work
use alpha.col to set the transparency of a vector of colors
box3D(x0 = runif(3), y0 = runif(3), z0 = runif(3),

x1 = runif(3), y1 = runif(3), z1 = runif(3),
col = c("red", "lightblue", "orange"), alpha = 0.5,
border = "black", lwd = 2)

==
rectangles
==
at constant 'z'
rect3D(x0 = seq(-0.8, -0.1, by = 0.1),

y0 = seq(-0.8, -0.1, by = 0.1),
z0 = seq(-0.8, -0.1, by = 0.1),
x1 = seq(0.8, 0.1, by = -0.1),
y1 = seq(0.8, 0.1, by = -0.1),
col = gg.col(8), border = "black",
bty = "g", lwd = 2, phi = 20, main = "rect3D")

constant y and with transparent facets
rect3D(x0 = 0, y0 = 0, z0 = 0, x1 = 1, z1 = 5,

ylim = c(0, 1), facets = NA, border = "red",
bty = "g", lwd = 2, phi = 20)

3-D arrows, segments, polygons, boxes, rectangles 19

add rect at constant z, with colored facet
rect3D(x0 = 0, y0 = 0, z0 = 0, x1 = 1, y1 = 1,

border = "red", add = TRUE)

==
arrows added to a persp plot
==

x <- y <- seq(-10, 10, length = 30)
z <- outer(x, y, FUN = function(x,y) x^2 + y^2)

persp3D(x, y, z, theta = 30, phi = 30,
col = "lightblue", ltheta = 120, shade = 0.75,
ticktype = "detailed", xlab = "X",
ylab = "Y", zlab = "x^2+y^2")

Points where to put the arrows
x <- y <- seq(-10, 10, len = 6)
X0 <- outer(x, y, FUN = function (x,y) x)
Y0 <- outer(x, y, FUN = function (x,y) y)
Z0 <- outer(x, y, FUN = function (x,y) x^2 + y^2)

X1 <- X0 + 1
Y1 <- Y0 + 1
Z1 <- Z0 + 10

arrows3D(X0, Y0, Z0, X1, Y1, Z1, lwd = 2,
add = TRUE, type = "curved", col = "red")

segments3D(X0, Y0, Z0, X0, Y0, rep(0, length(X0)), lwd = 2,
add = TRUE, col = "green")

==
polygon3D
==

x <- runif(10)
y <- runif(10)
z <- runif(10)

polygon3D(x, y, z)

several polygons, separated by NAs
x <- runif(39)
y <- runif(39)
z <- runif(39)
ii <- seq(4, 36, by = 4)
x[ii] <- y[ii] <- z[ii] <- NA

transparent colors (alpha)
polygon3D(x, y, z, border = "black", lwd = 3,
col = gg.col(length(ii) + 1, alpha = 0.8),
main = "polygon3D")

20 3-D contours

==
2D examples, with color key
==

arrows2D(x0 = runif(10), y0 = runif(10),
x1 = runif(10), y1 = runif(10), colvar = 1:10,
code = 3, main = "arrows2D, segments2D")

segments2D(x0 = runif(10), y0 = runif(10),
x1 = runif(10), y1 = runif(10), colvar = 1:10,
lwd = 2, add = TRUE, colkey = FALSE)

transparency
rect2D(x0 = runif(10), y0 = runif(10),

x1 = runif(10), y1 = runif(10), colvar = 1:10,
alpha = 0.4, lwd = 2, main = "rect2D")

==
polygon2D
==

x <- runif(10)
y <- runif(10)

polygon2D(x, y) # same as polygon

several polygons, separated by NAs
x <- runif(59)
y <- runif(59)

ii <- seq(5, 55, by = 5)
x[ii] <- y[ii] <- NA

transparent colors (alpha)
polygon2D(x, y, border = "black", lwd = 3,
colvar = 1:(length(ii) + 1),
col = gg.col(), alpha = 0.2,
main = "polygon2D")

restore plotting parameters
par(mfrow = pm)

3-D contours Contours in 3-D plots.

Description

contour3D adds a contour in a 3-D plot.

3-D contours 21

Usage

contour3D (x = NULL, y = NULL, z = NULL,
..., colvar = NULL, phi = 40, theta = 40,
col = NULL, colkey = NULL,
panel.first = NULL, clim = NULL, clab = NULL, bty = "b",
dDepth = 1e-1, addbox = TRUE, add = FALSE, plot = TRUE)

Arguments

x, y, z Matrix (2-D), vector, or one value containing the values where the image is to
be plotted. At least one of them should be one number, as this will determine
where the image is plotted, parallel to the (y-z) plane (x one number), to the
(x-z) plane (y one number) or to the (z-y) plane (z one number).
If two are vectors, the first vector should be of length equal to nrow(colvar)
and the second should be of length equal to ncol(colvar).

colvar The variable used for coloring. Values of colvar equal to NULL, NA, or FALSE
will toggle off coloration according to colvar. This gives good results only if
border is given a color, or when shade is >0 (see persp).

col Color palette to be used for the colvar variable. If col is NULL and colvar is
specified, then a red-yellow-blue colorscheme (jet.col) will be used. If col is
NULL and colvar is not specified, then col will be "black".

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

clab Only if colkey = TRUE, the label to be written on top of the color key. The label
will be written at the same level as the main title. to lower it, clab can be made
a vector, with the first values empty strings.

clim Only if colvar is specified, the range of the color variable, used for the color
key. Values of colvar that extend the range will be put to NA.

theta, phi The angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. see persp.

panel.first A function to be evaluated after the plot axes are set up but before any plotting
takes place. This can be useful for drawing background grids or scatterplot
smooths. The function should have as argument the transformation matrix, e.g.
it should be defined as function(pmat). See example of persp3D and last
example of voxel3D.

22 3-D contours

bty The type of the box, the default only drawing background panels. Only effective
if the persp argument (box) equals TRUE (this is the default). See perspbox.

dDepth When a contour is added on an image, the image polygons may hide some con-
tour segments. To avoid that, the viewing depth of the segments can be artifi-
cially decreased with the factor dDepth times the persp argument expand (usu-
ally = 1), to make them appear in front of the polygons. Too large values of
dDepth may create visible artifacts.

addbox If TRUE will draw a box around the plot.

add Logical. If TRUE, then the contours will be added to the current plot. If FALSE a
new plot is started.

plot Logical. If TRUE (default), a plot is created, otherwise the viewing transforma-
tion matrix is returned (as invisible).

... additional arguments passed to the plotting methods.
The following persp arguments can be specified: xlim, ylim, zlim, xlab,
ylab, zlab, main, sub, r, d, scale, expand, box, axes, nticks, ticktype.
The arguments xlim, ylim, zlim only affect the axes. All objects will be plot-
ted, including those that fall out of these ranges. To select objects only within
the axis limits, use plotdev.
In addition, the perspbox arguments col.axis, col.panel, lwd.panel, col.grid,
lwd.grid can also be given a value.
The arguments lty, lwd can also be specified.
shade and lighting arguments will have no effect.
alpha can be given a value inbetween 0 and 1 to make colors transparent.
The arguments after . . . must be matched exactly.

Value

Returns the viewing transformation matrix. See trans3D.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

contour for R’s 2-D contour function.

Examples

save plotting parameters
pm <- par("mfrow")

===
Contours
===
par (mfrow = c(2, 2))

r <- 1:nrow(volcano)

3-D data set 23

c <- 1:ncol(volcano)
contour3D(x = r, y = c, z = 100, colvar = volcano, zlim = c(0, 150),

clab = c("height", "m"))

contour3D(x = 100, y = r, z = c, colvar = volcano, clab = c("height", "m"))

contour3D(z = volcano, colvar = volcano, lwd = 2,
nlevels = 20, clab = c("height", "m"), colkey = FALSE)

contour3D(y = volcano, colvar = volcano, lwd = 2,
nlevels = 10, clab = c("height", "m"))

===
Composite images and contours in 3D
===
persp3D(z = volcano, zlim = c(90, 300), col = "white",

shade = 0.1, d = 2, plot = FALSE)
contour3D(z = volcano, colvar = volcano, lwd = 2, add = TRUE,

nlevels = 20, clab = c("height", "m"), plot = FALSE,
colkey = list(at = seq(90, 190, length.out = 5)))

contour3D(z = 300, colvar = volcano, lwd = 2, col = "grey",
add = TRUE, nlevels = 5)

===
the viewing depth of contours (dDepth)
===

too low
persp3D(z = volcano, col = "white", shade = 0.1, plot = FALSE)
contour3D(z = volcano, colvar = volcano, lwd = 2,

add = TRUE, dDepth = 0, col = "black")

default
persp3D(z = volcano, col = "white", shade = 0.1, plot = FALSE)
contour3D(z = volcano, colvar = volcano, lwd = 2,

add = TRUE, dDepth = 0.1, col = "black")

too high
persp3D(z = volcano, col = "white", shade = 0.1, plot = FALSE)
contour3D(z = volcano, colvar = volcano, lwd = 1,

add = TRUE, dDepth = 0.5, col = "black")

reset plotting parameters
par(mfrow = pm)

3-D data set Yearly averaged oxygen saturation from the NODC World Ocean Atlas
2005.

24 3-D data set

Description

Percentage Oxygen Saturation from the NODC World Ocean Atlas 2005 (WOA05).

The values are gridded in 2dg * 2dg longitude - latitude sets, and there are 33 depth intervals.

Usage

data(Oxsat)

Format

list with

• lon, the longitude (dg E), at 2 dg resolution, 180 values.

• lat, the latitude (dg N), at 2 dg resolution, 90 values.

• depth, the water depth (m), 33 values.

• val, the saturation value (%). val is an array of dimension (180, 90, 33), (lon, lat, depth).

• name, the long name of the variable.

• units, the units of measurement.

Details

The “objectively analyzed climatology” has been used to extract these data.

The original data were averaged over the 4 seasons, and converted to half the resolution for latitude
and longitude. The longitude was converted to the European view, i.e. the original data from (0,
360) was changed to (-180, 180).

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

https://www.nodc.noaa.gov/OC5/WOA05/woa05nc.html

Originally made available by CSIRO:

Mark A. Collier and Paul J. Durack, 2005. CSIRO netCDF version of the NODC World Ocean
Atlas 2005. CSIRO Marine and Atmospheric Research Paper 015. December 2006

See Also

image2D for plotting.

https://www.nodc.noaa.gov/OC5/WOA05/woa05nc.html

3-D perspectives 25

Examples

save plotting parameters
pm <- par("mfrow")

==
plot all surface data
==

par(mfrow = c(1, 1))
image2D(z = Oxsat$val[, , 1], x = Oxsat$lon, y = Oxsat$lat,

main = "surface oxygen saturation (%) for 2005")

==
plot a selection of latitude-depth profiles; input is an array
==

lon <- Oxsat$lon
image2D (z = Oxsat$val, margin = c(2, 3), x = Oxsat$lat,

y = Oxsat$depth, subset = (lon > 18 & lon < 23),
ylim = c(5500, 0), NAcol = "black", zlim = c(0, 110),
xlab = "latitude", ylab = "depth, m")

ImageOcean()
abline (v = lon[lon > 18 & lon < 23])

==
plot with slices
==

par(mfrow = c(1, 1))
ii <- which (Oxsat$lon > -90 & Oxsat$lon < 90)
jj <- which (Oxsat$lat > 0 & Oxsat$lat < 90)

xs <- Oxsat$lon[ii[length(ii)]] # E boundary
ys <- Oxsat$lat[jj[1]] # S boundary

slice3D(colvar = Oxsat$val[ii,jj,], x = Oxsat$lon[ii],
y = Oxsat$lat[jj], z = -Oxsat$depth,
NAcol = "black", xs = xs, ys = ys, zs = 0,
theta = 35, phi = 50, colkey = list(length = 0.5),
expand = 0.5, ticktype = "detailed",
clab = "%", main = "Oxygen saturation",
xlab = "longitude", ylab = "latitude", zlab = "depth")

restore plotting parameters
par(mfrow = pm)

3-D perspectives Perspective plots, 3-D ribbons and 3-D histograms.

26 3-D perspectives

Description

persp3D extends R’s persp function.

ribbon3D is similar to persp3D but has ribbon-like colored surfaces.

hist3D generates 3-D histograms.

Usage

persp3D (x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), z, ...,
colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL, resfac = 1,
image = FALSE, contour = FALSE, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
inttype = 1, curtain = FALSE, add = FALSE, plot = TRUE)

ribbon3D (x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), z, ...,
colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL, resfac = 1,
image = FALSE, contour = FALSE, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
space = 0.4, along = "x",
curtain = FALSE, add = FALSE, plot = TRUE)

hist3D (x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), z, ...,
colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
image = FALSE, contour = FALSE,
panel.first = NULL, clim = NULL, clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
space = 0, opaque.top = FALSE, zmin = NULL,
add = FALSE, plot = TRUE)

Arguments

z Matrix (2-D) containing the values to be plotted as a persp plot.

x, y Vectors or matrices with x and y values. If a vector, x should be of length equal
to nrow(z) and y should be equal to ncol(z). If a matrix (only for persp3D), x
and y should have the same dimension as z.

colvar The variable used for coloring. If present, it should have the same dimension as
z. Values of NULL, NA, or FALSE will toggle off coloration according to colvar.

3-D perspectives 27

This gives good results only if border is given a color, or when shade is > 0 or
lighting is TRUE).

col Color palette to be used for the colvar variable. If col is NULL and colvar is
specified, then a red-yellow-blue colorscheme (jet.col) will be used. If col is
NULL and colvar is not specified, then col will be grey.
Finally, to mimic the behavior of persp, set colvar = NULL and make col a
matrix of colors with (nrow(z)-1) rows and (ncol(z)-1) columns.

NAcol Color to be used for NA values of colvar; default is “white”.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

clab Only if colkey = TRUE, the label to be written on top of the color key. The label
will be written at the same level as the main title. to lower it, clab can be made
a vector, with the first values empty strings.

clim Only if colvar is specified, the range of the color variable, used for the color
key. Values of colvar that extend the range will be put to NA.

resfac Resolution factor, one value or a vector of two numbers, for the x and y- values
respectively. A value > 1 will increase the resolution. For instance, if resfac
equals 3 then for each adjacent pair of x- and y-values, z will be interpolated to
two intermediary points. This uses simple linear interpolation. If resfac is one
number then the resolution will be increased similarly in x and y-direction.

theta, phi The angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. see persp.

border The color of the lines drawn around the surface facets. The default, NA, will
disable the drawing of borders.

facets If TRUE, then col denotes the color of the surface facets. If FALSE, then the
surface facets are colored “white” and the border (if NA) will be colored as
specified by col. If NA then the facets will be transparent. It is usually faster to
draw with facets = FALSE.

image If TRUE, an image will be plotted at the bottom. Also allowed is to pass a list
with arguments for the image2D function. An optional parameter to this list is

28 3-D perspectives

the side where the image should be plotted. Allowed values for side are a z-
value, or side = "zmin", "zmax", for positioning at bottom or top respectively.
The default is to put the image at the bottom.

contour If TRUE, a contour will be plotted at the bottom. Also allowed is to pass a list
with arguments for the contour function. An optional parameter to this list is
the side where the image should be plotted. Allowed values for side are a z-
value, or side = "zmin", "zmax", for positioning at bottom or top respectively.
The default is to put the image at the bottom.

panel.first A function to be evaluated after the plot axes are set up (and if applicable,
images or contours drawn) but before any plotting takes place. This can be
useful for drawing background grids or scatterplot smooths. The function should
have as argument the transformation matrix (pmat), e.g. it should be defined as
function(pmat). See example.

along The direction along which the ribbons are drawn, one of "x", "y" or "xy", for
ribbons parallel to the x- y- or both axes. In the latter case, the figure looks like
a net.

curtain If TRUE, the ribbon or persp edges will be draped till the bottom.

space The amount of space (as a fraction of the average bar/ribbon width) left between
bars/ribbons. A value inbetween [0, 0.9] (hist3D) or [0.1, 0.9] (ribbon3D).
Either one number, or a two-valued vector, for the x- and y- direction.

bty The type of the box, the default only drawing background panels. Only effective
if the persp argument (box) equals TRUE (this is the default). See perspbox.

lighting If not FALSE the facets will be illuminated, and colors may appear more bright.
To switch on lighting, the argument lighting should be either set to TRUE (using
default settings) or it can be a list with specifications of one of the following:
ambient, diffuse, specular, exponent, sr and alpha.
Will overrule shade not equal to NA.
See examples in jet.col.

shade the degree of shading of the surface facets. Values of shade close to one yield
shading similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to daylight
illumination. See persp.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as though
it was being illuminated from the direction specified by azimuth ltheta and
colatitude lphi. See persp.

inttype The interpolation type to create the polygons, either averaging the colvar (inttype
= 1, 3 or extending the x, y, z values (inttype = 2) - see details.

opaque.top Only used when alpha is set (transparency): if TRUE then the top of the bars is
opaque.

zmin The base of the histogram ; if NULL then it extends to the minimum of the z-axis.
Note: this was added from version 1.1.1 on; before that it was assumed that the
base of the histogram was at z=0.

add Logical. If TRUE, then the surfaces will be added to the current plot. If FALSE a
new plot is started.

3-D perspectives 29

plot Logical. If TRUE (default), a plot is created, otherwise the viewing transforma-
tion matrix is returned (as invisible).

... additional arguments passed to the plotting methods. The following persp ar-
guments can be specified: xlim, ylim, zlim, xlab, ylab, zlab, main, sub,
r, d, scale, expand, box, axes, nticks, ticktype. The arguments xlim,
ylim, zlim only affect the axes. All objects will be plotted, including those that
fall out of these ranges. To select objects only within the axis limits, use plotdev.
In addition, the perspbox arguments col.axis, col.panel, lwd.panel, col.grid,
lwd.grid can also be given a value.
alpha can be given a value inbetween 0 and 1 to make colors transparent.
For all functions, the arguments lty, lwd can be specified; this is only effective
is border is not NA.
The arguments after . . . must be matched exactly.

Details

persp3D is an extension to the default persp plot that has the possibility to add a color key, to
increase the resolution in order to make smoother images, to toggle on or off facet coloration, ...

The perspective plots are drawn as filled polygons. Each polygon is defined by 4 corners and a
color, defined in its centre. When facets are colored, there are three interpolation schemes as set by
inttype.

The default (inttype = 1) is similar to R’s function persp, and assumes that the z-values define the
points on the corners of each polygon. In case a colvar is defined, its values are to be recalculated
to the middle of each polygon, i.e. the color values need to be of size (nx-1)(ny-1), and averages
are taken from the original data (nx and ny are number of x and y points). This will make the colors
(and/or shading) smoother. When inttype = 1 then NA values in colvar will be used as such during
the averaging. This will tend to make the NA region larger.

An alternative is to set inttype = 3, which is similar to inttype = 1 except for the NA values, which
will be removed during the averaging. This will tend to make the NA region smaller.

By setting inttype = 2, a second interpolation scheme is selected. This is mainly of use in case
a colvar is defined, and it is not desirable that the colors are smoothened. In this scheme, it is
assumed that the z values and colvar values are both defined in the centre of the polygons. To
color the facets the x, y, z grid is extended (to a (nx+1)(ny+1) grid), while colvar is used as such.
This will make the z-values (topography) smoother than the original data. This type of interpolation
may be preferable for color variables that have NA values, as taking averages tends to increase the
NA region.

Value

Returns, as invisible, the viewing transformation matrix.

See trans3D.

Note

To make a contour to appear on top of an image, i.e. when side = "z", the viewing depth of
the contour segments is artificially decreased. In some cases this may produce slight artifacts.

30 3-D perspectives

The viewing depth can be adjusted with argument dDepth, e.g. persp3D(z = volcano, contour =
list(side = "z", dDepth = 0.))

Parts of this help page come from the help pages of the R-core function persp.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

The persp function on which this implementation is based:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

persp for the function on which this is based.

Hypsometry for an example where axis-panels are colored.

scatter3D for a combination of a persp surface and data points.

text3D for annotating axes (hist3D).

plotdev for zooming, rescaling, rotating a plot.

Examples

save plotting parameters
pm <- par("mfrow")

===
Ribbon, persp, color keys, facets
===

par(mfrow = c(2, 2))
simple, no scaling, use breaks to set colors
persp3D(z = volcano, main = "volcano", clab = c("height", "m"),
breaks = seq(80,200, by = 10))

keep ratios between x- and y (scale = FALSE)
change ratio between x- and z (expand)
persp3D(z = volcano, x = 1: nrow(volcano), y = 1:ncol(volcano),

expand = 0.3, main = "volcano", facets = FALSE, scale = FALSE,
clab = "height, m", colkey = list(side = 1, length = 0.5))

ribbon, in x--direction
V <- volcano[, seq(1, ncol(volcano), by = 3)] # lower resolution
ribbon3D(z = V, colkey = list(width = 0.5, length = 0.5,

cex.axis = 0.8, side = 2), clab = "m")

ribbon, in y-direction
Vy <- volcano[seq(1, nrow(volcano), by = 3),]
ribbon3D(z = Vy, expand = 0.3, space = 0.3, along = "y",

3-D perspectives 31

colkey = list(width = 0.5, length = 0.5, cex.axis = 0.8))

===
Several ways to visualise 3-D data
===

x <- seq(-pi, pi, by = 0.2)
y <- seq(-pi, pi, by = 0.3)
grid <- mesh(x, y)

z <- with(grid, cos(x) * sin(y))

par(mfrow = c(2,2))

persp3D(z = z, x = x, y = y)

persp3D(z = z, x = x, y = y, facets = FALSE, curtain = TRUE)

ribbons in two directions and larger spaces
ribbon3D(z = z, x = x, y = y, along = "xy", space = 0.3)

hist3D(z = z, x = x, y = y, border = "black")

===
Contours and images added
===

par(mfrow = c(2, 2))
x <- seq(1, nrow(volcano), by = 3)
y <- seq(1, ncol(volcano), by = 3)

Volcano <- volcano [x, y]
ribbon3D(z = Volcano, contour = TRUE, zlim= c(-100, 200),

image = TRUE)

persp3D(z = Volcano, contour = TRUE, zlim= c(-200, 200), image = FALSE)

persp3D(z = Volcano, x = x, y = y, scale = FALSE,
contour = list(nlevels = 20, col = "red"),
zlim = c(-200, 200), expand = 0.2,
image = list(col = grey (seq(0, 1, length.out = 100))))

persp3D(z = Volcano, contour = list(side = c("zmin", "z", "350")),
zlim = c(-100, 400), phi = 20, image = list(side = 350))

===
Use of inttype
===

par(mfrow = c(2, 2))
persp3D(z = Volcano, shade = 0.5, colkey = FALSE)
persp3D(z = Volcano, inttype = 2, shade = 0.5, colkey = FALSE)

32 3-D perspectives

x <- y <- seq(0, 2*pi, length.out = 10)
z <- with (mesh(x, y), cos(x) *sin(y)) + runif(100)
cv <- matrix(nrow = 10, ncol = 10, 0.5*runif(100))
persp3D(x, y, z, colvar = cv) # takes averages of z
persp3D(x, y, z, colvar = cv, inttype = 2) # takes averages of colvar

===
Use of inttype with NAs
===

par(mfrow = c(2, 2))
VV <- V2 <- volcano[10:15, 10:15]
V2[3:4, 3:4] <- NA
V2[4, 5] <- NA

image2D(V2, border = "black") # shows true NA region

averages of V2, including NAs, NA region larger
persp3D(z = VV, colvar = V2, inttype = 1, theta = 0,

phi = 20, border = "black", main = "inttype = 1")

extension of VV; NAs unaffected
persp3D(z = VV, colvar = V2, inttype = 2, theta = 0,

phi = 20, border = "black", main = "inttype = 2")

average of V2, ignoring NA; NA region smaller
persp3D(z = VV, colvar = V2, inttype = 3, theta = 0,

phi = 20, border = "black", main = "inttype = 3")

===
Use of panel.first
===

par(mfrow = c(1, 1))

A function that is called after the axes were drawn
panelfirst <- function(trans) {

zticks <- seq(100, 180, by = 20)
len <- length(zticks)
XY0 <- trans3D(x = rep(1, len), y = rep(1, len), z = zticks,

pmat = trans)
XY1 <- trans3D(x = rep(1, len), y = rep(61, len), z = zticks,

pmat = trans)
segments(XY0$x, XY0$y, XY1$x, XY1$y, lty = 2)

rm <- rowMeans(volcano)
XY <- trans3D(x = 1:87, y = rep(ncol(volcano), 87),

z = rm, pmat = trans)
lines(XY, col = "blue", lwd = 2)

}
persp3D(z = volcano, x = 1:87, y = 1: 61, scale = FALSE, theta = 10,

expand = 0.2, panel.first = panelfirst, colkey = FALSE)

3-D perspectives 33

===
with / without colvar / facets
===

par(mfrow = c(2, 2))
persp3D(z = volcano, shade = 0.3, col = gg.col(100))

shiny colors - set lphi for more brightness
persp3D(z = volcano, lighting = TRUE, lphi = 90)

persp3D(z = volcano, col = "lightblue", colvar = NULL,
shade = 0.3, bty = "b2")

this also works:
persp3D(z = volcano, col = "grey", shade = 0.3)

tilted x- and y-coordinates of 'volcano'
volcx <- matrix(nrow = 87, ncol = 61, data = rep(1:87, times=61))
volcx <- volcx + matrix(nrow = 87, ncol = 61, byrow = TRUE,

data = rep(seq(0., 15, length.out=61), times=87))

volcy <- matrix(ncol = 87, nrow = 61, data = rep(1:61, times=87))
volcy <- t(volcy + matrix(ncol = 87, nrow = 61, byrow = TRUE,

data = rep(seq(0., 15, length.out=87), times=61)))

persp3D(volcano, x = volcx, y = volcy, phi = 80)

===
Several persps on one plot
===

par(mfrow = c(1, 1))
clim <- range(volcano)
persp3D(z = volcano, zlim = c(100, 600), clim = clim,

box = FALSE, plot = FALSE)

persp3D(z = volcano + 200, clim = clim, colvar = volcano,
add = TRUE, colkey = FALSE, plot = FALSE)

persp3D(z = volcano + 400, clim = clim, colvar = volcano,
add = TRUE, colkey = FALSE) # plot = TRUE by default

===
hist3D
===

par(mfrow = c(2, 2))
VV <- volcano[seq(1, 87, 15), seq(1, 61, 15)]
hist3D(z = VV, scale = FALSE, expand = 0.01, border = "black")

transparent colors
hist3D(z = VV, scale = FALSE, expand = 0.01,
alpha = 0.5, opaque.top = TRUE, border = "black")

34 3-D surfaces

hist3D(z = VV, scale = FALSE, expand = 0.01, facets = FALSE, lwd = 2)

hist3D(z = VV, scale = FALSE, expand = 0.01, facets = NA)

===
hist3D and ribbon3D with greyish background, rotated, rescaled,...
===

par(mfrow = c(2, 2))
hist3D(z = VV, scale = FALSE, expand = 0.01, bty = "g", phi = 20,

col = "#0072B2", border = "black", shade = 0.2, ltheta = 90,
space = 0.3, ticktype = "detailed", d = 2)

extending the ranges
plotdev(xlim = c(-0.2, 1.2), ylim = c(-0.2, 1.2), theta = 45)

ribbon3D(z = VV, scale = FALSE, expand = 0.01, bty = "g", phi = 20,
col = "lightblue", border = "black", shade = 0.2, ltheta = 90,
space = 0.3, ticktype = "detailed", d = 2, curtain = TRUE)

ribbon3D(z = VV, scale = FALSE, expand = 0.01, bty = "g", phi = 20, zlim = c(95,183),
col = "lightblue", lighting = TRUE, ltheta = 50, along = "y",
space = 0.7, ticktype = "detailed", d = 2, curtain = TRUE)

===
hist3D for a 1-D data set
===

par(mfrow = c(2, 1))
x <- rchisq(1000, df = 4)
hs <- hist(x, breaks = 15)

hist3D(x = hs$mids, y = 1, z = matrix(ncol = 1, data = hs$density),
bty = "g", ylim = c(0., 2.0), scale = FALSE, expand = 20,
border = "black", col = "white", shade = 0.3, space = 0.1,
theta = 20, phi = 20, main = "3-D perspective")

reset plotting parameters
par(mfrow = pm)

3-D surfaces Functions for plotting 3 dimensional shapes

Description

surf3D plots a surface in 3-D with a color variable.

spheresurf3D plots a colored image on a sphere.

3-D surfaces 35

Usage

surf3D (x, y, z, ..., colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
panel.first = NULL, clim = NULL, clab = NULL, bty = "n",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
inttype = 1, add = FALSE, plot = TRUE)

spheresurf3D (colvar = matrix(nrow = 50, ncol = 50, data = 1:50, byrow = TRUE),
..., phi = 0, theta = 0,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, contour = FALSE,
colkey = NULL, resfac = 1,
panel.first = NULL, clim = NULL, clab = NULL, bty = "n",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
inttype = 1, full = FALSE, add = FALSE, plot = TRUE)

Arguments

x, y, z Matrices with x, y and z-values that define the surfaces to be colored. They
should be of the same dimension as colvar.

colvar The variable used for coloring. If a matrix, it should be of the same dimension
as x, y, z. Values of NULL, NA, or FALSE will toggle off coloration according to
colvar. This gives good results only if border is given a color or a shade is
used.

theta, phi the angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. see persp.

col Color palette to be used for coloring the colvar variable. If col is NULL and
colvar is specified, then a red-yellow-blue colorscheme (jet.col) will be used.
If col is NULL and colvar is not specified, then col will be "grey".

NAcol Colors to be used for colvar values that are NA.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

border The color of the lines drawn around the surface facets. The default, NA, will
disable the drawing of borders.

facets If TRUE, then col denotes the color of the surface facets. If FALSE, then the
surface facets are colored “white” and the border (if NA) will be colored as
specified by col. If NA then the facets will be transparent. It is usually faster to
draw with facets = FALSE.

contour If TRUE, then a contour plot will be added to the image plot, unless x, y are a
matrix. Also allowed is to pass a list with arguments for the contour function.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab

36 3-D surfaces

and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

resfac Resolution factor, one value or a vector of two numbers, for the x and y- values
respectively. A value > 1 will increase the resolution. For instance, if resfac
equals 3 then for each adjacent pair of x- and y-values, z will be interpolated to
two intermediary points. This uses simple linear interpolation. If resfac is one
number then the resolution will be increased similarly in x and y-direction.

panel.first A function to be evaluated after the plot axes are set up but before any plotting
takes place. This can be useful for drawing background grids or scatterplot
smooths. The function should have as argument the transformation matrix, e.g.
it should be defined as function(pmat). See example of persp3D and last
example of voxel3D.

clab Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

clim Only if colvar is specified, the range of the color variable, used for the color
key. Values of colvar that extend the range will be put to NA.

bty The type of the box, the default is to draw no box. Set bty = "f" or bty = "b"
if you want a full box or the backpanel. See perspbox.

lighting If not FALSE the facets will be illuminated, and colors may appear more bright.
To switch on lighting, the argument lighting should be either set to TRUE (using
default settings) or it can be a list with specifications of one of the following:
ambient, diffuse, specular, exponent, sr and alpha.
Will overrule shade not equal to NA.
See examples in jet.col.

shade the degree of shading of the surface facets. Values of shade close to one yield
shading similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to daylight
illumination. See persp.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as though
it was being illuminated from the direction specified by azimuth ltheta and
colatitude lphi. See persp.

inttype The interpolation type to create the polygons, either taking the mean of the
colvar variable (inttype = 1, 3 or extending the x, y, z values (inttype =
2). Values 1, 3 differ in how they treat NAs in the colvar variable. For inttype
= 3, NAs are removed before taking averages; this will tend to make the NA re-
gion smaller. NAs are included when inttype = 1. This will tend to make the NA
region larger. See details and an example in persp3D.

3-D surfaces 37

full Logical. If TRUE, the full sphere will be drawn, including the invisible part. If
FALSE only the visible half will be drawn (faster).

add Logical. If TRUE, then the surfaces will be added to the current plot. If FALSE a
new plot is started.

plot Logical. If TRUE (default), a plot is created, otherwise the viewing transforma-
tion matrix is returned (as invisible).

... Additional arguments passed to the plotting methods. The following persp ar-
guments can be specified: xlim, ylim, zlim, xlab, ylab, zlab, main, sub,
r, d, scale, expand, box, axes, nticks, ticktype. The arguments xlim,
ylim, zlim only affect the axes. All objects will be plotted, including those that
fall out of these ranges. To select objects only within the axis limits, use plotdev.
In addition, the perspbox arguments col.axis, col.panel, lwd.panel, col.grid,
lwd.grid can also be given a value. The arguments after . . . must be matched
exactly.

Details

Function spheresurf3D is a projection on a sphere with radius 1. This means that the x- y- and z-
axes range from [-1, 1].

Value

Returns the viewing transformation matrix, See trans3D.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

persp for the function on which this implementation is based.

jet.col, plotdev for other examples of surf3D.

plotdev for zooming, rescaling, rotating a plot.

Examples

save plotting parameters
pm <- par("mfrow")
pmar <- par("mar")

par(mar = c(1, 1, 1, 1))

===
A three-dimensional shape
(ala http://docs.enthought.com/mayavi/mayavi/mlab.html)
===

par(mfrow = c(2, 2))
create grid matrices

38 3-D surfaces

X <- seq(0, pi, length.out = 50)
Y <- seq(0, 2*pi, length.out = 50)
M <- mesh(X, Y)
phi <- M$x
theta <- M$y

x, y and z grids
r <- sin(4*phi)^3 + cos(2*phi)^3 + sin(6*theta)^2 + cos(6*theta)^4
x <- r * sin(phi) * cos(theta)
y <- r * cos(phi)
z <- r * sin(phi) * sin(theta)

full colored image
surf3D(x, y, z, colvar = y, colkey = FALSE, shade = 0.5,

box = FALSE, theta = 60)

same, but just facets
surf3D(x, y, z, colvar = y, colkey = FALSE, box = FALSE,

theta = 60, facets = FALSE)

with colors and border, AND increasing the size
(by reducing the x- y and z- ranges
surf3D(x, y, z, colvar = y, colkey = FALSE, box = FALSE,

theta = 60, border = "black", xlim = range(x)*0.8,
ylim = range(y)*0.8, zlim = range(z)*0.8)

Now with one color and shading
surf3D(x, y, z, box = FALSE,

theta = 60, col = "lightblue", shade = 0.9)

Not run: # rotation
for (angle in seq(0, 360, by = 10))
plotdev(theta = angle)

End(Not run)

===
Several other shapes
http://xahlee.info/surface/gallery.html
===

par(mfrow = c(2, 2))
Shape 1
M <- mesh(seq(0, 6*pi, length.out = 50),

seq(pi/3, pi, length.out = 50))
u <- M$x ; v <- M$y

x <- u/2 * sin(v) * cos(u)
y <- u/2 * sin(v) * sin(u)
z <- u/2 * cos(v)

surf3D(x, y, z, colvar = z, colkey = FALSE, box = FALSE, phi = 50)

3-D surfaces 39

Shape 2: add border
M <- mesh(seq(0, 2*pi, length.out = 50),

seq(0, 2*pi, length.out = 50))
u <- M$x ; v <- M$y

x <- sin(u)
y <- sin(v)
z <- sin(u + v)

surf3D(x, y, z, colvar = z, border = "black",
colkey = FALSE)

shape 3: uses same mesh, other perspective (d >1)
x <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*cos(v)
y <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*sin(v)
z <- sin(v/2)*sin(u) + cos(v/2)*sin(2*u)

surf3D(x, y, z, colvar = z, colkey = FALSE, d = 2, facets = FALSE)

shape 4: more complex colvar
M <- mesh(seq(-13.2, 13.2, length.out = 50),

seq(-37.4, 37.4, length.out = 50))
u <- M$x ; v <- M$y

b <- 0.4; r <- 1 - b^2; w <- sqrt(r)
D <- b*((w*cosh(b*u))^2 + (b*sin(w*v))^2)
x <- -u + (2*r*cosh(b*u)*sinh(b*u)) / D
y <- (2*w*cosh(b*u)*(-(w*cos(v)*cos(w*v)) - sin(v)*sin(w*v))) / D
z <- (2*w*cosh(b*u)*(-(w*sin(v)*cos(w*v)) + cos(v)*sin(w*v))) / D

surf3D(x, y, z, colvar = sqrt(x + 8.3), colkey = FALSE,
theta = 10, border = "black", box = FALSE)

box()

===
A sphere, with box type with grid lines
===

par(mar = c(2, 2, 2, 2))
par(mfrow = c(1, 1))
M <- mesh(seq(0, 2*pi, length.out = 50),

seq(0, pi, length.out = 50))
u <- M$x ; v <- M$y

x <- cos(u)*sin(v)
y <- sin(u)*sin(v)
z <- cos(v)

colvar <- sin(u*6) * sin(v*6)

surf3D(y, x, z, colvar = colvar, phi = 0, bty = "b2",
lighting = TRUE, ltheta = 40)

40 3-D volume visualisation

===
Function spheresurf3D
===

par(mfrow = c(2, 2))
spheresurf3D()

true ranges are [-1, 1]; set limits to [-0.8, 0.8] to make larger plots
lim <- c(-0.8, 0.8)
spheresurf3D(colkey = FALSE, xlim = lim, ylim = lim, zlim = lim)

spheresurf3D(bty = "b", ticktype = "detailed", phi = 50)
spheresurf3D(colvar = matrix(nrow = 30, ncol = 30, data = runif(900)))

===
Images on a sphere
===

par(mfrow = c(1, 1), mar = c(1, 1, 1, 3))

AA <- Hypsometry$z; AA[AA<=0] <- NA

lim <- c(-0.8, 0.8)

log transformation of color variable
spheresurf3D(AA, NAcol = "black", theta = 90, phi = 30, box = FALSE,
xlim = lim, ylim = lim, zlim = lim, log = "c")

restore plotting parameters
par(mfrow = pm)
par(mar = pmar)

3-D volume visualisation

Functions for plotting 3-D volumetric data.

Description

slice3D plots a 3-D dataset with a color variable as slices or on surfaces.

slicecont3D plots a 3-D dataset with a color variable as contours on slices.

isosurf3D plots isosurfaces from a 3-D dataset.

voxel3D plots isosurfaces as scatterpoints.

createisosurf create the isosurfaces (triangulations) from volumetric data. Its output can be
plotted with triangle3D.

createvoxel creates voxels (x, y, z) points from volumetric data. Its output can be plotted with
scatter3D.

3-D volume visualisation 41

Usage

slice3D (x, y, z, colvar, ..., phi = 40, theta = 40,
xs = min(x), ys = max(y), zs = min(z),
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
panel.first = NULL, clim = NULL,
clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
add = FALSE, plot = TRUE)

slicecont3D (x, y, z, colvar, ..., phi = 40, theta = 40,
xs = NULL, ys = NULL, zs = NULL, level = NULL,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE,
colkey = NULL, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
dDepth = 0, add = FALSE, plot = TRUE)

isosurf3D (x, y, z, colvar, ..., phi = 40, theta = 40,
level = mean(colvar, na.rm = TRUE), isofunc = createisosurf,
col = NULL, border = NA, facets = TRUE,
colkey = NULL, panel.first = NULL,
clab = NULL, bty = "b",
lighting = FALSE, shade = 0.5, ltheta = -135, lphi = 0,
add = FALSE, plot = TRUE)

voxel3D (x, y, z, colvar, ..., phi = 40, theta = 40,
level = mean(colvar, na.rm = TRUE), eps = 0.01, operator = "=",
col = NULL, NAcol = "white", breaks = NULL, colkey = FALSE,
panel.first = NULL, bty = "b", add = FALSE, plot = TRUE)

triangle3D (tri, colvar = NULL, ..., phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE,
colkey = NULL, panel.first = NULL,
lighting = FALSE, shade = 0.5, ltheta = -135, lphi = 0,
clim = NULL, clab = NULL,
bty = "b", add = FALSE, plot = TRUE)

createisosurf (x, y, z, colvar, level = mean(colvar, na.rm = TRUE))

createvoxel (x, y, z, colvar, level = mean(colvar, na.rm = TRUE), eps = 0.01,
operator = "=")

Arguments

x, y, z Vectors with x, y and z-values. They should be of length equal to the first,
second and third dimension of colvar respectively.

42 3-D volume visualisation

colvar The variable used for coloring. It should be an array of dimension equal to
c(length(x), length(y), length(z)). For triangle3D, colvar should be
of length = nrow(tri) / 3. It must be present.

tri A three-columned matrix (x, y, z) with triangle coordinates. A triangle is defined
by three consecutive rows.

isofunc A function defined as function(x, y, z, colvar, level), and that returns the
three-columned matrix with triangle coordinates. The default, createisosurf
uses function computeContour3d from package misc3d.

theta, phi the angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. see persp.

col Colors to be used for coloring the colvar variable. If col is NULL then a red-
yellow-blue colorscheme (jet.col) will be used.

NAcol Colors to be used for colvar values that are NA.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

border The color of the lines drawn around the surface facets. The default, NA, will
disable the drawing of borders.

facets If TRUE, then col denotes the color of the surface facets. If FALSE, then the
surface facets are colored “white” and the border (if NA) will be colored as
specified by col. If NA then the facets will be transparent. It is usually faster to
draw with facets = FALSE.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

panel.first A function to be evaluated after the plot axes are set up but before any plotting
takes place. This can be useful for drawing background grids or scatterplot
smooths. The function should have as argument the transformation matrix, e.g.
it should be defined as function(pmat). See last example and example of
persp3D.

clab Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

clim Only if colvar is specified, the range of the color variable, used for the color
key. Values of colvar that extend the range will be put to NA.

3-D volume visualisation 43

xs, ys, zs Vectors or matrices. Vectors specify the positions in x, y or z where the slices
(planes) are to be drawn. The values of colvar will be projected on these slices.
Matrices specify a surface on which the colvar will be projected.

level The level(s) at which the contour will be generated or the isosurfaces generated.
There can be more than one level, but for slicecont3D too many will give a
crowded view, and one is often best. For isosurf3D, the use of multiple values
may need transparent colors to visualise. For voxel3D, level should either be
one number (if operator equals '=', '<', '>') or two numbers (for operator
= '<>').

lighting If not FALSE the facets will be illuminated, and colors may appear more bright.
To switch on lighting, the argument lighting should be either set to TRUE (using
default settings) or it can be a list with specifications of one of the following:
ambient, diffuse, specular, exponent, sr and alpha.
Will overrule shade not equal to NA.
See examples in jet.col.

shade the degree of shading of the surface facets. Values of shade close to one yield
shading similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to daylight
illumination. See persp.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as though
it was being illuminated from the direction specified by azimuth ltheta and
colatitude lphi. See persp.

bty The type of the box, the default only draws background panels. Only effective
if the persp argument (box) equals TRUE (this is the default). See perspbox.

eps The voxel precision, only used when operator = "=". A point is selected if it
closer than eps*diff(range(colvar)) to the required level.

operator One of ’=’, ’<’, ’>’, ’<>’ for selection of points ‘equal’ (within precision), larger
or smaller than the required level or to be within an interval.

dDepth When a contour is added on an image, the image polygons may hide some con-
tour segments. To avoid that, the viewing depth of the segments can be artifi-
cially decreased with the factor dDepth times the persp argument expand (usu-
ally = 1), to make them appear in front of the polygons. Too large values of
dDepth may create visible artifacts. See contour3D.

add Logical. If TRUE, then the slices, voxels or surfaces will be added to the current
plot. If FALSE a new plot is started.

plot Logical. If TRUE (default), a plot is created, otherwise the viewing transforma-
tion matrix is returned (as invisible).

... additional arguments passed to the plotting methods.
The following persp arguments can be specified: xlim, ylim, zlim, xlab,
ylab, zlab, main, sub, r, d, scale, expand, box, axes, nticks, ticktype.
The arguments xlim, ylim, zlim only affect the axes. All objects will be plot-
ted, including those that fall out of these ranges. To select objects only within
the axis limits, use plotdev.
In addition, the perspbox arguments col.axis, col.panel, lwd.panel, col.grid,
lwd.grid can also be given a value.

44 3-D volume visualisation

alpha can be given a value inbetween 0 and 1 to make colors transparent.
For all functions, the arguments lty, lwd can be specified.
The arguments after . . . must be matched exactly.

Value

The plotting functions return the viewing transformation matrix, See trans3D.

Function createisosurf returns a three-columned matrix (x, y, z) with triangle coordinates. One
triangle is defined by three consecutive rows. It can be plotted with triangle3D.

Function createvoxel returns a list with the elements x, y, z defining the points that are at a
distance of less than eps*diff(range(colvar)) from the required level. Its output can be plotted
with scatter3D.

Note

The isosurf3D function uses function computeContour3d, from package misc3d, which is based
on the marching cubes algorithm. Please cite the package misc3d (Feng & Tierney, 2008) when
using isosurf3D.

For voxel3D, coloring is always according to the z-variable. A more flexible coloration can be
achieved by using createvoxel, followed by scatter3D. See examples.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Lorensen, W.E. and Cline, H.E., Marching Cubes: a high resolution 3D surface reconstruction
algorithm, Computer Graphics, Vol. 21, No. 4, pp 163-169 (Proc. of SIGGRAPH), 1987.

Dai Feng, Luke Tierney, Computing and Displaying Isosurfaces in R, Journal of Statistical Software
28(1), 2008. URL https://www.jstatsoft.org/v28/i01/.

See Also

Oxsat for another example of slice3D.

plotdev for zooming, rescaling, rotating a plot.

Examples

save plotting parameters
pm <- par("mfrow")
pmar <- par("mar")

===
Simple slice3D examples
===

par(mfrow = c(2, 2))
x <- y <- z <- seq(-1, 1, by = 0.1)

https://www.jstatsoft.org/v28/i01/

3-D volume visualisation 45

grid <- mesh(x, y, z)
colvar <- with(grid, x*exp(-x^2 - y^2 - z^2))

default is just the panels
slice3D (x, y, z, colvar = colvar, theta = 60)

contour slices
slicecont3D (x, y, z, ys = seq(-1, 1, by = 0.5), colvar = colvar,

theta = 60, border = "black")

slice3D (x, y, z, xs = c(-1, -0.5, 0.5), ys = c(-1, 0, 1),
zs = c(-1, 0), colvar = colvar,
theta = 60, phi = 40)

===
coloring on a surface
===

XY <- mesh(x, y)
ZZ <- XY$x*XY$y
slice3D (x, y, z, xs = XY$x, ys = XY$y, zs = ZZ, colvar = colvar,

lighting = TRUE, lphi = 90, ltheta = 0)

===
Specifying transparent colors
===

par(mfrow = c(1, 1))
x <- y <- z <- seq(-4, 4, by = 0.2)
M <- mesh(x, y, z)

R <- with (M, sqrt(x^2 + y^2 + z^2))
p <- sin(2*R) /(R+1e-3)

Not run:
This is very slow - alpha = 0.5 makes it transparent

slice3D(x, y, z, colvar = p, col = jet.col(alpha = 0.5),
xs = 0, ys = c(-4, 0, 4), zs = NULL, d = 2)

End(Not run)

slice3D(x, y, z, colvar = p, d = 2, theta = 60, border = "black",
xs = c(-4, 0), ys = c(-4, 0, 4), zs = c(-4, 0))

===
A section along a transect
===

data(Oxsat)
Ox <- Oxsat$val[, Oxsat$lat > - 5 & Oxsat$lat < 5,]
slice3D(x = Oxsat$lon, z = -Oxsat$depth, y = 1:5, colvar = Ox,

ys = 1:5, zs = NULL, NAcol = "black",

46 3-D volume visualisation

expand = 0.4, theta = 45, phi = 45)

===
isosurf3D example - rather slow
===

par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))
x <- y <- z <- seq(-2, 2, length.out = 15)
xyz <- mesh(x, y, z)
F <- with(xyz, log(x^2 + y^2 + z^2 +

10*(x^2 + y^2) * (y^2 + z^2) ^2))

use shading for level = 1 - show triangulation with border
isosurf3D(x, y, z, F, level = 1, shade = 0.9,

col = "yellow", border = "orange")

lighting for level - 2
isosurf3D(x, y, z, F, level = 2, lighting = TRUE,

lphi = 0, ltheta = 0, col = "blue", shade = NA)

three levels, transparency added
isosurf3D(x, y, z, F, level = seq(0, 4, by = 2),
col = c("red", "blue", "yellow"),
clab = "F", alpha = 0.2, theta = 0, lighting = TRUE)

transparency can also be added afterwards with plotdev()
Not run:
isosurf3D(x, y, z, F, level = seq(0, 4, by = 2),
col = c("red", "blue", "yellow"),
shade = NA, plot = FALSE, clab = "F")

plotdev(lighting = TRUE, alpha = 0.2, theta = 0)

End(Not run)
use of creatisosurf
iso <- createisosurf(x, y, z, F, level = 2)
head(iso)
triangle3D(iso, col = "green", shade = 0.3)

Not run:
higher resolution
x <- y <- z <- seq(-2, 2, length.out = 50)
xyz <- mesh(x, y, z)
F <- with(xyz, log(x^2 + y^2 + z^2 +

10*(x^2 + y^2) * (y^2 + z^2) ^2))

three levels
isosurf3D(x, y, z, F, level = seq(0, 4, by = 2),
col = c("red", "blue", "yellow"),
shade = NA, plot = FALSE, clab = "F")

plotdev(lighting = TRUE, alpha = 0.2, theta = 0)

End(Not run)

3-D volume visualisation 47

===
voxel3D example
===

par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))

fast but needs high resolution grid
x <- y <- z <- seq(-2, 2, length.out = 70)
xyz <- mesh(x, y, z)
F <- with(xyz, log(x^2 + y^2 + z^2 +

10*(x^2 + y^2) * (y^2 + z^2) ^2))

voxel3D(x, y, z, F, level = 4, pch = ".", cex = 5)

===
rotation
===

plotdev(theta = 45, phi = 0)
plotdev(theta = 90, phi = 10)

same using createvoxel - more flexible for coloring
vox <- createvoxel(x, y, z, F, level = 4)
scatter3D(voxx, voxy, vox$z, colvar = vox$y,
bty = "g", colkey = FALSE)

===
voxel3D to show hypox sites
===

par(mfrow = c(1, 1), mar = c(2, 2, 2, 2))
Hypox <- createvoxel(Oxsat$lon, Oxsat$lat, Oxsat$depth[1:19],

Oxsat$val[,,1:19], level = 40, operator = "<")

panel <- function(pmat) { # an image at the bottom
Nx <- length(Oxsat$lon)
Ny <- length(Oxsat$lat)
M <- mesh(Oxsat$lon, Oxsat$lat)
xy <- trans3D(pmat = pmat, x = as.vector(M$x), y = as.vector(M$y),

z = rep(-1000, length.out = Nx*Ny))
x <- matrix(nrow = Nx, ncol = Ny, data = xy$x)
y <- matrix(nrow = Nx, ncol = Ny, data = xy$y)
Bat <- Oxsat$val[,,1]; Bat[!is.na(Bat)] <- 1
image2D(x = x, y = y, z = Bat, NAcol = "black", col = "grey",

add = TRUE, colkey = FALSE)
}

scatter3D(Hypox$x, Hypox$y, -Hypox$z, colvar = Hypox$cv,
panel.first = panel, pch = ".", bty = "b",
theta = 30, phi = 20, ticktype = "detailed",
zlim = c(-1000,0), xlim = range(Oxsat$lon),
ylim = range(Oxsat$lat))

48 Color key legend

restore plotting parameters
par(mfrow = pm)
par(mar = pmar)

Color key legend Plots a color legend

Description

colkey plots a color legend, either to an existing plot or starting a new plot.

Usage

colkey (col = NULL, clim, clab = NULL, clog = FALSE, add = FALSE,
cex.clab = NULL, col.clab = NULL, side.clab = NULL,
line.clab = NULL, adj.clab = NULL, font.clab = NULL,
side = 4, length = 1, width = 1, dist = 0, shift = 0,
addlines = FALSE, breaks = NULL, at = NULL, labels = TRUE, tick = TRUE,
line = NA, pos = NA, outer = FALSE, font = NA, lty = 1, lwd = 1,
lwd.ticks = 1, col.axis = NULL, col.ticks = NULL, col.box = NULL,
hadj = NA, padj = NA, cex.axis = par("cex.axis"),
mgp = NULL, tck = NULL, tcl = NULL, las = NULL)

Arguments

col Colors to be used for the color key. If col is NULL, then a red-yellow-blue
colorscheme (jet.col) will be used.

clim The range of the color values, used in the color key.

clab The label to be written on top of the color key. The label will be written at
the same level as the main title. To lower it, either clab can be made a vector,
with the first values empty strings. Alternatively, it can be lowered by argument
line.clab.

clog If TRUE, then values of the color key will be log transformed.

add If TRUE, the color key will be added to the current plot and positioned in the
margin. If FALSE a new plot will be started and the color key will be positioned
in the centre.

cex.clab The size of the label written on top of the color key; default = same as axis
labels.

col.clab The color of the label written on top of the color key; default = same as main
title.

side.clab The side of the label written on top of the color key; default = same as main title,
i.e. side = 3. Values of 1, 2, 4 will put the colorkey label at bottom, left and right
of the key respectively.

Color key legend 49

line.clab The numer of lines in the margin where the colorkey title is to be drawn. If
unspecified, it is at line.clab =1.75.

adj.clab The adjustment of the colorkey title, a number inbetween 0 (left) to 1 (right).
The default is to put it central.

font.clab The font of the colorkey title, a number inbetween 0 (left) to 1 (right). The
default is to put it central.

side Where to put the color key. 1 = bottom, 2 = left, 3 = top, 4 = right.

length Relative length of the color key; 1 = same length as the axis.

width Relative width of the color key.

dist Distance of the color key to the margin. Positive values are further into the
margin, negative values cause the color key to be positioned closer to or within
the main plot. Reasonable range is [-0.5, 0.05].

shift Shift relative to the centre. Positive values are upward when side = 2 or 4, and to
the right for side = 1 or 3. It does not make sense to use this argument if length
= 1. Reasonable range is [-0.2, 0.2].

addlines If TRUE, will draw lines inbetween the colors.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

at, labels, tick, line, pos, outer, font, lty, lwd
Additional parameters as from the axis command.

lwd.ticks, hadj, padj, cex.axis, mgp, tck, tcl, las
Additional parameters as from the axis command.

col.box, col.axis, col.ticks
Additional parameters to set the color of the color legend framing box, the axis
label and the axis ticks.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Examples

save plotting parameters
pm <- par(mfrow = c(2, 2))
pmar <- par(mar = c(5.1, 4.1, 4.1, 2.1))

===
colorkey as argument of a plot3D function
===
default, colkey = NULL: adds colkey because multiple colors
image2D(z = volcano)

default, colkey = NULL: no colkey because only one color
image2D(z = volcano, col = "grey", shade = 0.2, contour = TRUE)

colkey = FALSE: no color key, no extra space foreseen

50 Color key legend

image2D(z = volcano, colkey = FALSE)

colkey = list(plot = FALSE): no color key, extra space foreseen
image2D(z = volcano, colkey = list(plot = FALSE, side = 3))
colkey (side = 3, add = TRUE, clim = range(volcano))

===
colorkey in new plot
===

colkey(side = 1, clim = c(0, 1), add = FALSE, clab = "z",
col.clab = "red", adj.clab = 0)

colkey(side = 2, clim = c(0, 1), clab = "z", length = 0.5, width = 0.5)
colkey(side = 3, clim = c(0, 1), lwd = 3, clab = c("a","b","c","d"),

line.clab = 5)
colkey(side = 4, clim = c(1e-6, 1), clog = TRUE,

clab = "a very long title in bold and close to the key",
line.clab = 1, side.clab = 2, font.clab = 2)

===
colorkey added to existing plot
===

par(mfrow = c(1, 1))

image2D(volcano, xlab = "", clab = "m",
colkey = list(side = 1, length = 0.5, width = 0.5,

line.clab = 1))
colkey(side = 3, clim = range(volcano), add = TRUE)

'dist' to put colkey within the image
'shift' to position colkey to the right or upward
par(mfrow = c(1, 1))
image2D(volcano, colkey = FALSE)

colkey(clim = range(volcano), dist = -0.15, shift = 0.2,
side = 3, add = TRUE, clab = "key 1", col.clab = "white",
length = 0.5, width = 0.5, col.axis = "white",
col.ticks = "white", cex.axis = 0.8)

colkey(clim = range(volcano), dist = -0.1, shift = -0.2,
side = 4, add = TRUE, clab = "key 2", col.clab = "white",
length = 0.3, width = 0.5, col.axis = "white",
col.ticks = "white", col.box = "red", cex.axis = 0.8)

colkey(clim = range(volcano), dist = -0.3,
side = 1, add = TRUE, clab = "key 3", col.clab = "white",
length = 0.3, width = 0.5, col.axis = "white",
col.ticks = "white", at = c(100, 140, 180),
labels = c("a", "b", "c"), font = 2)

colkey(clim = range(volcano), dist = -0.3, shift = -0.2,

Color key legend 51

side = 2, add = TRUE, clab = "key 4", col.clab = "white",
length = 0.3, width = 0.5, col.axis = "white",
col.ticks = "white", col.box = "red", cex.axis = 0.8,
las = 3)

===
colorkey in other plots
===

par(mfrow = c(1, 1))
par(mar = par("mar") + c(0, 0, -2, 0))
image2D(volcano, clab = "height, m",

colkey = list(dist = -0.15, shift = 0.2,
side = 3, length = 0.5, width = 0.5, line.clab = 2.5,
cex.clab = 2, col.clab = "white", col.axis = "white",
col.ticks = "white", cex.axis = 0.8))

===
Several color keys in composite plot
===

persp3D(z = volcano, zlim = c(-60, 200), phi = 20, bty = "b",
colkey = list(length = 0.2, width = 0.4, shift = 0.15,

cex.axis = 0.8, cex.clab = 0.85), lighting = TRUE, lphi = 90,
clab = c("height","m"), plot = FALSE)

create gradient in x-direction
Vx <- volcano[-1,] - volcano[-nrow(volcano),]

add as image with own color key, at bottom
image3D(z = -60, colvar = Vx/10, add = TRUE,

colkey = list(length = 0.2, width = 0.4, shift = -0.15,
cex.axis = 0.8, cex.clab = 0.85),

clab = c("gradient","m/m"), plot = TRUE)

===
categorical colors; use addlines = TRUE to separate colors
===

with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width,
z = Petal.Length, colvar = as.integer(Species),
col = c("orange", "green", "lightblue"), pch = 16, cex = 2,
clim = c(1, 3), ticktype = "detailed", phi = 20,
xlab = "Sepal Length", ylab = "Sepal Width",
zlab = "Petal Length", main = "iris",
colkey = list(at = c(1.33, 2, 2.66), side = 1,
addlines = TRUE, length = 0.5, width = 0.5,
labels = c("setosa", "versicolor", "virginica"))))

reset plotting parameters
par(mfrow = pm)
par(mar = pmar)

52 Colors

Colors Colors, shading, lighting.

Description

jet.col generates the matlab-type colors.

jet2.col is similar but lacks the deep blue colors

gg.col and gg2.col generate gg-plot-like colors.

ramp.col creates color schemes by interpolation.

alpha.col creates transparent colors.

Usage

jet.col (n = 100, alpha = 1)

jet2.col (n = 100, alpha = 1)

gg.col (n = 100, alpha = 1)

gg2.col (n = 100, alpha = 1)

ramp.col (col = c("grey", "black"), n = 100, alpha = 1)

alpha.col (col = "grey", alpha = 0.5)

Arguments

n Number of colors to generate.

alpha Value in the range [0, 1] for alpha transparency channel (0 means transparent and
1 means opaque). Transparency defined in the color palette is overruled when
lighting or shading is switched on. To combine transparency with lighting or
shading, pass argument alpha to the plotting functions directly.

col Colors to interpolate, change.

Details

In addition to the color functions described here, colors can also be adapted by shading and lighting,
or made transparent. Shading will be overruled if lighting is not FALSE.

To make colors transparent, use argument alpha, with a value inbetween 0 and 1.

To switch on shading, the argument shade should be given a value inbetween 0 and 1.

To switch on lighting, the argument lighting should be either set to TRUE (in which case default
settings will be used) or should be a list with specifications of one of the following: ambient,
diffuse, specular, exponent, sr and alpha.

Colors 53

The defaults are: ambient = 0.3, diffuse = 0.6, specular = 1., exponent = 20, sr = 0, alpha
= 1

Lighting is defined as the sum of ambient, diffuse and specular light. If N is the normal vector on the
facets (3-values, x-, y-, z direction) and I is the light vector, then col = (ambient + Id + sr * Is) *
col + (1 - sr) * Is, where Is = specular * abs(Light) ^ exponent, Id = diffuse * Light and
Light = sum(N*I).

The lighting algorithm is very simple, i.e. it is flat shading, no interpolation.

Toggling on lighting or shading also requires the input of the angles of the light source, as ltheta
and lphi, whose defaults are: ltheta = -135, lphi = 0. This usually works well for shading, but
may not be optimal for lighting.

Value

A list with colors.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

The gg-plot type of colors gg.plot is a color-blind friendly palette from http://wiki.stdout.org/rcookbook/Graphs.

See Also

colorRamp and colorRampPalette for comparable (and more elaborate) R-functions.

Examples

save plotting parameters
pm <- par("mfrow")
pmar <- par("mar")

===
Transparency and various color schemes
===

par(mfrow = c(3, 3))
for (alph in c(0.25, 0.75))

image2D(volcano, alpha = alph,
main = paste("jet.col, alpha = ", alph))

image2D(volcano, main = "jet.col")
image2D(volcano, col = jet2.col(100), main = "jet2.col")
image2D(volcano, col = gg.col(100), main = "gg.col")
image2D(volcano, col = gg2.col(100), main = "gg2.col")
image2D(volcano, col = rainbow(100), main = "rainbow")
image2D(volcano, col = terrain.colors(100), main = "terrain.colors")
image2D(volcano, col = ramp.col(c("blue", "yellow", "green", "red")),

main = "ramp.col")

54 Colors

===
Shading, lighting - one color
===

create grid matrices
X <- seq(0, pi, length.out = 50)
Y <- seq(0, 2*pi, length.out = 50)
M <- mesh(X, Y)
phi <- M$x
theta <- M$y

x, y and z grids
x <- sin(phi) * cos(theta)
y <- cos(phi)
z <- sin(phi) * sin(theta)

these are the defaults
p <- list(ambient = 0.3, diffuse = 0.6, specular = 1.,

exponent = 20, sr = 0, alpha = 1)

par(mfrow = c(3, 3), mar = c(0, 0, 0, 0))
Col <- "red"

surf3D(x, y, z, box = FALSE, col = Col, shade = 0.9)
surf3D(x, y, z, box = FALSE, col = Col, lighting = TRUE)
surf3D(x, y, z, box = FALSE, col = Col, lighting = list(ambient = 0))
surf3D(x, y, z, box = FALSE, col = Col, lighting = list(diffuse = 0))
surf3D(x, y, z, box = FALSE, col = Col, lighting = list(diffuse = 1))
surf3D(x, y, z, box = FALSE, col = Col, lighting = list(specular = 0))
surf3D(x, y, z, box = FALSE, col = Col, lighting = list(exponent = 5))
surf3D(x, y, z, box = FALSE, col = Col, lighting = list(exponent = 50))
surf3D(x, y, z, box = FALSE, col = Col, lighting = list(sr = 1))

===
Shading, lighting with default colors
===

x <- seq(-pi, pi, len = 100)
y <- seq(-pi, pi, len = 100)
grid <- mesh(x, y)

z <- with(grid, cos(x) * sin(y))
cv <- with(grid, -cos(y) * sin(x))

lphi = 180, ltheta = -130 - good for shade
lphi = 90, ltheta = 0 - good for lighting

par(mfrow = c(2, 2))
persp3D(z = z, x = x, y = y, colvar = cv, zlim = c(-3, 3), colkey = FALSE)
persp3D(z = z, x = x, y = y, colvar = cv, zlim = c(-3, 3),

lighting = TRUE, colkey = FALSE)
persp3D(z = z, x = x, y = y, colvar = cv, zlim = c(-3, 3),

shade = 0.25, colkey = FALSE)

Composite plots 55

persp3D(z = z, x = x, y = y, colvar = cv, zlim = c(-3, 3),
lighting = TRUE, lphi = 90, ltheta = 0, colkey = FALSE)

===
transparency of a vector of colors
===

par(mfrow = c(1, 1))
x <- runif(19)
y <- runif(19)
z <- runif(19)

split into 5 sections (polygons)
ii <- seq(4, 19, by = 4)
x[ii] <- y[ii] <- z[ii] <- NA

polygon3D(x, y, z, border = "black", lwd = 2,
col = alpha.col(c("red", "lightblue", "yellow", "green", "black"),

alpha = 0.4))

the same, now passing alpha as an argument to polygon3D:
Not run:
polygon3D(x, y, z, border = "black", lwd = 2,
col = c("red", "lightblue", "yellow", "green", "black"),

alpha = 0.4)

End(Not run)
reset plotting parameters
par(mfrow = pm)
par(mar = pmar)

Composite plots Handling and plotting plotting lists.

Description

S3 method plot.plist and function plotdev plot the plotting list to the current device. Changes
can be made to the perspective view, to the lighting and shading, or to make colors transparent.

getplist and setplist retrieve and store information in the plotting list.

selectplist selects parts from the plotting list, based on a user-defined function.

Usage

getplist()
setplist(plist)
plotdev(...)
S3 method for class 'plist'
plot(x, ...)

selectplist(plist, SS)

56 Composite plots

Arguments

x, plist The plotting list as generated (invisibly) by any of the 3D plotting functions.
SS Function which tests points for inclusion in the plotting list. It should take as

argument three vectors (x, y, z) and return a vector of equal length that is either
TRUE or FALSE, denoting whether the point should be selected or not.

... Additional arguments to change the view or coloration. Supported arguments to
change the view are : theta, phi, xlim, ylim, zlim, d, r, scale, expand.
See perspbox, persp.
Supported arguments to change the lighting, or coloration are : ltheta, lphi,
shade, lighting. See jet.col.

Details

All 3-D functions from package plot3D produce or update a plotting list that is local to the package.
One can access this plotting list via getplist and setplist. The list is used to plot when, in a 3-D
function, the argument plot is TRUE or via function plotdev.

When new 3-D objects are added to a plot, using the add argument of the plotting functions, then
everything except the axes, is redrawn on top of what was already there. This means that several
object will be drawn multiple times, and this may clutter the output. This may not be visible on
your screen, but it may become apparent when exported. Use plotdev to create clean figures,
where every object is drawn only once.

The plotting list can contain the following items:

• mat, the viewing transformation matrix, a 4 x 4 matrix suitable for projecting 3D coordinates
(x, y, z) into the 2D plane using homogeneous 4D coordinates (x,y,z,v).
It can be used to superimpose additional graphical elements on the 3D plot, by any function
that is defined on persp.
It can also be used to add lines, arrows or points, using the function trans3D.

• plt, with original plt parameters and the plt parameters used for the main frame.
• persp, with settings for the perspective box.
• xlim, ylim, zlim, with ranges.
• scalefac, the scaling factors in x, y and z direction, used e.g. for shading.
• dot other plotting parameters passed to persp.
• colkey, numkey, with settings for the color key(s).
• poly, segm, pt, CIpt, labels, arr the information for drawing polygons, segments, points,

points with confidence intervals, labels and arrows, that are part of the plot.

For the item poly the elements are:

• x, y, z : A matrix with typically 4 or 5 rows, the first rows defining the x-, y- or z- values of
each polygon, the last row contains NA (and which therefore terminates a polygon).

• col: a vector with the colors for the facets of each polygon.
• lwd, lty, border: a vector with the line widths, line type and colors for the border of each

polygon. (note in R-function polygon, passing a vector of line widths is not implemented;
therefore, only the first value of lwd will be used for all polygons).
When plot.plist is called, the projection depth is calculated and used to sort the facets and
function polygon used to draw them.

Composite plots 57

Value

Returns the updated plotting list.

Note

Once a 3D plot has been generated, a new device can be opened and plotdev used to plot also on
this device.

plotdev and plot(getplist()) are the same.

In an extension package, plot3Drgl, a similar function, plotrgl, plots the graphs to the device
opened with rgl. This allows interactive zooming, rotating, etc...

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Examples

save plotting parameters
pm <- par("mfrow")
pmar <- par("mar")

==
The volcano
==

par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))

The volcano at lower resolution
x <- seq(1, nrow(volcano), by = 2)
y <- seq(1, ncol(volcano), by = 2)
V <- volcano[x,y]

persp3D(z = V)

rotate
plotdev(theta = 0)

light and transparence
plotdev(lighting = TRUE, lphi = 90, alpha = 0.6)

zoom
plotdev(xlim = c(0.2, 0.6), ylim = c(0.2, 0.6), phi = 60)

==
Two spheres
==

par(mfrow = c(1, 1), mar = c(0, 0, 0, 0))

create a sphere
M <- mesh(seq(0, 2*pi, length.out = 30),

58 Composite plots

seq(0, pi, length.out = 30))
u <- M$x ; v <- M$y

x <- cos(u)*sin(v)
y <- sin(u)*sin(v)
z <- cos(v)

surf3D(x = 2*x, y = 2*y, z = 2*z,
colvar = NULL, lighting = TRUE, #plot = FALSE,
facets = NA, col = "blue", lwd = 5)

surf3D(x, y, z, colvar = NULL, lighting = TRUE,
col = "red", add = TRUE)

names(getplist())

plot with different view:
plotdev(phi = 0)

Not run: # will plot same 3-D graph to pdf
pdf(file = "save.pdf")
plotdev()
dev.off()

End(Not run)

==
Two spheres and two planes
==

par(mar = c(2, 2, 2, 2))

equation of a sphere
M <- mesh(seq(0, 2*pi, length.out = 100), -

seq(0, pi, length.out = 100))
u <- M$x ; v <- M$y

x <- cos(u)*sin(v)
y <- sin(u)*sin(v)
z <- cos(v)

surf3D(x, y, z, colvar = z,
theta = 45, phi = 20, bty = "b",
xlim = c(-1.5, 1.5), ylim = c(-1, 2),
zlim = c(-1.5, 1.5), plot = FALSE)

add a second sphere, shifted 1 unit to the right on y-axis;
no facets drawn for this sphere
surf3D (x, y+1, z, colvar = z, add = TRUE,

facets = FALSE, plot = FALSE)

define a plane at z = 0
Nx <- 100
Ny <- 100

Composite plots 59

x <- seq(-1.5, 1.5, length.out = Nx)
y <- seq(-1, 2, length.out = Ny)

image3D (x = x, y = y, z = 0, add = TRUE, colvar = NULL,
col = "blue", facets = TRUE, plot = FALSE)

another, small plane at y = 0 - here x and y have to be matrices!
x <- seq(-1., 1., length.out = 50)
z <- seq(-1., 1., length.out = 50)

image3D (x = x, y = 0, z = z, colvar = NULL,
add = TRUE, col = NA, border = "blue",
facets = TRUE, plot = TRUE)

Not run: # rotate
for (angle in seq(0, 360, by = 10))
plotdev(theta = angle)

End(Not run)

==
Zooming, rescaling, lighting,...
==

par(mfrow = c(2, 2))

The volcano
x <- seq(1, nrow(volcano), by = 2)
y <- seq(1, ncol(volcano), by = 2)
V <- volcano[x,y]

plot the volcano
persp3D (x, y, z = V, colvar = V, theta = 10, phi = 20,

box = FALSE, scale = FALSE, expand = 0.3,
clim = range(V), plot = FALSE)

add a plane (image) at z = 170; jetcolored, transparant: only border
image3D(x, y, z = 170, add = TRUE, clim = range(V),

colvar = V, facets = NA, plot = FALSE, colkey = FALSE)

add a contour (image) at z = 170; jetcolored,
contour3D(x, y, z = 170, add = TRUE, clim = range(V),

colvar = V, plot = FALSE, colkey = FALSE)

plot it -
plot(getplist()) # same as plotdev()

plot but with different expansion
plotdev(expand = 1)

other perspective, and shading
plotdev(d = 2, r = 10, shade = 0.3)

60 Composite plots

zoom and rotate
plotdev(xlim = c(10, 30), ylim = c(20, 30), phi = 50)

==
Using setplist
==

polygon3D(runif(3), runif(3), runif(3))
retrieve plotting list
plist <- getplist()
names(plist)
plist$poly

change copy of plotting list
plist$poly$col <- "red"

update internal plotting list
setplist(plist)

plot updated list
plotdev()

==
Using selectplist
==

polygon3D(runif(10), runif(10), runif(10), col = "red",
alpha = 0.2, plot = FALSE, ticktype = "detailed",
xlim = c(0,1), ylim = c(0, 1), zlim = c(0, 1))

polygon3D(runif(10)*0.5, runif(10), runif(10), col = "yellow",
alpha = 0.2, plot = FALSE, add = TRUE)

polygon3D(runif(10)*0.5+0.5, runif(10), runif(10), col = "green",
alpha = 0.2, plot = FALSE, add = TRUE)

points3D(runif(10), runif(10), runif(10), col = "blue",
add = TRUE, plot = FALSE)

segments3D(x0 = runif(10), y0 = runif(10), z0 = runif(10),
x1 = runif(10), y1 = runif(10), z1 = runif(10),
colvar = 1:10, add = TRUE, lwd = 3)

retrieve plotting list
plist <- getplist()

selection function
SS <- function (x, y, z) {
sel <- rep(TRUE, length.out = length(x))
sel[x < 0.5] <- FALSE
return(sel)

}
The whole polygon will be removed or kept.
plot(x = selectplist(plist, SS),

xlim = c(0, 1), ylim = c(0, 1), zlim = c(0, 1))

restore plotting parameters
par(mfrow = pm)
par(mar = pmar)

images in 3D frame 61

images in 3D frame Images in 3-D plots.

Description

image3D adds an image in a 3-D plot.

Usage

image3D (x = NULL, y = NULL, z = NULL, ..., colvar = NULL,
phi = 40, theta = 40, col = NULL,
NAcol = "white", breaks = NULL, border = NA, facets = TRUE,
colkey = NULL, resfac = 1, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
inttype = 1, add = FALSE, plot = TRUE)

Arguments

x, y, z Matrix (2-D), vector, or one value containing the values where the image is to
be plotted. At least one of them should be one number, as this will determine
where the image is plotted, parallel to the (y-z) plane (x one number), to the
(x-z) plane (y one number) or to the (z-y) plane (z one number).
If two are vectors, the first vector should be of length equal to nrow(colvar)
and the second should be of length equal to ncol(colvar).

colvar The variable used for coloring.
col Color palette to be used for the colvar variable.
NAcol Color to be used for NA values of colvar; default is “white”.
breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint

than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

clab Only if colkey = TRUE, the label to be written on top of the color key. The label
will be written at the same level as the main title. to lower it, clab can be made
a vector, with the first values empty strings.

62 images in 3D frame

clim Only if colvar is specified, the range of the color variable, used for the color
key. Values of colvar that extend the range will be put to NA.

resfac Resolution factor, one value or a vector of two numbers, for the x and y- values
respectively. A value > 1 will increase the resolution. For instance, if resfac
equals 3 then for each adjacent pair of x- and y-values, z will be interpolated to
two intermediary points. This uses simple linear interpolation. If resfac is one
number then the resolution will be increased similarly in x and y-direction.

theta, phi The angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. see persp.

border The color of the lines drawn around the surface facets. The default, NA, will
disable the drawing of borders.

facets If TRUE, then col denotes the color of the surface facets. If FALSE, then the
surface facets are colored “white” and the border (if NA) will be colored as
specified by col. If NA then the facets will be transparent. It is usually faster to
draw with facets = FALSE.

panel.first A function to be evaluated after the plot axes are set up (and if applicable, im-
ages or contours drawn) but before any plotting takes place. This can be useful
for drawing background grids or scatterplot smooths. The function should have
as argument the transformation matrix, e.g. it should be defined as function(pmat).
See example of persp3D and last example of voxel3D.

bty The type of the box, the default only drawing background panels. Only effective
if the persp argument (box) equals TRUE (this is the default). See perspbox.

inttype The interpolation type to create the polygons, either taking the mean of the
colvar variable (inttype = 1, 3 or extending the x, y, z values (inttype =
2). Values 1, 3 differ in how they treat NAs in the colvar variable. For inttype
= 3, NAs are removed before taking averages; this will tend to make the NA re-
gion smaller. NAs are included when inttype = 1. This will tend to make the NA
region larger. see details and an example in persp3D.

add Logical. If TRUE, then the image will be added to the current plot. If FALSE a
new plot is started.

plot Logical. If TRUE (default), a plot is created, otherwise the viewing transforma-
tion matrix is returned (as invisible).

... additional arguments passed to the plotting methods.
The following persp arguments can be specified: xlim, ylim, zlim, xlab,
ylab, zlab, main, sub, r, d, scale, expand, box, axes, nticks, ticktype.
The arguments xlim, ylim, zlim only affect the axes. All objects will be plot-
ted, including those that fall out of these ranges. To select objects only within
the axis limits, use plotdev.
In addition, the perspbox arguments col.axis, col.panel, lwd.panel, col.grid,
lwd.grid can also be given a value.
shade and lighting arguments will have no effect.
alpha can be given a value inbetween 0 and 1 to make colors transparent.
Also the arguments lty, lwd can be specified (when border is not NA).
The arguments after . . . must be matched exactly.

images in 3D frame 63

Details

image3D calls the surf3D function. The x, y, and z values are expanded as a matrix.

Value

Returns the viewing transformation matrix. See trans3D.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

surf3D for the function on which image3D is based.

image2D for plot3Ds 2-D image function.

Examples

save plotting parameters
pm <- par("mfrow")

===
images in x, y, z plane
===

par(mfrow = c(2, 2))

images in x, y, z plane
We use colkey = list(plot = FALSE) to create room for a color key
image3D(y = seq(0, 1, 0.1), z = seq(0, 1, 0.1), x = 0.5,
col = "blue", xlim = c(0,1), colkey = list(plot = FALSE))

image3D(x = seq(0, 1, 0.1), z = seq(0, 1, 0.1), y = 0.5,
add = TRUE, col = "red", alpha = 0.2) # alpha makes it transparent

image3D(x = seq(0, 1, 0.1), y = seq(0, 1, 0.1), z = 0.5,
add = TRUE, col = "green")

colkey(col = c("green", "red", "blue"), clim = c(0.5, 3.5),
at = 1:3, labels = c("z", "y", "x"), add = TRUE)

#
image3D(z = 100, colvar = volcano, zlim = c(0, 150),
clab = c("height", "m"))

#
image3D(x = 0.5, colvar = volcano, xlim = c(0, 1),
ylim = c(0, 1), zlim = c(0, 1))

image3D(y = 0.5, colvar = volcano, add = TRUE)

#
image3D(z = 1, colvar = volcano,

x = seq(0, 1, length.out = nrow(volcano)),
y = seq(0, 1, length.out = ncol(volcano)),

64 Mesh generation

xlim = c(0, 2), ylim = c(0, 2), zlim = c(0, 2))
image3D(y = 2, colvar = volcano, add = TRUE,

shade = 0.2,
x = seq(0, 1, length.out = nrow(volcano)),
z = seq(1, 2, length.out = ncol(volcano)))

image3D(x = 2, colvar = NULL, col = "orange", add = TRUE,
y = seq(0, 1, length.out = nrow(volcano)),
z = seq(1, 2, length.out = ncol(volcano)))

reset plotting parameters
par(mfrow = pm)

Mesh generation Rectangular grids.

Description

mesh creates a rectangular full 2-D or 3-D grid.

Usage

mesh (x, y, z = NULL)

Arguments

x, y, z Vectors with x, y and z-values. They can be of arbitrary length.

Value

Function mesh returns a list with the expanded x- y- and z arrays (in case z is not NULL) or matrices
(in case z = NULL). The dimensions of these list elements are the same and equal to c(length(x),
length(y), length(z)).

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

persp3D, arrows3D, slice3D, surf3D for other examples that use mesh.

Examples

==
2-D mesh
==

x <- c(-1 , 0, 1)
y <- 1 : 4

Perspective box 65

2-D mesh
(M <- mesh(x, y))

calculate with this mesh
V <- with (M, x/2 * sin(y))

same as:
V2 <- outer(x, y, FUN = function(x, y) x/2*sin(y))

==
3-D mesh
==

x <- y <- z <- c(-1 , 0, 1)

3-D mesh
(M <- mesh(x, y, z))

calculate with 3-D mesh
V <- with (M, x/2 * sin(y) *sqrt(z+2))

plot result
scatter3D(Mx, My, M$z, V, pch = "+", cex = 3, colkey = FALSE)

Perspective box Creates an empty perspective box, ready for adding objects

Description

perspbox draws a box and labels, and makes space for a colorkey (if any).

Usage

perspbox (x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), z,
bty = c("b", "b2", "f", "g", "bl", "bl2", "u", "n"), ...,
col.axis = "black", col.panel = NULL, lwd.panel = 1,
col.grid = NULL, lwd.grid = 1,
phi = 40, theta = 40, col = NULL,
colkey = NULL, plot = TRUE)

Arguments

x, y Vectors with x and y values. It is sufficient to pass the ranges of the x- and y-
values, as they will not be drawn. If z is a matrix, it is required that length(x)
= nrow(z) and length(y) = ncol(z).

z Matrix or vector with z-values. If z is a matrix, it is sufficient to pass a diagonal
matrix with the range of the z-values, as they will not be drawn.

66 Perspective box

bty The type of the box; only effective if the persp argument box equals TRUE (the
default). Unless bty is equal to "u" then the arguments col.axis, col.panel,
lwd.panel, col.grid, lwd.grid will be ignored. "f" is the full box, the de-
fault as from persp, "b" has only the back panels visible, when "b2" has back
panels and grid lines, "g" has grey background with white gridlines, "bl" has
a black background, "bl2" has a black background with grey lines. "u" means
that the user will specify the arguments col.axis, col.panel, lwd.panel,
col.grid, lwd.grid manually. "n" means that no box will be drawn. This is
the same as setting box = FALSE.

col.axis, col.panel, col.grid
The color of the axis line, of the axis panel or of the grid lines. Only used if bty
= "u".

lwd.panel, lwd.grid
The width of the panel border or of the grid lines. Only used if bty = "u".

theta, phi The angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. see persp.

col Colors to be used for coloring the colvar variable. Here only used for assessing
if a color key should be drawn.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

plot Logical. If TRUE (default), a plot is created, otherwise the viewing transforma-
tion matrix is returned (as invisible).

... additional arguments passed to persp.
The following persp arguments can be specified: xlim, ylim, zlim, xlab,
ylab, zlab, main, sub, r, d, scale, expand, box, axes, nticks, ticktype.
Arguments scale and expand affect the size of the axes.
The arguments after . . . must be matched exactly.

Details

The arguments xlim, ylim, zlim only affect the axes. All objects will be plotted, including those
that fall out of these ranges. To select objects only within the axis limits, use plotdev.

The predefined box types bty are defined as follows:

“f”: all panels are shown and transparent, also the persp default.

“b”: only backward panels shown.

Perspective box 67

“b2”: as “b” with col.grid = "grey".

“g”: only backward panels shown; col.panel = grey(0.95), col.axis = "grey", lwd.grid = 2
and col.grid = "white".

“bl”: only backward panels shown; col.panel = "black", col.axis = "grey", lwd.grid = 2 and
col.grid = "white".

“n”: no box is drawn.

Value

Function perspbox returns the viewing transformation matrix. See trans3D.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

persp3D, scatter2D, surf3D for examples where box types different than the default are used.

Hypsometry for an example where colored axis-panels are added to a figure started with perspbox.

Examples

save plotting parameters
pm <- par("mfrow")
pmar <- par("mar")

==
The 4 predefined box types
==

par(mfrow = c(2, 2), mar = c(1, 1, 1, 1))

box type with only backward panels
perspbox(z = volcano, bty = "b", ticktype = "detailed", d = 2,

main = "bty = 'b'")
box as in 'persp'
perspbox(z = volcano, bty = "f", ticktype = "detailed",

d = 2, main = "bty = 'f'")

back panels with gridlines, detailed axes
perspbox(z = volcano, bty = "b2", ticktype = "detailed",

d = 2, main = "bty = 'b2'")

ggplot-type, simple axes
perspbox(z = volcano, bty = "g",

d = 2, main = "bty = 'g'")

==
A user-defined box
==

68 plots with legend or colorkeys

par(mfrow = c(1, 1))

perspbox(z = diag(2), bty = "u", ticktype = "detailed",
col.panel = "gold", col.axis = "white",
scale = FALSE, expand = 0.4,
col.grid = "grey", main = "user-defined")

restore plotting parameters
par(mfrow = pm)
par(mar = pmar)

plots with legend or colorkeys

Plots with legend or colorkeys outside of the plotting region

Description

legendplot, legendmatplot, legendhist and legendpairs create plots with a legend adjacent
to it, using R’s default plotting functions plot, matplot, hist and pairs.

colorkeyplot, colorkeymatplot, colorkeyhist and colorkeypairs create a plot with a col-
orkey adjacent to it.

createKey creates suitable colors for the color variables.

legend.plt and colorkey.plt are general functions that might also work with other plotting
methods, and that add a legend or color key by changing the plt parameter.

legend.oma and colorkey.oma are general functions that might also work with other plotting
methods, and that add a legend or color key by changing the oma parameter.

Usage

legendplot (..., legend = list(), legend.side = 4, legend.cex = 1, legend.pars = NULL)
legendmatplot (..., legend = list(), legend.side = 4, legend.cex = 1, legend.pars = NULL)
legendhist (..., legend = list(), legend.side = 4, legend.cex = 1, legend.pars = NULL)
legendpairs (..., legend = list(), legend.side = 4, legend.cex = 1, legend.pars = NULL)

legend.plt (method = "plot", ..., legend = list(), legend.side = 4, legend.cex = 1,
legend.pars = NULL)

legend.oma (method = "pairs", ..., legend = list(), legend.side = 4, legend.cex = 1,
legend.pars = NULL)

colorkeyplot (..., colorkey = list(), colorkey.side = 4)
colorkeymatplot (..., colorkey = list(), colorkey.side = 4)
colorkeyhist (..., colorkey = list(), colorkey.side = 4)
colorkeypairs (..., colorkey = list(), colorkey.side = 4)

colorkey.plt (method = "plot",..., colorkey = list(), colorkey.side = 4)

plots with legend or colorkeys 69

colorkey.oma (method = "pairs",..., colorkey = list(), colorkey.side = 4)

createKey (x, clim = NULL, col = NULL, NAcol = "black")

Arguments

method A plotting method to which to add the legend or colorkey, such as plot, matplot,
boxplot, ... Note that not all of R’s plotting functions can be used.

... Any argument passed to plot, matplot, hist or any other method.

colorkey.side, legend.side
On which side of the plot (1=bottom, 2=left, 3=top, 4=right) to put the legend
or color key.

legend.cex The expansion factor of the space around the legend.

legend.pars A list that determines the size of the legend and of the main plotting region, as
returned by any of the legend plotting functions. It should contain two vectors,
one that sets the size of the plotting region called plt.main and one that sets
the size of the legend, called plt.legend. The format of these vectors is as the
parameter "plt". See last example.

colorkey A list with arguments passed to function colkey.

legend A list with arguments passed to function legend.

x The variable for which the color key has to be created.

col Colors to be used for the color key. If col is NULL, then a red-yellow-blue
colorscheme (jet.col) will be used.

clim The range of the color values, used in the color key.

NAcol Color to be used for NA values.

Value

The legend plotting functions return as invisible, a list that contains the plotting parameters
for the regions of the legend and of the main plotting region, elements called plt.legend and
plt.main. For the pairs method, the list returned contains the size of the outer margin instead, i.e.
the oma parameter.

Note

The method that changes the oma parameter (based on legend.oma) is not optimal, as plot.new is
called several times. This means you will need to "hit return to see next plot" several times before
you see the actual figure.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

70 plots with legend or colorkeys

Examples

save plotting parameters
pm <- par(mfrow = c(2, 2))
pmar <- par(mar = c(5.1, 4.1, 4.1, 2.1))

==
Colorkey and legend added to simple plot
==

par(mfrow = c(2,1))
x <- seq(0, 2*pi, length.out = 30)
y <- sin(x)

Note: this forgets the names of the x and y-variables.
colorkeyplot(x = x, y = y, col = createKey(y), pch = 18,

main = "colorkeyplot with 'plot'",
colorkey = list(clim = range(y)))

abline (v = 4)
abline (h = 0.4)

legendplot(x = x, y = y, col = c("red", "blue")[(y > 0)+1],
main = "legendplot with 'plot'", pch = 18,
xlab = "x", ylab = "y",
legend = list(col = c("red","blue"), pch = 18,

legend = c(">0", "<0")))
abline (v = pi)
abline (h = 0)

par(mfrow = c(1,1))
legendplot(x = x, y = y, col = c("red", "blue")[(y > 0)+1],

main = "legendplot with 'plot'", pch = 18,
legend.side = 1, las = 1,
legend = list(col = c("red","blue"), pch = 18,

horiz = TRUE, legend = c(">0", "<0")))
abline (v = pi)
abline (h = 0)

We do not label the y-axis, so the legend can be a
closer to the axis (legend.cex)
par(mfrow = c(1,1), mar = c(4,2,4,2))
legendplot(x = x, y = y, col = c("red", "blue")[(y > 0)+1],

main = "legendplot with 'plot'", pch = 18,
legend.side = 2, legend.cex = 0.5, ylab = "",
legend = list(col = c("red","blue"), pch = 18,

horiz = FALSE, legend = c(">0", "<0")))

Here we have a title with two lines, so the legend is put further away
Also the legend is put near the bottom here.
legendplot(x = x, y = y, col = c("red", "blue")[(y > 0)+1],

main = "legendplot with 'plot'", pch = 18,
legend.side = 2, legend.cex = 2, ylab = c("axis","on two lines"),

plots with legend or colorkeys 71

legend = list(col = c("red","blue"), pch = 18, x = "bottomleft",
horiz = FALSE, legend = c(">0", "<0")))

This works as ordinary legend function (except for the labeling of the axes)
par(mfrow = c(1,1), mar = c(4,4,2,2))
legendplot(x = x, y = y, col = c("red", "blue")[(y > 0)+1],

main = "legendplot with 'plot'", pch = 18,
legend.side = 0,
legend = list(col = c("red","blue"), pch = 18, x = "right",

horiz = TRUE, legend = c(">0", "<0")))

===
... added to a more complex plot
===

legend.plt(method = "points2D", x = x, y = y, colvar = y,
pch = c(18, 20)[(y > 0)+1], cex = 2,
colkey = list(side = 1, dist = -0.25, length = 0.4, shift = -0.15),
main = "legendplot with 'points2D'",
legend = list(pch = c(18, 20), pt.cex = 2,

horiz = FALSE, legend = c(">0", "<0")))

to use the image function with a color key - easier to do with image2D...
colorkey.plt(method = "image", x = 1:nrow(volcano), y = 1:ncol(volcano),

z = volcano, col = jet.col(100),
main = "colorkeyplot with 'image'",
colorkey = list(col = jet.col(100), clim = range(volcano), clab = "m"))

===
with matplot
===

this is not a very instructive figure!

lon <- Hypsometry$x # Longitude
iy <- seq(10, 180, by = 10) # Index to latitudes where we want to see data
lat <- Hypsometry$y[iy] # corresponding latitudes

Col <- createKey(iy)
colorkeymatplot(main = "matplot with color key",

xlab = "longitude", ylab = "heigh, m",
x = lon, y = Hypsometry$z[,iy], col = Col, type = "l",
colorkey = list(clim = range(lat), clab = "latitude"))

n <- 100
colorkey.plt(method = "pie", x = rep(1, n), labels = "",

col = rainbow(n), border = NA,
main = "colorkeyplot with 'pie'",
colorkey = list(col = rainbow(n), clim = c(1,n)))

===
A complex figure, consisting of overlays (based on example(boxplot))
===

72 plots with legend or colorkeys

plotit <- function(){
boxplot(len ~ dose, data = ToothGrowth,

boxwex = 0.25, at = 1:3 - 0.2,
subset = supp == "VC", col = "yellow",
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg", ylab = "tooth length",
xlim = c(0.5, 3.5), ylim = c(0, 35), yaxs = "i")

boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
boxwex = 0.25, at = 1:3 + 0.2,
subset = supp == "OJ", col = "orange")

}
legend.plt(method = "plotit",

legend = list(legend = c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange")))

All in one - putting legend on other side..
pm <- par(mar = c(4,3,4,2))
legend.plt(formula = len ~ dose:supp, data = ToothGrowth,

boxwex = 0.5, col = c("orange", "yellow"),
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg", ylab = "tooth length",
sep = ":", lex.order = TRUE, ylim = c(0, 35), yaxs = "i",
method = "boxplot", legend.side = 2,
legend = list(legend = c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange")))
par(mar = pm)

===
Nesting..
===

Fun1 <- function()
legend.plt(x = 0, method = "plot", type = "n", xlab = "", ylab = "", axes = FALSE,

frame.plot = TRUE,
legend = list(legend =
c("this can", "also be used", "to write text", "next to a plot")))

X <- legend.plt(method = "Fun1", legend.side = 1,
legend = list(legend =

c("but also to put text", "below a plot"),
horiz = TRUE, x = "left", box.col = "grey"))

print(X)
P <- par(plt = X$plt.legend, new = TRUE)
plot.new()
legend("right", legend = "second legend")
par (plt = X$plt.main, new = TRUE)
plot.new()
legend("left", legend = "another legend")

===

Scatter plots 73

Pairs
===

legendpairs(iris, legend = list(legend = levels(iris$Species), cex = 0.5, col = 1:3, pch = 1),
legend.side = 4, col = (1:3)[iris$Species])

legendpairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)],
legend.side = 1,
legend = list(levels(iris$Species), pt.bg = c("red", "green3", "blue"),

pch = 21, title = "Species", horiz = TRUE))

reset plotting parameters
par(mfrow = pm)
par(mar = pmar)

Pairs with a color key

colorkeypairs(swiss[,c(1,4,5)], pch = 18, cex = 2,
col = createKey(swiss[,2]),
colorkey=list(clim = range(swiss[,2]), clab = "Agriculture"))

===
Aligning plots
===

par(mfrow = c(2,1))
AA <- legendplot(1:10, runif(10), xlab = "x", ylab = "y", pch= 18,

cex = 2, col = 1:10,
legend = list(col = 1:10, legend = 11111:11120, pch = 18, pt.cex = 2))

legendplot(1:10, runif(10), xlab = "x", ylab = "y", pch= 18,
cex = 2, col = 1:10, legend.pars = AA, # use par settings of previous plot
legend = list(plot=FALSE))

Scatter plots Colored scatter plots and text in 2-D and 3-D

Description

scatter2D and scatter3D plot a (2- or 3 dimensional) dataset with a color variable as points or
lines.

text3D plot a 3-D dataset with a color variable as text labels.

points3D is shorthand for scatter3D(..., type = "p")

lines3D is shorthand for scatter3D(..., type = "l")

points2D is shorthand for scatter2D(..., type = "p")

74 Scatter plots

lines2D is shorthand for scatter2D(..., type = "l")

The 2D functions are included for their side effect of having a color key.

Usage

scatter3D (x, y, z, ..., colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, panel.first = NULL,
clim = NULL, clab = NULL,
bty = "b", CI = NULL, surf = NULL,
add = FALSE, plot = TRUE)

text3D (x, y, z, labels, ..., colvar = NULL, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, panel.first = NULL,
clim = NULL, clab = NULL,
bty = "b", add = FALSE, plot = TRUE)

points3D (x, y, z, ...)

lines3D (x, y, z, ...)

scatter2D (x, y, ..., colvar = NULL,
col = NULL, NAcol = "white", breaks = NULL,
colkey = NULL, clim = NULL, clab = NULL,
CI = NULL, add = FALSE, plot = TRUE)

lines2D(x, y, ...)

points2D(x, y, ...)

text2D (x, y, labels, ..., colvar = NULL,
col = NULL, NAcol = "white", breaks = NULL, colkey = NULL,
clim = NULL, clab = NULL, add = FALSE, plot = TRUE)

Arguments

x, y, z Vectors with x, y and z-values of the points to be plotted. They should be of
equal length, and the same length as colvar (if present).

colvar The variable used for coloring. For scatter3D, it need not be present, but if
specified, it should be a vector of equal length as (x, y, z).

theta, phi the angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. see persp.

col Color palette to be used for coloring the colvar variable. If col is NULL and
colvar is specified, then a red-yellow-blue colorscheme (jet.col) will be used.
If col is NULL and colvar is not specified, then col will be "black".

NAcol Colors to be used for colvar values that are NA.

Scatter plots 75

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

colkey A logical, NULL (default), or a list with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
= 1, width = 1, dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab
= par("cex.lab"), side.clab = NULL, line.clab = NULL, adj.clab = NULL,
font.clab = NULL) See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

CI A list with parameters and values for the confidence intervals or NULL. If a
list it should contain at least the item x, y or z (latter for scatter3D). These
should be 2-columned matrices, defining the left/right intervals. Other param-
eters should be one of (with defaults): alen = 0.01, lty = par("lty"), lwd =
par("lwd"), col = NULL, to set the length of the arrow head, the line type and
width, and the color. If col is NULL, then the colors as specified by colvar are
used. See examples.

panel.first A function to be evaluated after the plot axes are set up but before any plotting
takes place. This can be useful for drawing background grids or scatterplot
smooths. The function should have as argument the transformation matrix, e.g.
it should be defined as function(pmat). See example of persp3D and last
example of voxel3D.

clab Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

clim Only if colvar is specified, the range of the color variable, used for the color
key. Values of colvar that extend the range will be put to NA.

bty The type of the box, the default draws only the back panels. Only effective if the
persp argument (box) equals TRUE (this is the default). See perspbox. Note: the
bty = "g", "b2", "bl" can also be specified for scatter2D (if add = FALSE).

labels The text to be written. A vector of length equal to length of x, y, z.

surf If not NULL, a list specifying a (fitted) surface to be added on the scatterplot. The
list should include at least x, y, z, defining the surface, and optional: colvar,
col, NAcol, border, facets, lwd, resfac, clim, ltheta, lphi, shade, lighting,
fit. Note that the default is that colvar is not specified which will set colvar
= z. The argument fit should give the fitted z-values, in the same order as the
z-values of the scatter points, for instance produced by predict. When present,
this will produce droplines from points to the fitted surface.

add Logical. If TRUE, then the points will be added to the current plot. If FALSE a
new plot is started.

76 Scatter plots

plot Logical. If TRUE (default), a plot is created, otherwise (for 3D plots) the viewing
transformation matrix is returned (as invisible).

... additional arguments passed to the plotting methods.
The following persp arguments can be specified: xlim, ylim, zlim, xlab,
ylab, zlab, main, sub, r, d, scale, expand, box, axes, nticks, ticktype.
The arguments xlim, ylim, zlim only affect the axes for 3D plots. All objects
will be plotted, including those that fall out of these ranges. To select objects
only within the axis limits, use plotdev.
In addition, the perspbox arguments col.axis, col.panel, lwd.panel, col.grid,
lwd.grid can also be given a value.
shade and lighting arguments will have no effect.
alpha can be given a value inbetween 0 and 1 to make colors transparent.
For all functions, the arguments lty, lwd can be specified; type can be speci-
fied for all except text3D.
In case type = "p" or "b", then pch, cex, bg can also be specified.
The arguments after . . . must be matched exactly.

Value

Function scatter3D returns the viewing transformation matrix. See trans3D.

Note

For scatter2D and scatter3D the plottypes that are supported are: type = "p", type = "l", type
= "h", type = "o". For type = "b", type = "o" is used instead.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

persp for the function on which this implementation is based.

mesh, trans3D, slice3D, for other examples of scatter2D or scatter3D.

plotdev for zooming, rescaling, rotating a plot.

package scatterplot3D for an implementation of scatterplots that is not based on persp.

Examples

save plotting parameters
pm <- par("mfrow")

===
A sphere
===

par(mfrow = c(1, 1))

Scatter plots 77

M <- mesh(seq(0, 2*pi, length.out = 100),
seq(0, pi, length.out = 100))

u <- M$x ; v <- M$y

x <- cos(u)*sin(v)
y <- sin(u)*sin(v)
z <- cos(v)

full panels of box are drawn (bty = "f")
scatter3D(x, y, z, pch = ".", col = "red",

bty = "f", cex = 2, colkey = FALSE)

===
Different types
===

par (mfrow = c(2, 2))
z <- seq(0, 10, 0.2)
x <- cos(z)
y <- sin(z)*z

greyish background for the boxtype (bty = "g")
scatter3D(x, y, z, phi = 0, bty = "g",

pch = 20, cex = 2, ticktype = "detailed")
add another point
scatter3D(x = 0, y = 0, z = 0, add = TRUE, colkey = FALSE,

pch = 18, cex = 3, col = "black")

add text
text3D(x = cos(1:10), y = (sin(1:10)*(1:10) - 1),

z = 1:10, colkey = FALSE, add = TRUE,
labels = LETTERS[1:10], col = c("black", "red"))

line plot
scatter3D(x, y, z, phi = 0, bty = "g", type = "l",

ticktype = "detailed", lwd = 4)

points and lines
scatter3D(x, y, z, phi = 0, bty = "g", type = "b",

ticktype = "detailed", pch = 20,
cex = c(0.5, 1, 1.5))

vertical lines
scatter3D(x, y, z, phi = 0, bty = "g", type = "h",

ticktype = "detailed")

===
With confidence interval
===

x <- runif(20)
y <- runif(20)
z <- runif(20)

78 Scatter plots

par(mfrow = c(1, 1))
CI <- list(z = matrix(nrow = length(x), ncol = 2,

data = rep(0.05, times = 2*length(x))))

greyish background for the boxtype (bty = "g")
scatter3D(x, y, z, phi = 0, bty = "g", CI = CI,
col = gg.col(100), pch = 18, cex = 2, ticktype = "detailed",
xlim = c(0, 1), ylim = c(0, 1), zlim = c(0, 1))

add new set of points
x <- runif(20)
y <- runif(20)
z <- runif(20)

CI2 <- list(x = matrix(nrow = length(x), ncol = 2,
data = rep(0.05, 2*length(x))),

z = matrix(nrow = length(x), ncol = 2,
data = rep(0.05, 2*length(x))))

scatter3D(x, y, z, CI = CI2, add = TRUE, col = "red", pch = 16)

===
With a surface
===

par(mfrow = c(1, 1))

surface = volcano
M <- mesh(1:nrow(volcano), 1:ncol(volcano))

100 points above volcano
N <- 100
xs <- runif(N) * 87
ys <- runif(N) * 61
zs <- runif(N)*50 + 154

scatter + surface
scatter3D(xs, ys, zs, ticktype = "detailed", pch = 16,
bty = "f", xlim = c(1, 87), ylim = c(1,61), zlim = c(94, 215),
surf = list(x = M$x, y = M$y, z = volcano,

NAcol = "grey", shade = 0.1))

===
A surface and CI
===

par(mfrow = c(1, 1))
M <- mesh(seq(0, 2*pi, length = 30), (1:30)/100)
z <- with (M, sin(x) + y)

points 'sampled'
N <- 30

Scatter plots 79

xs <- runif(N) * 2*pi
ys <- runif(N) * 0.3

zs <- sin(xs) + ys + rnorm(N)*0.3

CI <- list(z = matrix(nrow = length(xs),
data = rep(0.3, 2*length(xs))),

lwd = 3)

facets = NA makes a transparent surface; borders are black
scatter3D(xs, ys, zs, ticktype = "detailed", pch = 16,
xlim = c(0, 2*pi), ylim = c(0, 0.3), zlim = c(-1.5, 1.5),
CI = CI, theta = 20, phi = 30, cex = 2,
surf = list(x = M$x, y = M$y, z = z, border = "black", facets = NA)
)

===
droplines till the fitted surface
===

with (mtcars, {

linear regression
fit <- lm(mpg ~ wt + disp)

predict values on regular xy grid
wt.pred <- seq(1.5, 5.5, length.out = 30)
disp.pred <- seq(71, 472, length.out = 30)
xy <- expand.grid(wt = wt.pred,

disp = disp.pred)

mpg.pred <- matrix (nrow = 30, ncol = 30,
data = predict(fit, newdata = data.frame(xy),
interval = "prediction")[,1])

fitted points for droplines to surface
fitpoints <- predict(fit)

scatter3D(z = mpg, x = wt, y = disp, pch = 18, cex = 2,
theta = 20, phi = 20, ticktype = "detailed",
xlab = "wt", ylab = "disp", zlab = "mpg",
surf = list(x = wt.pred, y = disp.pred, z = mpg.pred,

facets = NA, fit = fitpoints),
main = "mtcars")

})

===
Two ways to make a scatter 3D of quakes data set
===

par(mfrow = c(1, 1))
first way, use vertical spikes (type = "h")

80 Scatter plots

with(quakes, scatter3D(x = long, y = lat, z = -depth, colvar = mag,
pch = 16, cex = 1.5, xlab = "longitude", ylab = "latitude",
zlab = "depth, km", clab = c("Richter","Magnitude"),
main = "Earthquakes off Fiji", ticktype = "detailed",
type = "h", theta = 10, d = 2,
colkey = list(length = 0.5, width = 0.5, cex.clab = 0.75))
)

second way: add dots on bottom and left panel
before the scatters are drawn,
add small dots on basal plane and on the depth plane
panelfirst <- function(pmat) {

zmin <- min(-quakes$depth)
XY <- trans3D(quakes$long, quakes$lat,

z = rep(zmin, nrow(quakes)), pmat = pmat)
scatter2D(XYx, XYy, colvar = quakes$mag, pch = ".",

cex = 2, add = TRUE, colkey = FALSE)

xmin <- min(quakes$long)
XY <- trans3D(x = rep(xmin, nrow(quakes)), y = quakes$lat,

z = -quakes$depth, pmat = pmat)
scatter2D(XYx, XYy, colvar = quakes$mag, pch = ".",

cex = 2, add = TRUE, colkey = FALSE)
}

with(quakes, scatter3D(x = long, y = lat, z = -depth, colvar = mag,
pch = 16, cex = 1.5, xlab = "longitude", ylab = "latitude",
zlab = "depth, km", clab = c("Richter","Magnitude"),
main = "Earthquakes off Fiji", ticktype = "detailed",
panel.first = panelfirst, theta = 10, d = 2,
colkey = list(length = 0.5, width = 0.5, cex.clab = 0.75))
)

===
text3D and scatter3D
===

with(USArrests, text3D(Murder, Assault, Rape,
colvar = UrbanPop, col = gg.col(100), theta = 60, phi = 20,
xlab = "Murder", ylab = "Assault", zlab = "Rape",
main = "USA arrests",
labels = rownames(USArrests), cex = 0.6,
bty = "g", ticktype = "detailed", d = 2,
clab = c("Urban","Pop"), adj = 0.5, font = 2))

with(USArrests, scatter3D(Murder, Assault, Rape - 1,
colvar = UrbanPop, col = gg.col(100),
type = "h", pch = ".", add = TRUE))

===
zoom near origin
===

Scatter plots 81

display axis ranges
getplist()[c("xlim","ylim","zlim")]

choose suitable ranges
plotdev(xlim = c(0, 10), ylim = c(40, 150),

zlim = c(7, 25))

===
text3D to label x- and y axis
===

par(mfrow = c(1, 1))
hist3D (x = 1:5, y = 1:4, z = VADeaths,

bty = "g", phi = 20, theta = -60,
xlab = "", ylab = "", zlab = "", main = "VADeaths",
col = "#0072B2", border = "black", shade = 0.8,
ticktype = "detailed", space = 0.15, d = 2, cex.axis = 1e-9)

text3D(x = 1:5, y = rep(0.5, 5), z = rep(3, 5),
labels = rownames(VADeaths),
add = TRUE, adj = 0)

text3D(x = rep(1, 4), y = 1:4, z = rep(0, 4),
labels = colnames(VADeaths),
add = TRUE, adj = 1)

===
Scatter2D; bty can also be set = to one of the perspbox alernatives
===

par(mfrow = c(2, 2))
x <- seq(0, 2*pi, length.out = 30)

scatter2D(x, sin(x), colvar = cos(x), pch = 16,
ylab = "sin", clab = "cos", cex = 1.5)

other box types:
scatter2D(x, sin(x), colvar = cos(x), type = "l", lwd = 4, bty = "g")
scatter2D(x, sin(x), colvar = cos(x), type = "b", lwd = 2, bty = "b2")

transparent colors and spikes
scatter2D(x, sin(x), colvar = cos(x), type = "h", lwd = 4, alpha = 0.5)

===
mesh examples and scatter2D
===

par(mfrow = c(1, 2))
x <- seq(-1, 1, by = 0.1)
y <- seq(-2, 2, by = 0.2)

grid <- mesh(x, y)
z <- with(grid, cos(x) * sin(y))
image2D(z, x = x, y = y)
points(grid)
scatter2D(grid$x, grid$y, colvar = z, pch = 20, cex = 2)

82 Scatter plots

===
scatter plot with confidence intervals
===

par(mfrow = c(2, 2))
x <- sort(rnorm(10))
y <- runif(10)
cv <- sqrt(x^2 + y^2)

CI <- list(lwd = 2)
CI$x <- matrix (nrow = length(x), ncol = 2, data = rep(0.25, 2*length(x)))
scatter2D(x, y, colvar = cv, pch = 16, cex = 2, CI = CI)
scatter2D(x, y, colvar = cv, pch = 16, cex = 2, CI = CI, type = "b")

CI$y <- matrix (nrow = length(x), ncol = 2, data = rep(0.05, 2*length(x)))
CI$col <- "black"
scatter2D(x, y, colvar = cv, pch = 16, cex = 2, CI = CI)

CI$y[c(2,4,8,10),] <- NA # Some points have no CI
CI$x[c(2,4,8,10),] <- NA # Some points have no CI
CI$alen <- 0.02 # increase arrow head
scatter2D(x, y, colvar = cv, pch = 16, cex = 2, CI = CI)

===
Scatter on an image
===

par(mfrow = c(1, 1))
image of oxygen saturation
oxlim <- range(Oxsat$val[,,1], na.rm = TRUE)
image2D(z = Oxsat$val[,,1], x = Oxsat$lon, y = Oxsat$lat,

contour = TRUE,
xlab = "longitude", ylab = "latitude",
main = "Oxygen saturation", clim = oxlim, clab = "%")

(imaginary) measurements at 5 sites
lon <- c(11.2, 6.0, 0.9, -4, -8.8)
lat <- c(-19.7,-14.45,-9.1,-3.8, -1.5)
O2sat <- c(90, 95, 92, 85, 100)

add to image; use same zrange; avoid adding a color key
scatter2D(colvar = O2sat, x = lon, y = lat, clim = oxlim, pch = 16,

add = TRUE, cex = 2, colkey = FALSE)

===
Scatter on a contourplot
===

par(mfrow = c(1, 1))

room for colorkey by setting colkey = list(plot = FALSE)

Scatter plots 83

contour plot of the ocean's bathymetry
Depth <- Hypsometry$z
Depth[Depth > 0] <- NA
contour2D(z = Depth, x = Hypsometry$x, y = Hypsometry$y,

xlab = "longitude", ylab = "latitude",
col = "black", NAcol = "grey", levels = seq(-6000, 0, by = 2000),
main = "Oxygen saturation along ship track",
colkey = list(plot = FALSE))

add data to image; with a color key
scatter2D(colvar = O2sat, x = lon, y = lat, pch = 16,

add = TRUE, cex = 2, clab = "%")

===
scatter2D for time-series plots
===

Plotting sunspot 'anomalies'
sunspot <- data.frame(year = time(sunspot.month),

anom = sunspot.month - mean(sunspot.month))

long-term moving average of anomaly
ff <- 100
sunspot$ma <- filter(sunspot$anom, rep(1/ff, ff), sides = 2)

with (sunspot, lines2D(year, anom,
colvar = anom > 0,
col = c("pink", "lightblue"),
main = "sunspot anomaly", type = "h",
colkey = FALSE, las = 1, xlab = "year", ylab = ""))

lines2D(sunspot$year, sunspot$ma, add = TRUE)

The same
#with (sunspot, plot(year, anom,
col = c("pink", "lightblue")[(anom > 0) + 1],
main = "sunspot", type = "h", las = 1))

but this does not work due to NAs...
lines(sunspot$year, sunspot$ma)

===
text2D
===

with(USArrests, text2D(x = Murder, y = Assault + 5, colvar = Rape,
xlab = "Murder", ylab = "Assault", clab = "Rape",
main = "USA arrests", labels = rownames(USArrests), cex = 0.6,
adj = 0.5, font = 2))

with(USArrests, scatter2D(x = Murder, y = Assault, colvar = Rape,
pch = 16, add = TRUE, colkey = FALSE))

reset plotting parameters

84 trans3D

par(mfrow = pm)

trans3D Transformation of 3D elements

Description

trans3D is the plot3D equivalent of trans3d, that projects 3-D elements to 2 dimensions.

Usage

trans3D (x, y, z, pmat)

Arguments

x, y, z Vectors, matrices, arrays, with x, y and z-values.

pmat A 4 x 4 viewing transformation matrix, suitable for projecting the 3D coor-
dinates (x,y,z) into the 2D plane using homogeneous 4D coordinates (x,y,z,t);
such matrices are returned by any of the 3-D plotting functions from package
plot3D and by persp().

Value

A list with two components:

x, y the projected 2-D coordinates of the 3-D input x, y, z

In contrast to trans3d, trans3D the returned values x and y will be of the same class and dimensions
as the input x and y. If inputted x, y, z are matrices or arrays, so will the projected coordinates be.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

scatter3D, slice3D, surf3D.

Examples

==
3-D mesh
==

x <- y <- z <- c(-1 , 0, 1)

plot a 3-D mesh
(M <- mesh(x, y, z))

trans3D 85

plot result
pmat <- scatter3D(Mx, My, M$z, pch = "+", cex = 3, colkey = FALSE)

add line
XY <- trans3D(x = c(-1, 1), y = c(-1, 1), z = c(-1, 1), pmat = pmat)
lines(XY, lwd = 2, col = "blue")

==
Example 2
==

pmat <- perspbox (z = diag(2))
XY <- trans3D(x = runif(30), y = runif(30), z = runif(30), pmat = pmat)
polygon(XY, col = "darkblue")

Index

∗ datasets
3-D data set, 23

∗ hplot
2-D data set, 4
2D image and contour plots, 6
3-D arrows, segments, polygons,

boxes, rectangles, 13
3-D contours, 20
3-D perspectives, 25
3-D surfaces, 34
3-D volume visualisation, 40
Color key legend, 48
Colors, 52
Composite plots, 55
images in 3D frame, 61
Mesh generation, 64
Perspective box, 65
plots with legend or colorkeys, 68
Scatter plots, 73
trans3D, 84

∗ package
plot3D-package, 2

2-D data set, 4
2D image and contour plots, 6
3-D arrows, segments, polygons, boxes,

rectangles, 13
3-D contours, 20
3-D data set, 23
3-D perspectives, 25
3-D surfaces, 34
3-D volume visualisation, 40

alpha.col (Colors), 52
arrows, 16, 17
arrows2D, 3
arrows2D (3-D arrows, segments,

polygons, boxes, rectangles),
13

arrows3D, 3, 64

arrows3D (3-D arrows, segments,
polygons, boxes, rectangles),
13

axis, 49

border3D, 3
border3D (3-D arrows, segments,

polygons, boxes, rectangles),
13

box3D, 3
box3D (3-D arrows, segments, polygons,

boxes, rectangles), 13

colkey, 3, 7, 15, 21, 27, 36, 42, 61, 66, 69, 75
colkey (Color key legend), 48
Color key legend, 48
colorkey.oma (plots with legend or

colorkeys), 68
colorkey.plt (plots with legend or

colorkeys), 68
colorkeyhist (plots with legend or

colorkeys), 68
colorkeymatplot (plots with legend or

colorkeys), 68
colorkeypairs (plots with legend or

colorkeys), 68
colorkeyplot (plots with legend or

colorkeys), 68
colorRamp, 53
colorRampPalette, 53
Colors, 52
Composite plots, 55
computeContour3d, 42
contour, 6, 7, 9, 20, 22, 28, 35
contour2D, 3
contour2D (2D image and contour plots),

6
contour3D, 43
contour3D (3-D contours), 20

86

INDEX 87

createisosurf (3-D volume
visualisation), 40

createKey (plots with legend or
colorkeys), 68

createvoxel (3-D volume visualisation),
40

dev.interactive, 8

getplist (Composite plots), 55
gg.col, 3
gg.col (Colors), 52
gg2.col (Colors), 52

hist, 69
hist3D, 2
hist3D (3-D perspectives), 25
Hypsometry, 3, 30, 67
Hypsometry (2-D data set), 4

image, 2, 3, 6–9
image2D, 3, 4, 24, 27, 63
image2D (2D image and contour plots), 6
image3D (images in 3D frame), 61
ImageOcean, 3, 9
ImageOcean (2-D data set), 4
images in 3D frame, 61
isosurf3D, 2
isosurf3D (3-D volume visualisation), 40

jet.col, 3, 8, 9, 15, 21, 27, 28, 35–37, 42, 43,
56, 74

jet.col (Colors), 52
jet2.col (Colors), 52

legend, 69
legend.oma (plots with legend or

colorkeys), 68
legend.plt (plots with legend or

colorkeys), 68
legendhist (plots with legend or

colorkeys), 68
legendmatplot (plots with legend or

colorkeys), 68
legendpairs (plots with legend or

colorkeys), 68
legendplot (plots with legend or

colorkeys), 68
lines2D (Scatter plots), 73
lines3D, 2

lines3D (Scatter plots), 73

matplot, 69
mesh, 3, 76
mesh (Mesh generation), 64
Mesh generation, 64

Oxsat, 3, 9, 44
Oxsat (3-D data set), 23

par, 8, 69
persp, 2, 8, 15, 16, 21, 22, 26–30, 35–37, 42,

43, 56, 62, 66, 74–76, 84
persp3D, 2, 9, 16, 21, 36, 42, 62, 64, 67, 75
persp3D (3-D perspectives), 25
perspbox, 16, 22, 28, 29, 36, 37, 43, 56, 62,

75, 76
perspbox (Perspective box), 65
Perspective box, 65
plot, 69
plot.plist (Composite plots), 55
plot3D (plot3D-package), 2
plot3D-package, 2
plotdev, 16, 22, 29, 30, 37, 43, 44, 62, 66, 76
plotdev (Composite plots), 55
plots with legend or colorkeys, 68
points2D (Scatter plots), 73
points3D, 2
points3D (Scatter plots), 73
polygon, 8, 9, 16, 56
polygon2D, 3
polygon2D (3-D arrows, segments,

polygons, boxes, rectangles),
13

polygon3D, 3
polygon3D (3-D arrows, segments,

polygons, boxes, rectangles),
13

ramp.col, 3
ramp.col (Colors), 52
rasterImage, 8, 9
rect2D, 3
rect2D (3-D arrows, segments, polygons,

boxes, rectangles), 13
rect3D, 3
rect3D (3-D arrows, segments, polygons,

boxes, rectangles), 13
ribbon3D, 2

88 INDEX

ribbon3D (3-D perspectives), 25

Scatter plots, 73
scatter2D, 3, 9, 67
scatter2D (Scatter plots), 73
scatter3D, 2, 30, 40, 44, 73, 84
scatter3D (Scatter plots), 73
segments, 17
segments2D, 3
segments2D (3-D arrows, segments,

polygons, boxes, rectangles),
13

segments3D, 3
segments3D (3-D arrows, segments,

polygons, boxes, rectangles),
13

selectplist (Composite plots), 55
setplist (Composite plots), 55
slice3D, 2, 64, 84
slice3D (3-D volume visualisation), 40
slicecont3D, 2
slicecont3D (3-D volume visualisation),

40
spheresurf3D, 2
spheresurf3D (3-D surfaces), 34
surf3D, 2, 63, 64, 67, 84
surf3D (3-D surfaces), 34

text2D, 3
text2D (Scatter plots), 73
text3D, 3, 30
text3D (Scatter plots), 73
trans3D, 17, 22, 29, 37, 44, 56, 63, 67, 76, 84
trans3d, 84
triangle3D (3-D volume visualisation),

40

voxel3D, 2, 16, 21, 36, 62, 75
voxel3D (3-D volume visualisation), 40

	plot3D-package
	2-D data set
	2D image and contour plots
	3-D arrows, segments, polygons, boxes, rectangles
	3-D contours
	3-D data set
	3-D perspectives
	3-D surfaces
	3-D volume visualisation
	Color key legend
	Colors
	Composite plots
	images in 3D frame
	Mesh generation
	Perspective box
	plots with legend or colorkeys
	Scatter plots
	trans3D
	Index

