
Package ‘pracpac’
July 23, 2025

Title Practical 'R' Packaging in 'Docker'

Version 0.2.0

Description Streamline the creation of 'Docker' images with 'R' packages and dependencies embed-
ded. The 'pracpac' package provides a 'usethis'-like interface to creating Dockerfiles with depen-
dencies managed by 'renv'. The 'pracpac' functionality is described in Na-
graj and Turner (2023) <doi:10.48550/arXiv.2303.07876>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports magrittr, glue, fs, rprojroot, renv, pkgbuild

Depends R (>= 2.10)

Suggests rmarkdown, knitr, testthat (>= 3.0.0), withr

VignetteBuilder knitr

Config/testthat/edition 3

URL https://signaturescience.github.io/pracpac/,

https://github.com/signaturescience/pracpac/

BugReports https://github.com/signaturescience/pracpac/issues

NeedsCompilation no

Author Stephen Turner [aut] (ORCID: <https://orcid.org/0000-0001-9140-9028>),
VP Nagraj [cre, aut] (ORCID: <https://orcid.org/0000-0003-0060-566X>),
Signature Science, LLC. [cph]

Maintainer VP Nagraj <nagraj@nagraj.net>

Repository CRAN

Date/Publication 2023-06-18 22:40:05 UTC

Contents
add_assets . 2
add_dockerfile . 3

1

https://doi.org/10.48550/arXiv.2303.07876
https://signaturescience.github.io/pracpac/
https://github.com/signaturescience/pracpac/
https://github.com/signaturescience/pracpac/issues
https://orcid.org/0000-0001-9140-9028
https://orcid.org/0000-0003-0060-566X

2 add_assets

build_image . 5
build_pkg . 6
create_docker_dir . 7
handle_use_case . 8
pkg_info . 9
pkg_root . 10
renv_deps . 10
use_docker . 12

Index 15

add_assets Add assets for the specified use case

Description

Add template assets for the use case specified in add_dockerfile or use_docker.

Usage

add_assets(
pkg_path = ".",
img_path = NULL,
use_case = "default",
overwrite = TRUE

)

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

img_path Path to the write the docker image definition contents. The default NULL will use
docker/ as a subdirectory of the pkg_path.

use_case Name of the use case. Defaults to "default", which only uses the base boiler-
plate.

overwrite Logical; should existing assets should be overwritten? Default is TRUE.

Details

Example #1: the "shiny" use case requires than an app.R file moved into /srv/shiny-server/ in
the container image. Using add_assets(use_case="shiny") (or when using the "shiny" use case
in add_dockerfile or use_docker) will create a placeholder assets/app.R in the docker/ directory.
The Dockerfile for the "shiny" use case will place COPY assets/app.R/srv/shiny-server into
the Dockerfile.

Example #2: the "pipeline" use case creates boilerplate for moving pre- and post-processing R
and shell scripts into the container at add_assets(use_case="pipeline") (or when using the

add_dockerfile 3

"pipeline" use case in add_dockerfile or use_docker) will create a placeholder assets/pre.R,
assets/post.R, and assets/run.sh into the docker/assets directory. The Dockerfile for the
"pipeline" use case will place COPY assets/run.sh /run.sh into the Dockerfile.

This function is run as part of use_docker but can be used on its own.

See vignette("use-cases", package="pracpac") for details on use cases.

Value

Invisibly returns assets per handle_use_case. Called primarily for its side effects.

Examples

Not run:

Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

Add assets for shiny use case
add_assets(pkg_path = file.path(tempdir(), "hellow"), use_case="shiny")
Add assets for pipeline use case
add_assets(pkg_path = file.path(tempdir(), "hellow"), use_case="pipeline")

End(Not run)

add_dockerfile Add a Dockerfile to the docker directory

Description

Adds a Dockerfile to the docker directory created by create_docker_dir. Allows for specification
of several preset use cases, whether or not use use renv to manage dependencies, and optional
overriding the base image.

Usage

add_dockerfile(
pkg_path = ".",
img_path = NULL,
use_renv = TRUE,
use_case = "default",
base_image = NULL,
repos = NULL

)

4 add_dockerfile

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

img_path Path to the write the docker image definition contents. The default NULL will use
docker/ as a subdirectory of the pkg_path.

use_renv Logical; use renv? Defaults to TRUE. If FALSE, package dependencies are scraped
from the DESCRIPTION file and the most recent versions will be installed in the
image.

use_case Name of the use case. Defaults to "default", which only uses the base boiler-
plate. See vignette("use-cases", package="pracpac") for other use cases
(e.g., shiny, rstudio, pipeline).

base_image Name of the base image to start FROM. Default is NULL and the base image will
be derived based on use_case. Optionally override this by setting the name of
the base image (including tag if desired).

repos Option to override the repos used for installing packages with renv by passing
name of repository. Only used if use_renv = TRUE. Default is NULL meaning
that the repos specified in renv lockfile will remain as-is and not be overridden.

Details

This function is run as part of use_docker but can be used on its own.

See vignette("use-cases", package="pracpac") for details on use cases.

Value

Invisibly returns a list of package info returned by pkg_info. Primarily called for side-effect to
create Dockerfile.

Examples

Not run:

Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

Default: FROM rocker/r-ver:latest with no additional template
By default add_dockerfile requires you either to specify use_renv = FALSE
Or run renv_deps() prior to add_dockerfile()
The use_docker() wrapper runs these sequentially, and is recommended for most usage
add_dockerfile(pkg_path = file.path(tempdir(), "hellow"), use_renv = FALSE)
Specify tidyverse base image
renv_deps(pkg_path = file.path(tempdir(), "hellow"))
add_dockerfile(pkg_path = file.path(tempdir(), "hellow"), base_image="rocker/tidyverse:4.2.2")
Specify different default repo

build_image 5

add_dockerfile(pkg_path = file.path(tempdir(), "hellow"), repos="https://cran.wustl.edu/")
RStudio template
add_dockerfile(pkg_path = file.path(tempdir(), "hellow"), use_case="rstudio")
Shiny template
add_dockerfile(pkg_path = file.path(tempdir(), "hellow"), use_case = "shiny")
Pipeline template
add_dockerfile(pkg_path = file.path(tempdir(), "hellow"), use_case="pipeline")

End(Not run)

build_image Build a Docker image

Description

Builds a Docker image created by use_docker or add_dockerfile. This function is run as part of
use_docker when build = TRUE is set, but can be used on its own.

Usage

build_image(
pkg_path = ".",
img_path = NULL,
cache = TRUE,
tag = NULL,
build = TRUE

)

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

img_path Path to the write the docker image definition contents. The default NULL will use
docker/ as a subdirectory of the pkg_path.

cache Logical; should caching be used? Default TRUE. Set to FALSE to use --no-cache
in docker build.

tag Image tag to use; default is NULL and the image will be tagged with package
name version from pkg_info.

build Logical as to whether or not the image should be built. Default is TRUE, and if
FALSE the docker build command will be messaged. Setting build=FALSE
could be useful if additional docker build options or different tags are desired.
In either case the docker build command will be returned invisibly.

Value

Invisibly returns the docker build command. Primarily called for its side effects, which runs the
docker build as a system command.

6 build_pkg

Examples

Not run:
Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

Run use_docker to create Docker directory and assets for the example package
use_docker(pkg_path = file.path(tempdir(), "hellow"))

Build the image
build_image(pkg_path = file.path(tempdir(), "hellow"))
Or construct the image build command without building
build_cmd <- build_image(pkg_path = file.path(tempdir(), "hellow"), build=FALSE)
build_cmd

End(Not run)

build_pkg Build a package tar.gz

Description

Builds a package source tar.gz using pkgbuild::build and moves it into a user-specified location
(default docker/).

Usage

build_pkg(pkg_path = ".", img_path = NULL, ...)

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

img_path Path to the write the docker image definition contents. The default NULL will use
docker/ as a subdirectory of the pkg_path.

... Additional optional arguments passed to pkgbuild::build.

Value

Invisibly returns a list of package info returned by pkg_info, tar.gz source and destination file paths.

create_docker_dir 7

Examples

Not run:
Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

Build the example package from tempdir()
build_pkg(pkg = file.path(tempdir(), "hellow"))

End(Not run)

create_docker_dir Create Docker directory

Description

Creates a docker/ directory for a given package. By default, assumes that docker/ should be a
subdirectory of the specified package path.

Usage

create_docker_dir(pkg_path = ".", img_path = NULL)

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

img_path Path to the write the docker image definition contents. The default NULL will use
docker/ as a subdirectory of the pkg_path.

Details

This function is run as part of use_docker but can be used on its own.

Value

Invisibly returns a list of package info returned by pkg_info. Primarily called for side-effect to
create docker directory.

8 handle_use_case

Examples

Not run:
Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

Assuming default behavior then docker/ will be created under source root
create_docker_dir(pkg_path = file.path(tempdir(), "hellow"))

Alternatively you can specify another directory above, below, or beside package source
create_docker_dir(pkg_path = file.path(tempdir(), "hellow"), img_path = file.path(tempdir(), "img"))

End(Not run)

handle_use_case Handle the use case

Description

This unexported helper function internally handles the provided use case.

Usage

handle_use_case(use_case)

Arguments

use_case The specified use case.

Value

List of parsed information for the use case including, the name of the use case, path to Dockerfile
template, base image, and path to assets (delimited by ; if there are multiple and NA if there are
none).

pkg_info 9

pkg_info Get information about the current package

Description

Returns information about the current package in a list which can be passed to other functions.

Usage

pkg_info(pkg_path = ".", ...)

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

... Arguments passed to rprojroot::find_package_root_file.

Value

A list of information about the package.

• pkgroot: Root directory of the package.

• pkgdeps: Package dependencies from Imports in the DESCRIPTION.

• descfile: File path to the DESCRIPTION file.

• pkgname: Package name.

• pkgver: Package version.

Examples

Not run:
Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

This will succeed if this is a package
pkg_info(pkg_path = file.path(tempdir(), "hellow"))
This will fail if this is not a package location
pkg_info(pkg_path = tempdir())

End(Not run)

10 renv_deps

pkg_root Find package root

Description

Unexported helper to find the root of the R package. Returns an error if the path specified is not an
R package.

Usage

pkg_root(pkg_path = ".", ...)

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

... Arguments passed to rprojroot::find_package_root_file.

Value

A file path of the package root. If no package is found at the root then the function will stop with
an error message.

renv_deps Get dependencies using renv

Description

Get dependencies using renv. This function will inspect your package specified at pkg_path (default
is current working directory, .), and create an renv lock file (renv.lock) in the docker/ directory.
More information about the renv implementation is provided in the Details section.

Usage

renv_deps(
pkg_path = ".",
img_path = NULL,
other_packages = NULL,
overwrite = TRUE,
consent_renv = TRUE

)

renv_deps 11

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

img_path Path to the write the docker image definition contents. The default NULL will use
docker/ as a subdirectory of the pkg_path.

other_packages Vector of other packages to be included in renv lock file; default is NULL.

overwrite Logical; should an existing lock file should be overwritten? Default is TRUE.

consent_renv Logical; give renv consent in this session with options(renv.consent = TRUE)?
Default is TRUE. See renv::consent for details.

Details

The renv.lock file will capture all your package’s dependencies (and all their dependencies) at the
current version installed on your system at the time this function is run. When using the default
use_renv=TRUE in use_docker or add_dockerfile, the resulting Dockerfile will install packages
from this renv.lock file using renv::restore. This ensures that versions of dependencies in the
image mirror what is installed on your system at the time of image creation, rather than poten-
tially newer versions on package repositories like CRAN or Bioconductor, which may come with
breaking changes that you are unaware of at the time of package development.

If there are additional R packages that may be useful for the Docker image you plan to build (but
may not be captured under your package dependencies), then you can add these packages to the
renv procedure with the "other_packages" argument.

This function is run as part of use_docker but can be used on its own.

Value

Invisibly returns a list of package info returned by pkg_info. Primarily called for side effect. Writes
an renv lock file to the docker/ directory.

Examples

Not run:
Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

Run using defaults; only gets current package dependencies
renv_deps(pkg_path = file.path(tempdir(), "hellow"))
Add additional packages not explicitly required by your package
renv_deps(pkg_path = file.path(tempdir(), "hellow"), other_packages=c("shiny", "knitr"))

End(Not run)

12 use_docker

use_docker Use docker packaging tools

Description

Wrapper function around other pracpac functions. See help for the functions linked below for
detail on individual functions. All arguments to use_docker() are passed to downstream functions.
use_docker() will sequentially run:

1. pkg_info to get information about the current R package.

2. create_docker_dir to create the docker/ directory in the specified location, if it doesn’t already
exist.

3. renv_deps (if use_renv=TRUE, the default) to capture package dependencies with renv and
create an renv.lock file

4. add_dockerfile to create a Dockerfile using template specified by use_case

5. add_assets depending on the use_case

6. build_pkg to build the current R package source .tar.gz, and place it into the docker/ directory

7. build_image optional, default FALSE; if TRUE, will build the Docker image.

The default build=FALSE means that everything up to build_image() is run, but the image is not
actually built. Instead, use_docker() will message the docker build command, and return that
string in $buildcmd in the invisibly returned output.

See vignette("use-cases", package="pracpac") for details on use cases.

Usage

use_docker(
pkg_path = ".",
img_path = NULL,
use_renv = TRUE,
use_case = "default",
base_image = NULL,
other_packages = NULL,
build = FALSE,
repos = NULL,
overwrite_assets = TRUE,
overwrite_renv = TRUE,
consent_renv = TRUE

)

Arguments

pkg_path Path to the package directory. Default is "." for the current working directory,
which assumes developer is working in R package root. However, this can be
set to another path as needed.

use_docker 13

img_path Path to the write the docker image definition contents. The default NULL will use
docker/ as a subdirectory of the pkg_path.

use_renv Logical; use renv? Defaults to TRUE. If FALSE, package dependencies are scraped
from the DESCRIPTION file without version information.

use_case Name of the use case. Defaults to "default", which only uses the base boiler-
plate.

base_image Name of the base image to start FROM. Default is NULL and the base image will
be derived based on use_case. Optionally override this by setting the name of
the base image (including tag if desired).

other_packages Vector of other packages to be included in renv lock file; default is NULL.

build Logical as to whether or not the image should be built. Default is TRUE, and if
FALSE the docker build command will be messaged. Setting build=FALSE
could be useful if additional docker build options or different tags are desired.
In either case the docker build command will be returned invisibly.

repos Option to override the repos used for installing packages with renv by passing
name of repository. Only used if use_renv = TRUE. Default is NULL meaning
that the repos specified in renv lockfile will remain as-is and not be overridden.

overwrite_assets

Logical; should existing asset files should be overwritten? Default is TRUE.

overwrite_renv Logical; should an existing lock file should be overwritten? Default is TRUE;
ignored if use_renv = TRUE.

consent_renv Logical; give renv consent in this session with options(renv.consent = TRUE)?
Default is TRUE. See renv::consent for details.

Value

Invisibly returns a list with information about the package ($info) and the docker build command
($buildcmd). Primarily called for side effect. Creates docker/ directory, identifies renv dependen-
cies and creates lock file (if use_renv = TRUE), writes Dockerfile, builds package tar.gz, moves all
relevant assets to the docker/ directory, and builds Docker image (if build = TRUE).

Examples

Not run:

Specify path to example package source and copy to tempdir()
Note that in practice you do not need to copy to a tempdir()
And in fact it may be easiest to use pracpac relative to your package directory root
ex_pkg_src <- system.file("hellow", package = "pracpac", mustWork = TRUE)
file.copy(from = ex_pkg_src, to = tempdir(), recursive = TRUE)

Run use_docker to create Docker directory and assets for the example package
use_docker(pkg_path = file.path(tempdir(), "hellow"))
To not use renv
use_docker(pkg_path = file.path(tempdir(), "hellow"), use_renv=FALSE)
To specify a use case
use_docker(pkg_path = file.path(tempdir(), "hellow"), use_case="pipeline")
To overwrite the default base image

14 use_docker

use_docker(pkg_path = file.path(tempdir(), "hellow"), base_image="alpine:latest")

End(Not run)

Index

add_assets, 2, 12
add_dockerfile, 2, 3, 3, 5, 11, 12

build_image, 5, 12
build_pkg, 6, 12

create_docker_dir, 3, 7, 12

handle_use_case, 3, 8

pkg_info, 4–7, 9, 11, 12
pkg_root, 10
pkgbuild::build, 6

renv::consent, 11, 13
renv::restore, 11
renv_deps, 10, 12
rprojroot::find_package_root_file, 9,

10

use_docker, 2–5, 7, 11, 12

15

	add_assets
	add_dockerfile
	build_image
	build_pkg
	create_docker_dir
	handle_use_case
	pkg_info
	pkg_root
	renv_deps
	use_docker
	Index

