
Package ‘pricelevels’
July 22, 2025

Type Package

Title Spatial Price Level Comparisons

Version 1.4.0

Description Price comparisons within or between countries provide an overall measure of the rela-
tive difference in prices, often denoted as price levels. This package provides index num-
ber methods for such price comparisons (e.g., The World Bank, 2011, <doi:10.1596/978-0-8213-
9728-2>). Moreover, it contains functions for sampling and characterizing price data.

License EUPL

Depends R (>= 4.0.1)

Imports data.table (>= 1.14.0), minpack.lm (>= 1.2-1)

Encoding UTF-8

Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://github.com/sweinand/pricelevels

BugReports https://github.com/sweinand/pricelevels/issues

Language en-US

NeedsCompilation no

Author Sebastian Weinand [aut, cre]

Maintainer Sebastian Weinand <s.weinand90@googlemail.com>

Repository CRAN

Date/Publication 2025-07-22 13:00:50 UTC

Contents
bilateral.index . 2
cpd . 5
geks . 8
gerardi . 11

1

https://doi.org/10.1596/978-0-8213-9728-2
https://doi.org/10.1596/978-0-8213-9728-2
https://github.com/sweinand/pricelevels
https://github.com/sweinand/pricelevels/issues

2 bilateral.index

gkhamis . 13
pricedata . 16
pricelevels . 19
ratios . 21
rdata . 22

Index 26

bilateral.index Bilateral price indices

Description

Calculation of bilateral price indices. Currently, the following ones are implemented (see below in
alphabetic order).

Usage

banerjee(p, r, n, q, base=NULL, settings=list())

bmw(p, r, n, base=NULL, settings=list())

carli(p, r, n, base=NULL, settings=list())

cswd(p, r, n, base=NULL, settings=list())

davies(p, r, n, q, base=NULL, settings=list())

drobisch(p, r, n, q, w=NULL, base=NULL, settings=list())

dutot(p, r, n, base=NULL, settings=list())

fisher(p, r, n, q, w=NULL, base=NULL, settings=list())

geolaspeyres(p, r, n, q, w=NULL, base=NULL, settings=list())

geopaasche(p, r, n, q, w=NULL, base=NULL, settings=list())

geowalsh(p, r, n, q, w=NULL, base=NULL, settings=list())

geoyoung(p, r, n, q, w=NULL, base=NULL, settings=list())

harmonic(p, r, n, base=NULL, settings=list())

jevons(p, r, n, base=NULL, settings=list())

laspeyres(p, r, n, q, w=NULL, base=NULL, settings=list())

bilateral.index 3

lehr(p, r, n, q, base=NULL, settings=list())

lowe(p, r, n, q, base=NULL, settings=list())

medgeworth(p, r, n, q, base=NULL, settings=list())

paasche(p, r, n, q, w=NULL, base=NULL, settings=list())

palgrave(p, r, n, q, w=NULL, base=NULL, settings=list())

svartia(p, r, n, q, w=NULL, base=NULL, settings=list())

toernqvist(p, r, n, q, w=NULL, base=NULL, settings=list())

theil(p, r, n, q, w=NULL, base=NULL, settings=list())

uvalue(p, r, n, q, base=NULL, settings=list())

walsh(p, r, n, q, w=NULL, base=NULL, settings=list())

young(p, r, n, q, base=NULL, settings=list())

Arguments

p A numeric vector of positive prices.

r, n A character vector or factor of regional entities r and products n, respectively.

q, w A numeric vector of non-negative quantities q or expenditure share weights w
(see Section ’Details’). Either q or w must be provided for weighted indices. If
both q and w are provided, q will be used.

base A character specifying the base region to which all price levels are expressed. If
NULL, base region is set internally.

settings A list of control settings to be used. The following settings are supported:

• chatty : A logical specifying if warnings and info messages should be
printed or not. The default is getOption("pricelevels.chatty").

• connect : A logical specifying if the data should be checked for connect-
edness or not. The default is getOption("pricelevels.connect"). If
the data are not connected, price levels are computed within the biggest
block of connected regions or the block of regions to which the base region
belongs. See also connect().

• plot : A logical specifying if the calculated price levels should be plotted or
not. If TRUE, the price ratios of each region are displayed as boxplots and the
price levels are added as colored points. The default is getOption("pricelevels.plot").

• qbase : A character specifying the region b whose quantities (and prices)
should be used by lowe(), young(), and geoyoung(). If NULL, prices are
averaged and quantities added up for each product, i.e. pbi =

∑R
r=1 p

r
i /R

and qbi =
∑R

r=1 q
r
i .

4 bilateral.index

Details

Before calculations start, missing values are removed from the data. Duplicated observations for
r and n are aggregated, that is, duplicated prices p and weights w are averaged and duplicated
quantities q added up. If there is more than one region in the data, products with prices in only one
region r are removed.

The weights w must represent expenditure shares defined as wr
i = pri q

r
i /

∑N
j=1 p

r
jq

r
j . They are

internally (re-)normalized such that they add up to 1 for each region r.

Value

A named vector of price levels.

Author(s)

Sebastian Weinand

References

ILO, IMF, OECD, UNECE, Eurostat and World Bank (2020). Consumer Price Index Manual:
Concepts and Methods. Washington DC: International Monetary Fund.

Examples

sample complete price data:
set.seed(123)
dt1 <- rdata(R=3, B=1, N=5)

compute jevons and toernqvist index:
dt1[, jevons(p=price, r=region, n=product, base="1")]
dt1[, toernqvist(p=price, r=region, n=product, q=quantity, base="1")]

compute lowe index using quantities of region 2:
dt1[, lowe(p=price, r=region, n=product, q=quantity, base="1",

settings=list(qbase="2"))]

add price data:
dt2 <- rdata(R=4, B=1, N=4)
dt2[, "region":=factor(region, labels=4:7)]
dt2[, "product":=factor(product, labels=6:9)]
dt <- rbind(dt1, dt2)
dt[, is.connected(r=region, n=product)] # non-connected now

compute jevons index with base region 1:
dt[, jevons(p=price, r=region, n=product, base="1")]

change base region:
dt[, jevons(p=price, r=region, n=product, base="4")]

cpd 5

cpd CPD and NLCPD methods

Description

The function cpd() estimates regional price levels by the Country-Product-Dummy (CPD) method,
originally developed by Summers (1973). Auer and Weinand (2025) recently proposed a general-
ization of the CPD method. This nonlinear CPD method (NLCPD method) is implemented in the
function nlcpd().

Usage

cpd(p, r, n, q=NULL, w=NULL, base=NULL, simplify=TRUE, settings=list())

nlcpd(p, r, n, q=NULL, w=NULL, base=NULL, simplify=TRUE, settings=list(), ...)

Arguments

p A numeric vector of positive prices.

r, n A character vector or factor of regional entities r and products n, respectively.

q, w A numeric vector of non-negative quantities q or weights w. By default, no
weights are used in the regression (q=NULL and w=NULL). While w can be any
weights considered as appropriate for weighted regression, q will result in an
expenditure share weighted regression (see Section ’Details’). If both q and w
are provided, q will be used.

base A character specifying the base to which the estimated logarithmic regional price
levels are expressed. When NULL, they refer to the (unweighted) regional aver-
age, similar to contr.sum.

simplify A logical indicating whether the full regression-object should be provided (FALSE)
or a named vector of estimated regional price levels (TRUE).

settings A list of control settings to be used. The following settings are supported:

• chatty : A logical specifying if warnings and info messages should be
printed or not. The default is getOption("pricelevels.chatty").

• connect : A logical specifying if the data should be checked for connect-
edness or not. The default is getOption("pricelevels.connect"). If
the data are not connected, price levels are computed within the biggest
block of connected regions or the block of regions to which the base region
belongs. See also connect().

• norm.weights : A logical specifying if the weights w should be renormal-
ized such that they add up to 1 for each region r or not. The default is
TRUE.

• plot : A logical specifying if the calculated price levels should be plotted or
not. If TRUE, the price ratios of each region are displayed as boxplots and the
price levels are added as colored points. The default is getOption("pricelevels.plot").

6 cpd

• self.start : Only if par=NULL, the strategy how parameter start values are
internally derived by nlcpd(). Currently, values s1, s2 and s3 are allowed.
For s1, simple price averages across products and regions are used as start
values, while these are derived by the CPD method for strategies s2 and
s3. Start values for delta are either set to 1 or derived by their first-order
condition if s3. By default, self.start='s1'.

• use.jac : A logical indicating if the jacobian matrix should be used by
nlcpd() for the nonlinear optimization or not. The default is FALSE.

• w.delta : A named vector of weights for the delta-parameter (see section
’Method’). Vector length must be equal to the number of products, while
names must match product names. If not supplied, δi weights are derived
internally by nlcpd() from the weights w.

... Further arguments passed to nls.lm, typically arguments control, par, upper,
and lower. For par, upper, and lower, vectors must have names for each pa-
rameter separated by a dot, e.g., lnP.1, pi.2, or delta.3.

Details

Before calculations start, missing values are removed from the data. Duplicated observations for
r and n are aggregated, that is, duplicated prices p and weights w are averaged and duplicated
quantities q added up. If there is more than one region in the data, products with prices in only one
region r are removed.

If q is provided, expenditure shares are derived as wr
i = pri q

r
i /

∑N
j=1 p

r
jq

r
j and used as weights in the

regression. If only w is provided, the weights w are (re-)normalized by default. If the weights w do not
represent expenditure shares, the (re-)normalization can be turned off by settings=list(norm.weights=FALSE).

Value

For simplify=TRUE, a named vector of (unlogged) regional price levels. Otherwise, for cpd(), a
lm-object containing the full regression output, and for nlcpd() the full output of nls.lm() plus
element w.delta.

Method

The CPD method is a linear regression model that explains the logarithmic price of product i in
region r, ln pri , by the general product price, lnπi, and the overall price level, lnP r:

ln pri = lnπi + lnP r + ur
i

The NLCPD method inflates the CPD model by product-specific elasticities δi:

ln pri = lnπi + δi lnP
r + ur

i

Both methods require a normalization of the estimated price levels l̂nP r to avoid multicollinearity.
If base=NULL, the normalization

∑R
r=1 l̂nP

r = 0 is used by cpd() and nlcpd(); otherwise, one
price level is set to 0. The NLCPD method additionally imposes the restriction

∑N
i=1 wiδ̂i = 1,

where the weights wi can be defined by settings$w.delta. In nlcpd(), one δ̂i-parameter is
derived residually from this restriction instead of being estimated.

cpd 7

Author(s)

Sebastian Weinand

References

Auer, L. v. and Weinand, S. (2025). The Country-Product-Dummy Method With Product-Specific
Spatial Price Variation. Review of Income and Wealth, 71: e70005.

Summers, R. (1973). International Price Comparisons based upon Incomplete Data. Review of
Income and Wealth, 19 (1), 1-16.

See Also

lm, dummy.coef, nls.lm

Examples

sample complete price data:
set.seed(123)
R <- 3 # number of regions
B <- 1 # number of product groups
N <- 5 # number of products
dt1 <- rdata(R=R, B=B, N=N)

compute expenditure share weighted cpd and nlcpd index:
dt1[, cpd(p=price, r=region, n=product, q=quantity)]
dt1[, nlcpd(p=price, r=region, n=product, q=quantity)]

set individual start values in nlcpd():
par.init <- list("lnP"=setNames(rep(0, R), 1:R),

"pi"=setNames(rep(2, N), 1:N),
"delta"=setNames(rep(1, N), 1:N))

dt1[, nlcpd(p=price, r=region, n=product, q=quantity, par=par.init)]

use lower and upper bounds on parameters:
dt1[, nlcpd(p=price, r=region, n=product, q=quantity,

lower=unlist(par.init)-0.1, upper=unlist(par.init)+0.1)]

change internal calculation of start values:
dt1[, nlcpd(p=price, r=region, n=product, q=quantity, settings=list(self.start="s2"))]

add price data:
dt2 <- rdata(R=4, B=1, N=4)
dt2[, "region":=factor(region, labels=4:7)]
dt2[, "product":=factor(product, labels=6:9)]
dt <- rbind(dt1, dt2)
dt[, is.connected(r=region, n=product)] # non-connected now

compute expenditure share weighted cpd and nlcpd index:
dt[, cpd(p=price, r=region, n=product, q=quantity, base="1")]
dt[, nlcpd(p=price, r=region, n=product, q=quantity, base="1")]

8 geks

compare with toernqvist index:
dt[, toernqvist(p=price, r=region, n=product, q=quantity, base="1")]

computational speed in nlcpd() usually increases if use.jac=TRUE:
set.seed(123)
dt3 <- rdata(R=20, B=1, N=30)
system.time(m1 <- dt3[, nlcpd(p=price, r=region, n=product, q=quantity,

settings=list(use.jac=FALSE), simplify=FALSE,
control=minpack.lm::nls.lm.control("maxiter"=200))])

system.time(m2 <- dt3[, nlcpd(p=price, r=region, n=product, q=quantity,
settings=list(use.jac=TRUE), simplify=FALSE,
control=minpack.lm::nls.lm.control("maxiter"=200))])

all.equal(m1$par, m2$par, tol=1e-05)

geks GEKS method

Description

The function index.pairs() computes bilateral index numbers for all pairs of regions. Based on
that, the function geks() derives regional price levels using the GEKS method proposed by Gini
(1924, 1931), Elteto and Koves (1964), and Szulc (1964).

Usage

index.pairs(p, r, n, q=NULL, w=NULL, settings=list())

geks(p, r, n, q=NULL, w=NULL, base=NULL, simplify=TRUE, settings=list())

Arguments

p A numeric vector of positive prices.

r, n A character vector or factor of regional entities r and products n, respectively.

q, w A numeric vector of non-negative quantities q or expenditure share weights w
(see Section ’Details’) to be used in the computation of weighted bilateral index
numbers. Can be NULL, if the index formula specified in type does not require
quantities or weights. If both q and w are provided, q will be used.

base A character specifying the base region to which all price levels are expressed.
When NULL, they refer to the (unweighted) regional average.

simplify A logical indicating whether the full regression-object should be provided (FALSE)
or a named vector of estimated regional price levels (TRUE).

settings A list of control settings to be used. The following settings are supported:

• chatty : A logical specifying if warnings and info messages should be
printed or not. The default is getOption("pricelevels.chatty").

geks 9

• connect : A logical specifying if the data should be checked for connect-
edness or not. The default is getOption("pricelevels.connect") for
geks() and FALSE for index.pairs(). If the data are not connected, price
levels are computed within the biggest block of connected regions or the
block of regions to which the base region belongs. See also connect().

• plot : A logical specifying if the calculated price levels should be plotted or
not. If TRUE, the price ratios of each region are displayed as boxplots and the
price levels are added as colored points. The default is getOption("pricelevels.plot").
Used only by geks().

• all.pairs : A logical indicating whether bilateral index numbers should
be computed for all region pairs (TRUE, the default) or only for non-redundant
ones (e.g., the index number PAB is computed while PBA and PAA are
excluded). For bilateral index formulas passing the country reversal test,
the resulting price levels derived by geks() will be the same. The default
is TRUE.

• type : A character specifying the bilateral index formula(s) used to aggre-
gate individual prices into price indices for each pair of regions (first step
of GEKS). See bilateral.index for allowed values. Multiple choices
allowed. The default is jevons.

• wmethod : the weighting method (second step of GEKS). Allowed values
are none for equal weighting of all bilateral price indices, obs for weight-
ing the bilateral price indices according to the underlying number of inter-
secting observations, or shares for weighting according to the intersecting
expenditure shares. The default is none. Used only by geks().

• qbase : relevant only if type is one of (lowe, young, geoyoung), see
bilateral.index.

Details

Before calculations start, missing values are removed from the data. Duplicated observations for
r and n are aggregated, that is, duplicated prices p and weights w are averaged and duplicated
quantities q added up. If there is more than one region in the data, products with prices in only one
region r are removed.

The weights w must represent expenditure shares defined as wr
i = pri q

r
i /

∑N
j=1 p

r
jq

r
j . They are

internally (re-)normalized such that they add up to 1 for each region r.

Value

For index.pairs(), a data.table with variables base (the base region), region (the comparison
region), and the price level between the two regions (variable names defined by settings$type).

For geks(), a named vector or matrix of (unlogged) regional price levels if simplify=TRUE. Oth-
erwise, for simplify=FALSE, a lm-object containing the full regression output.

Method

The GEKS method is a two-step approach. First, prices are aggregated into bilateral index numbers,
P sr, using the index formulas given in type. This is done for all pairs of regions s and r via the

10 geks

function index.pairs(). Second, these bilateral index numbers are transformed into transitive
index numbers, P r, by estimating the following regression model:

lnP sr = ln (P r/P s) + usr

The quantities q or weights w are used within the aggregation of prices into index numbers (first
stage) while the subsequent transformation of these index numbers (second stage) usually does not
rely on any weights (but can if specified in settings$wmethod).

Author(s)

Sebastian Weinand

References

Gini, C. (1924). Quelques Considerations au Sujet de la Construction des Nombres Indices des Prix
et des Questions Analogues. Mentron, 4 (1), 3-162.

Gini, C. (1931). On the Circular Test of Index Numbers. International Statistical Review, 9 (2),
3-25.

Elteto, O. and Koves, P. (1964). On a Problem of Index Number Computation Relating to Interna-
tional Comparison. Statisztikai Szemle, 42, 507-518.

Szulc, B. J. (1964). Indices for Multiregional Comparisons. Przeglad Statystyczny, 3, 239-254.

See Also

bilateral.index

Examples

example data:
set.seed(123)
dt1 <- rdata(R=3, B=1, N=5)

Index pairs

matrix of bilateral index numbers:
Pje <- dt1[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons"))]
if the underlying index satisfies the country-reversal
test (like the Jevons index), the price index numbers of
the upper-right triangle are the same as the inverse of
the price index numbers of the lower-left triangle.
all.equal(Pje$jevons[3], 1/Pje$jevons[7]) # true
hence, one could set all.pairs=FALSE without loosing any
information. however, this is no longer true for indices
that do not satisfy this test (like the Carli index):
Pca <- dt1[, index.pairs(p=price, r=region, n=product, settings=list(type="carli"))]
all.equal(Pca$carli[3], 1/Pca$carli[7]) # false

GEKS method

gerardi 11

for complete price data (no gaps), the jevons index is transitive.
hence, no adjustment is needed by the geks approach, which is
why the index numbers are the same:
all.equal(

dt1[, geks(p=price, r=region, n=product, base="1", settings=list(type="jevons"))],
dt1[, jevons(p=price, r=region, n=product, base="1")]

) # true

this is no longer true when there are gaps in the data:
dt1.gaps <- dt1[!rgaps(region, product, amount=0.25),]
all.equal(
dt1.gaps[, geks(p=price, r=region, n=product, base="1", settings=list(type="jevons"))],
dt1.gaps[, jevons(p=price, r=region, n=product, base="1")]

) # now, differences

weighting at the second step of GEKS can be done with respect
to the intersection of products for each pair of region:
dt1.gaps[, geks(p=price, r=region, n=product, base="1",

settings=list(type="jevons", wmethod="obs"))]

add price data:
dt2 <- rdata(R=4, B=1, N=4)
dt2[, "region":=factor(region, labels=4:7)]
dt2[, "product":=factor(product, labels=6:9)]
dt <- rbind(dt1, dt2)
dt[, is.connected(r=region, n=product)] # non-connected now

compute all index pairs and geks:
require(data.table)
as.matrix(dcast(

data=dt[, index.pairs(p=price, r=region, n=product)],
formula=base~region,
value.var="jevons"), rownames="base")

dt[, geks(p=price, r=region, n=product, base="1", settings=list(type="jevons"))]

gerardi Gerardi index

Description

Calculation of regional price levels using the multilateral Gerardi index (Eurostat, 1978).

Usage

gerardi(p, r, n, q, w=NULL, base=NULL, simplify=TRUE, settings=list())

Arguments

p A numeric vector of positive prices.

r, n A character vector or factor of regional entities r and products n, respectively.

12 gerardi

q, w A numeric vector of non-negative quantities q or expenditure share weights w
(see Section ’Details’). If both q and w are provided, q will be used.

base A character specifying the base region to which all price levels are expressed.
When NULL, they refer to the (unweighted) regional average.

simplify A logical indicating whether a named vector of estimated regional price levels
(TRUE) should be returned, or also the average product prices.

settings A list of control settings to be used. The following settings are supported:

• chatty : A logical specifying if warnings and info messages should be
printed or not. The default is getOption("pricelevels.chatty").

• connect : A logical specifying if the data should be checked for connect-
edness or not. The default is getOption("pricelevels.connect"). If
the data are not connected, price levels are computed within the biggest
block of connected regions or the block of regions to which the base region
belongs. See also connect().

• plot : A logical specifying if the calculated price levels should be plotted or
not. If TRUE, the price ratios of each region are displayed as boxplots and the
price levels are added as colored points. The default is getOption("pricelevels.plot").

• variant : for original, the international prices are calculated as un-
weighted geometric means. This is the original approach. With adjusted,
the international prices are calculated as weighted geometric means.

Details

Before calculations start, missing values are removed from the data. Duplicated observations for
r and n are aggregated, that is, duplicated prices p and weights w are averaged and duplicated
quantities q added up. If there is more than one region in the data, products with prices in only one
region r are removed.

The weights w must represent expenditure shares defined as wr
i = pri q

r
i /

∑N
j=1 p

r
jq

r
j . They are

internally (re-)normalized such that they add up to 1 for each region r.

Value

For simplify=TRUE, a named vector of regional price levels. Otherwise, for simplify=FALSE, a
list containing the named vector of international product prices and regional price levels.

Author(s)

Sebastian Weinand

References

Balk, B. M. (1996). A comparison of ten methods for multilateral international price and volume
comparisons. Journal of Official Statistics, 12 (1), 199-222.

Eurostat (1978), Comparison in real values of the aggregates of ESA 1975, Publications Office,
Luxembourg.

gkhamis 13

Examples

require(data.table)

example data:
set.seed(123)
dt1 <- rdata(R=3, B=1, N=5)

Gerardi price index:
dt1[, gerardi(p=price, q=quantity, r=region, n=product)]

add price data:
dt2 <- rdata(R=4, B=1, N=4)
dt2[, "region":=factor(region, labels=4:7)]
dt2[, "product":=factor(product, labels=6:9)]
dt <- rbind(dt1, dt2)
dt[, is.connected(r=region, n=product)] # non-connected now

compute expenditure share weights:
dt[, "share" := price*quantity/sum(price*quantity), by="region"]

Gerardi index with quantites or expenditure share weights:
dt[, gerardi(p=price, q=quantity, r=region, n=product)]
dt[, gerardi(p=price, w=share, r=region, n=product)]

gkhamis Multilateral systems of equations

Description

Calculation of regional price levels using the

• Geary-Khamis method (Geary, 1958; Khamis, 1972): gkhamis()

• Iklé method (Iklé, 1972; Dikhanov, 1997; Balk, 1996): ikle()

• Rao system (Rao, 1990): rao()

• Rao-Hajargasht method (Rao and Hajargasht, 2016): rhajargasht()

Usage

gkhamis(p, r, n, q=NULL, base=NULL, simplify=TRUE, settings=list())

ikle(p, r, n, q=NULL, w=NULL, base=NULL, simplify=TRUE, settings=list())

rao(p, r, n, q=NULL, w=NULL, base=NULL, simplify=TRUE, settings=list())

rhajargasht(p, r, n, q=NULL, w=NULL, base=NULL, simplify=TRUE, settings=list())

14 gkhamis

Arguments

p A numeric vector of positive prices.

r, n A character vector or factor of regional entities r and products n, respectively.

q, w A numeric vector of non-negative quantities q or expenditure share weights w
(see Section ’Details’). If both q and w are provided, q will be used. Note that
gkhamis() does not use weights w.

base A character specifying the base region to which all price levels are expressed.
When NULL, they refer to the (unweighted) regional average.

simplify A logical indicating whether a named vector of estimated regional price levels
(TRUE) should be returned, or also the average product prices.

settings A list of control settings to be used. The following settings are supported:

• chatty : A logical specifying if warnings and info messages should be
printed or not. The default is getOption("pricelevels.chatty").

• connect : A logical specifying if the data should be checked for connect-
edness or not. The default is getOption("pricelevels.connect") for
geks() and FALSE for index.pairs(). If the data are not connected, price
levels are computed within the biggest block of connected regions or the
block of regions to which the base region belongs. See also connect().

• plot : A logical specifying if the calculated price levels should be plotted or
not. If TRUE, the price ratios of each region are displayed as boxplots and the
price levels are added as colored points. The default is getOption("pricelevels.plot").

• solve : the method used for solving the system of equations. The default
for all indices is iterative for iterative solving until convergence. For
gkhamis(), the analytical solution proposed by Diewert (1999) is also al-
lowed by setting to matrix.

• tol : the tolerance level when convergence is achieved if solve="iterative".
The default is 1e-9.

• max.iter : the maximum number of iterations if solve="iterative".
The default is 99.

Details

Before calculations start, missing values are removed from the data. Duplicated observations for
r and n are aggregated, that is, duplicated prices p and weights w are averaged and duplicated
quantities q added up. If there is more than one region in the data, products with prices in only one
region r are removed.

The weights w must represent expenditure shares defined as wr
i = pri q

r
i /

∑N
j=1 p

r
jq

r
j . They are

internally (re-)normalized such that they add up to 1 for each region r.

Value

For simplify=TRUE, a named vector of regional price levels.

For simplify=FALSE, a list containing the named vector of international product prices and regional
price levels, the number of iterations until convergence, and the achieved difference at convergence.

gkhamis 15

Method

The Geary-Khamis, Iklé and Rao-Hajargasht methods as well as the Rao system have in common
that they set up a system of interrelated equations of international product prices and price levels,
which is solved iteratively. It is only the definition of the international product prices and price
levels that differ between the methods (see also package vignette).

In their original form, the four methods use quantities (or weights). However, Rao and Hajargasht
(2016, p. 417) show that similar solutions exist for the unweighted definitions of international
product prices and price levels. In the package, this is implemented in the functions where

• gkhamis(q=NULL) corresponds to a multilateral Dutot index;

• ikle(q=NULL, w=NULL) to a multilateral Harmonic mean index;

• rao(q=NULL, w=NULL) to a multilateral Jevons index;

• rhajargasht(q=NULL, w=NULL) to a multilateral Carli index.

Author(s)

Sebastian Weinand

References

Balk, B. M. (1996). A comparison of ten methods for multilateral international price and volume
comparisons. Journal of Official Statistics, 12 (1), 199-222.

Diewert, W. E. (1999). Axiomatic and Economic Approaches to International Comparisons. In:
International and Interarea Comparisons of Income, Output and Prices, edited by A. Heston and
R. E Lipsey. Chicago: The University of Chicago Press.

Dikhanov, Y. (1994). Sensitivity of PPP-based income estimates to the choice of aggregation pro-
cedures. The World Bank, Washington D.C., June 10, paper presented at 23rd General Conference
of the International Association for Research in Income and Wealth, St. Andrews, Canada.

Geary, R. C. (1958). A Note on the Comparison of Exchange Rates and Purchasing Power Between
Countries. Journal of the Royal Statistical Society. Series A (General), 121 (1), 97–99.

Iklé, D. M. (1972). A new approach to the index number problem. The Quarterly Journal of
Economics, 86 (2), 188-211.

Khamis, S. H. (1972). A New System of Index Numbers for National and International Purposes.
Journal of the Royal Statistical Society. Series A (General), 135 (1), 96–121.

Rao, D. S. P. (1990). A system of log-change index numbers for multilateral comparisons. In:
Comparisons of prices and real products in Latin America. Contributions to Economic Analysis
Series, edited by Salazar-Carrillo and Rao. Amsterdam: North-Holland Publishing Company.

Rao, D. S. P. and G. Hajargasht (2016). Stochastic approach to computation of purchasing power
parities in the International Comparison Program. Journal of Econometrics, 191 (2016), 414-425.

Examples

require(data.table)

example data:
set.seed(123)

16 pricedata

dt1 <- rdata(R=3, B=1, N=5)

Gery-Khamis price index can be obtained in two ways:
dt1[, gkhamis(p=price, q=quantity, r=region, n=product, settings=list(solve="iterative"))]
dt1[, gkhamis(p=price, q=quantity, r=region, n=product, settings=list(solve="matrix"))]

gkhamis(), ikle() and gerardi() yield same results if quantites the same:
dt1[, "quantity2" := 1000*rleidv(product)]
dt1[, gkhamis(p=price, r=region, n=product, q=quantity2)]
dt1[, gerardi(p=price, r=region, n=product, q=quantity2)]
dt1[, ikle(p=price, r=region, n=product, q=quantity2)]
dt1[, "quantity2":=NULL]

add price data:
dt2 <- rdata(R=4, B=1, N=4)
dt2[, "region":=factor(region, labels=4:7)]
dt2[, "product":=factor(product, labels=6:9)]
dt <- rbind(dt1, dt2)
dt[, is.connected(r=region, n=product)] # non-connected now

compute expenditure share weights:
dt[, "share" := price*quantity/sum(price*quantity), by="region"]

Ikle index with quantites or expenditure share weights:
dt[, ikle(p=price, q=quantity, r=region, n=product)]
dt[, ikle(p=price, w=share, r=region, n=product)]

pricedata Price data characteristics

Description

Price data typically consist of prices (and purchased quantities) for multiple products and regions.
Since not all products are usually available in all regions, the data exhibit gaps. In some situations,
the gaps can lead to non-connected data, which prevents a price comparison between all regions.

The following functions are available to derive the characteristics of a data set:

• is.connected() checks if all regions in the data are connected either directly or indirectly by
some bridging region

• neighbors() divides the regions into groups of connected regions

• connect() is a simple wrapper of neighbors(), connecting the data using the group of re-
gions with the maximum number of observations

• gaps() computes the (percentage) number of gaps in the data

• pairs() derives the number of available bilateral index pairs

• properties() derives data characteristics for each group of connected regions

pricedata 17

Usage

is.connected(r, n)

neighbors(r, n, simplify=FALSE)

connect(r, n)

gaps(r, n, relative=TRUE)

pairs(r, n)

properties(r, n)

Arguments

r, n A character vector or factor of regional entities r and products n, respectively.

simplify A logical indicating whether the results should be simplified to a vector of group
identifiers (TRUE) or not (FALSE). In the latter case the output will be a list of
connected regions.

relative A logical indicating whether the absolute (FALSE) or relative (TRUE) number of
data gaps should be computed.

Details

Before calculations start, missing values are removed from the data. Duplicated observations for
r and n are counted as one observation. Products with prices in only one region r do not provide
meaningful information for interregional comparisons. Such products are therefore not considered
by gaps(), pairs() and properties(). This approach follows the default treatment of all index
functions in this package.

Following World Bank (2013, p. 98), a "price tableau is said to be connected if the price data are
such that it is not possible to place the countries in two groups in which no item priced by any
country in one group is priced by any other country in the second group".

Value

The function

• is.connected() prints a single logical indicating if the data is connected or not

• connect() returns a logical vector of the same length as r and n

• neighbors() gives a list or vector of connected regions

• pairs() returns a single numeric for the number of bilateral pairs

• gaps() returns a single numeric for the percentage of data gaps

The function properties() provides a data.table with the following variables:

group integer group identifier
size integer number of regions belonging to that group

18 pricedata

regions list regions belonging to that group
pairs integer number of available non-redundant region pairs, e.g., (AB,AC,BC)=3
nprods integer number of unique products
nobs integer number of observations
gaps numeric percentage of data gaps

Author(s)

Sebastian Weinand

References

World Bank (2013). Measuring the Real Size of the World Economy: The Framework, Methodology,
and Results of the International Comparison Program. Washington, D.C.: World Bank.

Examples

connected price data:
set.seed(123)
dt1 <- rdata(R=4, B=1, N=3)

dt1[, is.connected(r=region, n=product)] # true
dt1[, neighbors(r=region, n=product, simplify=TRUE)]
dt1[, gaps(r=region, n=product)]
dt1[, pairs(r=region, n=product)]
dt1[, properties(r=region, n=product)]

non-connected price data:
dt2 <- data.table::data.table(

"region"=c("a","a","h","b","a","a","c","c","d","e","e","f",NA),
"product"=c(1,1,"bla",1,2,3,3,4,4,5,6,6,7),
"price"=runif(13,5,6),
stringsAsFactors=TRUE)

dt2[, is.connected(r=region, n=product)] # false
with(dt2, neighbors(r=region, n=product))
dt2[, properties(region, product)]
note that the first two observations are treated as one
while the observation [NA,7] is dropped. Observation [a,2]
is still included even though it does not provide valueable
information for interregional comparisons (the product is
observed in only one region)

connect the price data:
dt2[connect(r=region, n=product),]

pricelevels 19

pricelevels Spatial price indices

Description

Calculation of multiple spatial price indices at once.

Usage

list all available price indices:
list.indices()

compute all price indices:
pricelevels(p, r, n, q=NULL, w=NULL, base=NULL, settings=list())

Arguments

p A numeric vector of positive prices.

r, n A character vector or factor of regional entities r and products n, respectively.

q, w A numeric vector of non-negative quantities q or expenditure share weights w
(see Section ’Details’). Either q or w must be provided for weighted indices. If
both q and w are provided, q will be used.

base A character specifying the base region to which all price levels are expressed. If
NULL, base region is set internally.

settings A list of control settings to be used. The following settings are supported:

• chatty : A logical specifying if warnings and info messages should be
printed or not. The default is getOption("pricelevels.chatty").

• connect : A logical specifying if the data should be checked for connect-
edness or not. The default is getOption("pricelevels.connect"). If
the data are not connected, price levels are computed within the biggest
block of connected regions or the block of regions to which the base region
belongs. See also connect().

• plot : A logical specifying if the calculated price levels should be plotted or
not. If TRUE, the price ratios of each region are displayed as boxplots and the
price levels are added as colored points. The default is getOption("pricelevels.plot").

• type : A character specifying the index method(s) used to aggregate indi-
vidual prices into price indices. See list.indices() for allowed values.
The default is NULL in which case all possible price indices are computed.

• ... : Further settings allowed for the index methods. Note that settings$solve
is always set to iterative.

20 pricelevels

Details

Before calculations start, missing values are removed from the data. Duplicated observations for
r and n are aggregated, that is, duplicated prices p and weights w are averaged and duplicated
quantities q added up. If there is more than one region in the data, products with prices in only one
region r are removed.

The weights w must represent expenditure shares defined as wr
i = pri q

r
i /

∑N
j=1 p

r
jq

r
j . They are

internally (re-)normalized such that they add up to 1 for each region r.

Value

A matrix of price levels where the rows contain the index methods and the columns the regions.

Author(s)

Sebastian Weinand

Examples

sample complete price data:
set.seed(123)
dt1 <- rdata(R=3, B=1, N=5)

compute specific unweighted price indices:
dt1[, pricelevels(p=price, r=region, n=product, base="1",

settings=list(type=c("jevons","cswd","bmw")))]

compute all unweighted price indices:
dt1[, pricelevels(p=price, r=region, n=product, base="1")]

compute the price indices using all methods:
dt1[, pricelevels(p=price, r=region, n=product, q=quantity, base="1")]

add price data:
dt2 <- rdata(R=4, B=1, N=4)
dt2[, "region":=factor(region, labels=4:7)]
dt2[, "product":=factor(product, labels=6:9)]
dt <- rbind(dt1, dt2)
dt[, is.connected(r=region, n=product)] # non-connected now

compute all unweighted indices:
dt[, pricelevels(p=price, r=region, n=product, base="1")]

change base region:
dt[, pricelevels(p=price, r=region, n=product, base="4")]

ratios 21

ratios Calculation of price ratios

Description

Calculation of regional price ratios per product with flexible setting of base prices.

Usage

ratios(p, r, n, q=NULL, w=NULL, base=NULL, settings=list())

Arguments

p A numeric vector of positive prices.

r, n A character vector or factor of regional entities r and products n, respectively.

q, w A numeric vector of non-negative quantities q or expenditure share weights w. If
both q and w are provided, q will be used. This is only relevant for the averaging
of duplicated prices (see Section ’Details’).

base A character specifying the base region to be used for the calculation of price
ratios. If NULL, price ratios are calculated with reference to the regional average
price of a product (see Section ’Details’)

settings A list of control settings to be used. The following settings are supported:

• chatty : A logical specifying if warnings and info messages should be
printed or not. The default is getOption("pricelevels.chatty").

• static : A logical indicating whether the base region is static (TRUE), that
is, always the same, or if another region than base is allowed to be used
when prices for base are not available or NA for specific products. Only
relevant if base is not NULL. The default is TRUE.

Details

If there are k = 1, . . . ,Kr
n duplicated prices for product n in region r, these are averaged using the

quantities q (or similarly as a weighted arithmetic mean using the weights w) if provided:

p̄rn =

Kr
n∑

k=1

prnkq
r
nk

/ Kr
n∑

k=1

qrnk

Price ratios are then derived for each product n by prn

/
1
R

∑R
s=1 p̄

s
n if base=NULL and by prn

/
p̄basen

otherwise.

Value

A numeric vector of the same length as p. If base is not NULL and static=FALSE, the attribute
attr(x, "base") is added to the output, providing the respective base region for each product.

22 rdata

Author(s)

Sebastian Weinand

Examples

(1) unique price observations

set.seed(123)
dt1 <- rdata(R=3, B=1, N=4)
levels(dt1$region) <- c("a","b","c")

calculate price ratios by product:
dt1[, ratios(p=price, r=region, n=product, base="b")]

(2) unique price observations and missing base region

drop two observations:
dt2 <- dt1[-c(5,10),]

now, region 'a' is base for product 2:
dt2[, "pr" := ratios(p=price, r=region, n=product, base="b",

settings=list(static=FALSE))]

base regions are stored in attributes:
attr(dt2$pr, "base")

with static base, NAs are produced:
dt2[, "pr_static" := ratios(p=price, r=region, n=product, base="b")]

(3) duplicated prices

insert duplicates and missings:
dt3 <- rbind(dt1[c(2,3),], dt1[-c(11),])
dt3[1:2, c("price","quantity") := list(price*1.1, quantity*0.95)]
anyDuplicated(dt3, by=c("region","product"))

duplicated prices are divided by the weighted average base prices:
dt3[, ratios(p=price, r=region, n=product, q=quantity, base="b",

settings=list(static=FALSE))]

rdata Simulate random price and quantity data

Description

Simulate random price and quantity data for a specified number of regions (r = 1, . . . , R), product
groups (b = 1, . . . , B), and individual products (n = 1, . . . , Nb) using the function rdata().

rdata 23

The generation of prices follows the NLCPD model (see nlcpd()), while expenditure share weights
for product groups can be sampled using the function rweights(). Purchased quantities are as-
signed to individual products. Moreover, random sales and gaps (using the function rgaps()) can
be introduced in the simulated data.

Usage

rgaps(r, n, amount=0, prob=NULL, pairs=FALSE, exclude=NULL)

rweights(r, b, type=~1)

rdata(R, B, N, gaps=0, weights=~b+r, sales=0, settings=list())

Arguments

r, n, b A character vector or factor of regional entities r, individual products n, and
product groups (or basic headings) b, respectively.

R, B, N A single integer specifying the number of regions R and product groups B, re-
spectively, and a vector of length B specifying the number of individual products
N in each product group.

weights, type A formula specifying the sampling of expenditure share weights for product
groups. If type=~1, product groups receive identical weights, while weights
are product group specific for type=~b. If weights should vary among product
groups and regions, use type=~b+r. As long as there are no data gaps, the
weights add up to 1 for each region.

gaps, sales, amount
Percentage amount of gaps and sales (between 0 and 1), respectively, to be in-
troduced in the data.

prob A vector of probability weights, see also sample(). Either NULL or the same
length as r and n. Larger values make gaps occur more likely at this position.

pairs A logical indicating if gaps should be introduced such that there are always at
least two observations per product available (pairs=TRUE). Only in this case,
all products provide valuable information for a spatial price comparison. Oth-
erwise, if pairs=FALSE, there can be products with only one observation. See
also the Details section.

exclude Data.frame of two (character) variables r and n, specifying regions and products
to be excluded from introducing gaps. Default is NULL, meaning that gaps are
allowed to occur in all regions and products present in the data. Missing values
(NA) are translated into no gaps for the corresponding product or region, e.g.
data.frame(r="r1", n=NA) means that there will be no gaps in region r1.

settings A list of control settings to be used. The following settings are supported:

• gaps.prob : See argument prob.
• gaps.pairs : See argument pairs.
• gaps.exclude : See argument exclude.
• sales.max.rebate : Maximum allowed percentage price rebate for a sale

(between 0.001 and 1). The default is 0.25, meaning that prices may be
reduced by no more than 25%.

24 rdata

• sales.max.qi : Maximum allowed quantity increase for a sale (between 1
and Inf). The default is 2, meaning that quantities may double at most.

• par.sd : named vector specifying the standard deviations used for sam-
pling true parameters and errors. The default is c(lnP=0.1, pi=exp(1),
delta=0.5, error=0.01).

• par.add : logical, specifying if the parameters underlying the data generat-
ing process should be added the function output. This is particularly useful
if rdata() is applied in simulations. Default is FALSE.

• round : logical, specifying if prices should be rounded to two decimals or
not. While prices usually have two decimal places in reality, this rounding
can cause small differences between estimated and true parameter values.
For simulation purposes, it is therefore recommended to use unrounded
prices by setting round=FALSE.

Details

The function rgaps() ensures that gaps do not lead to non-connected price data (see is.connected()).
Therefore, it could happen that the amount of gaps specified in rgaps() is only approximate, in
particular, in cases where certain regions and/or products should additionally be excluded from
exhibiting gaps by exclude.

If rgaps(pairs=FALSE), the minimum number of observations for a connected data set is R+N−1.
Otherwise, for rgaps(pairs=TRUE), this number is defined by 2N + max(0, R−N − 1).

Note that setting sales>0 in function rdata() distorts the initial price generating process. Con-
sequently, parameter estimates may deviate stronger from their true values. Note also that the
expenditure share weights weight represent the relevance of product groups as (often) derived from
national accounts and other data sources. Therefore, they cannot be derived from the simulated
prices and quantities in the data, which would represent the expenditure shares of the individual
products.

Value

Function rgaps() returns a logical vector of the same length as r where TRUEs indicate gaps and
FALSEs no gaps.

Function rweights() returns a numeric vector of (non-negative) expenditure share weights of the
same length as r.

Function rdata() returns a data.table with the following variables:

group product group identifier (factor)
weight expenditure share weight of product groups (numeric)
region region identifier (factor)
product product identifier (factor)
sale are prices and quantities affected by sales? (logical)
price price (numeric)
quantity consumed quantity (numeric)

or a list with the simulated data and its underlying parameter values, if settings=list(par.add=TRUE).

rdata 25

Author(s)

Sebastian Weinand

Examples

simulate price data for ten regions and five product groups
containing three individual products each:
set.seed(1)
dt <- rdata(R=10, B=5, N=3)
boxplot(price~paste(group, product, sep=":"), data=dt)

simulate price data for ten regions and five product groups
containing one to five individual products:
set.seed(1)
dt <- rdata(R=10, B=5, N=c(1,2,3,4,5))
boxplot(price~paste(group, product, sep=":"), data=dt)

simulate price data for three product groups (with one
product each) in four regions:
dt <- rdata(R=4, B=3, N=1)

add expenditure share weights:
dt[, "w1" := rweights(r=region, b=group, type=~1)] # constant
dt[, "w2" := rweights(r=region, b=group, type=~b)] # product-specific
dt[, "w3" := rweights(r=region, b=group, type=~b+r)] # product-region-specific

weights add up to 1:
dt[, list("w1"=sum(w1),"w2"=sum(w2),"w3"=sum(w3)), by="region"]

introduce 25% random gaps:
dt.gaps <- dt[!rgaps(r=region, n=product, amount=0.25),]

weights no longer add up to 1 in each region:
dt.gaps[, list("w1"=sum(w1),"w2"=sum(w2),"w3"=sum(w3)), by="region"]

approx. 25% random gaps, but keep observation for product "n2"
in region "r1" and all observations in region "r2":
no_gaps <- data.frame(r=c("r1","r2"), n=c("n2",NA))

apply to data:
dt[!rgaps(r=region, n=product, amount=0.25, exclude=no_gaps),]

or, directly, in one step:
dt <- rdata(R=4, B=3, N=1, gaps=0.25, settings=list("gaps.exclude"=no_gaps))

introduce systematic gaps:
dt <- rdata(R=15, B=1, N=10)
dt[, "prob" := data.table::rleidv(product)] # probability for gaps increases per product
dt.gaps <- dt[!rgaps(r=region, n=product, amount=0.25, prob=prob),]
plot(table(dt.gaps$product), type="l")

Index

banerjee (bilateral.index), 2
bilateral.index, 2, 9, 10
bmw (bilateral.index), 2

carli (bilateral.index), 2
connect, 3, 5, 9, 12, 14, 19
connect (pricedata), 16
contr.sum, 5
cpd, 5
cswd (bilateral.index), 2

davies (bilateral.index), 2
drobisch (bilateral.index), 2
dummy.coef, 7
dutot (bilateral.index), 2

fisher (bilateral.index), 2

gaps (pricedata), 16
geks, 8
geolaspeyres (bilateral.index), 2
geopaasche (bilateral.index), 2
geowalsh (bilateral.index), 2
geoyoung (bilateral.index), 2
gerardi, 11
gkhamis, 13

harmonic (bilateral.index), 2

ikle (gkhamis), 13
index.pairs (geks), 8
is.connected, 24
is.connected (pricedata), 16

jevons (bilateral.index), 2

laspeyres (bilateral.index), 2
lehr (bilateral.index), 2
list.indices (pricelevels), 19
lm, 7
lowe (bilateral.index), 2

medgeworth (bilateral.index), 2

neighbors (pricedata), 16
nlcpd, 23
nlcpd (cpd), 5
nls.lm, 6, 7

paasche (bilateral.index), 2
pairs (pricedata), 16
palgrave (bilateral.index), 2
pricedata, 16
pricelevels, 19
properties (pricedata), 16

rao (gkhamis), 13
ratios, 21
rdata, 22
rgaps (rdata), 22
rhajargasht (gkhamis), 13
rweights (rdata), 22

sample, 23
svartia (bilateral.index), 2

theil (bilateral.index), 2
toernqvist (bilateral.index), 2

uvalue (bilateral.index), 2

walsh (bilateral.index), 2

young (bilateral.index), 2

26

	bilateral.index
	cpd
	geks
	gerardi
	gkhamis
	pricedata
	pricelevels
	ratios
	rdata
	Index

