## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(pvEBayes) library(ggplot2) # load the SRS data data("statin2025_44") # show the first 6 rows head(statin2025_44) ## ----include=FALSE------------------------------------------------------------ ## ----fit-gg, include=TRUE----------------------------------------------------- gg_given_alpha <- pvEBayes(statin2025_44, model = "general-gamma", alpha = 0.5 ) gg_given_alpha_detected_signal <- summary(gg_given_alpha, return = "detected signal" ) sum(gg_given_alpha_detected_signal) ## ----tune, include=TRUE------------------------------------------------------- AIC(gg_given_alpha) BIC(gg_given_alpha) ## ----auto-tune, include=TRUE, eval=TRUE--------------------------------------- gg_tune_statin44 <- pvEBayes_tune(statin2025_44, model = "general-gamma", alpha_vec = c(0, 0.1, 0.3, 0.5, 0.7, 0.9), use_AIC = TRUE ) ## ----heatmap, include = TRUE, fig.height=6, fig.width=8----------------------- heatmap_gg_tune_statin44 <- plot(gg_tune_statin44, type = "heatmap", num_top_AEs = 10, cutoff_signal = 1.001 ) heatmap_gg_tune_statin44 + theme( legend.position = "top" ) ## ----eyeplot, include = TRUE, fig.height=6, fig.width=8----------------------- eyeplot_gg_tune_statin44 <- plot(gg_tune_statin44, type = "eyeplot", num_top_AEs = 8, N_threshold = 1, log_scale = FALSE, text_shift = 2.3, text_size = 3, x_lim_scalar = 1.2 ) eyeplot_gg_tune_statin44 + theme( legend.position = "top" )