
Package ‘quantoptr’
July 22, 2025

Type Package

Title Algorithms for Quantile- And Mean-Optimal Treatment Regimes

Author Yu Zhou [cre, aut],
Lan Wang [ctb],
Ben Sherwood [ctb],
Rui Song [ctb]

Maintainer Yu Zhou <zhou0269@umn.edu>

Description Estimation methods for optimal treatment regimes under three different crite-
ria, namely marginal quantile, marginal mean, and mean absolute difference. For the first two cri-
teria, both one-stage and two-stage estimation method are implemented. A doubly robust estima-
tor for estimating the quantile-optimal treatment regime is also included.

Version 0.1.3

License GPL (>= 2)

LazyData TRUE

Imports stringr, rgenoud (>= 5.7), quantreg (>= 5.18), parallel,
methods, Rdpack

Depends R (>= 3.2), stats, utils

RoxygenNote 6.0.1

NeedsCompilation no

RdMacros Rdpack

Repository CRAN

Date/Publication 2018-02-05 05:56:14 UTC

Contents
abso_diff_est . 2
augX . 3
DR_Qopt . 6
dr_quant_est . 10
get_os . 11
IPWE_MADopt . 11

1

2 abso_diff_est

IPWE_Mopt . 14
IPWE_Qopt . 16
mean_est . 19
mestimate . 20
qestimate . 21
quant_est . 23
TwoStg_Mopt . 23
TwoStg_Qopt . 26

Index 30

abso_diff_est Estimate the Gini’s mean difference/mean absolute difference(MAD)
for a Given Treatment Regime

Description

Estimate the MAD if the entire population follows a treatment regime indexed by the given param-
eters. This function supports the IPWE_MADopt function.

Usage

abso_diff_est(beta, x, y, a, prob, Cnobs)

Arguments

beta a vector indexing the treatment regime. It indexes a linear treatment regime:

d(x) = I{β0 + β1x1 + ...+ βkxk > 0}.

x a matrix of observed covariates from the sample. Notice that we assumed the
class of treatment regimes is linear. This is important that columns in x matches
with beta.

y a vector, the observed responses from a sample

a a vector of 0s and 1s, the observed treatments from a sample

prob a vector, the propensity scores of getting treatment 1 in the samples

Cnobs A matrix with two columns, enumerating all possible combinations of pairs of
indexes. This can be generated by combn(1:n, 2), where n is the number of
unique observations.

References

Wang L, Zhou Y, Song R and Sherwood B (2017). “Quantile-Optimal Treatment Regimes.” Journal
of the American Statistical Association.

See Also

The function IPWE_MADopt is based on this function.

augX 3

Examples

library(stats)
GenerateData.MAD <- function(n)
{

x1 <- runif(n)
x2 <- runif(n)
tp <- exp(-1+1*(x1+x2))/(1+exp(-1+1*(x1+x2)))
a<-rbinom(n = n, size = 1, prob=tp)
error <- rnorm(length(x1))
y <- (1 + a*0.3*(-1+x1+x2<0) + a*-0.3*(-1+x1+x2>0)) * error
return(data.frame(x1=x1,x2=x2,a=a,y=y))

}

n <- 500
testData <- GenerateData.MAD(n)
logistic.model.tx <- glm(formula = a~x1+x2, data = testData, family=binomial)
ph <- as.vector(logistic.model.tx$fit)
Cnobs <- combn(1:n, 2)
abso_diff_est(beta=c(1,2,-1),

x=model.matrix(a~x1+x2, testData),
y=testData$y,
a=testData$a,
prob=ph,
Cnobs = Cnobs)

augX Generate Pseudo-Responses Based on Conditional Quantile Regres-
sion Models

Description

This function supports the DR_Qopt function. For every observation, we generate pseudo-observations
corresponding to treatment 0 and 1 respectively based on working conditional quantile models.

Usage

augX(raw.data, length.out = 200, txVec, moCondQuant_0, moCondQuant_1,
nlCondQuant_0 = FALSE, nlCondQuant_1 = FALSE, start_0 = NULL,
start_1 = NULL, clnodes)

Arguments

raw.data A data frame, must contain all the variables that appear in moCondQuant_0 and
moCondQuant_1.

4 augX

length.out an integer greater than 1. If one of the conditional quantile model is set to be
nonlinear, this argument will be triggered and we will fit length.out models
across quantiles equally spaced between 0.001 and 0.999. The larger this value,
the more refined the performance of this method. Default is 200.

txVec a numeric vector of observed treatment levels coded 0L and 1L.

moCondQuant_0 A formula, used to specify the formula for the conditional quantile function
when treatment = 0.

moCondQuant_1 A formula, used to specify the formula for the conditional quantile function
when treatment = 1.

nlCondQuant_0 logical. When nlCondQuant_0 = TRUE, it is indicated that moCondQuant_0 is
nonlinear. The default value of this variable is FALSE.

nlCondQuant_1 logical. When nlCondQuant_1 = TRUE, it is indicated that moCondQuant_1 is
nonlinear. The default value of this variable is FALSE.

start_0 either a list object, providing the starting value in estimating the parameters in
the nonlinear conditional quantile model, given that treatment=0. Default is
NULL, corresponding to the case when nlCondQuant_0=FALSE.

start_1 either a list object, providing the starting value in estimating the parameters in
the nonlinear conditional quantile model, given that treatment=0. Default is
NULL, corresponding to the case when nlCondQuant_1=FALSE.

clnodes Either a cluster object to enable parallel computation or NULL. If NULL, no paral-
lel computation will be used.

Details

This function implements the algorithm to generate individual level pseudo responses for two treat-
ment levels respectively.

For each observation, two independent random variables from unif [0, 1] are generated. Denote
them by u0 and u1. Approximately, this function then estimates the u0th quantile of this observa-
tion were treatment level 0 is applied via the conditional u0th quantile regression. This estimated
quantile will be the pseudo-response for treatment 0. Similarly, this function the pseudo-response
for treatment 1 will be estimated and returned.

See the reference paper for a more formal explanation.

Value

It returns a list object, consisting of the following elements:

1. y.a.0, the vector of estimated individual level pseudo outcomes, given the treatment is 0;

2. y.a.1, the vector of estimated individual level pseudo outcomes, given the treatment is 1;

3. nlCondQuant_0, logical, indicating whether the y.a.0 is generated based on a nonlinear con-
ditional quantile model.

4. nlCondQuant_1, logical, indicating whether the y.a.1 is generated based on a nonlinear con-
ditional quantile model.

augX 5

References

Wang L, Zhou Y, Song R and Sherwood B (2017). “Quantile-Optimal Treatment Regimes.” Journal
of the American Statistical Association.

Examples

ilogit <- function(x) exp(x)/(1 + exp(x))
GenerateData.DR <- function(n)
{

x1 <- runif(n,min=-1.5,max=1.5)
x2 <- runif(n,min=-1.5,max=1.5)
tp <- ilogit(1 - 1*x1^2 - 1* x2^2)
a <-rbinom(n,1,tp)
y <- a * exp(0.11 - x1- x2) + x1^2 + x2^2 + a*rgamma(n, shape=2*x1+3, scale = 1) +

(1-a)*rnorm(n, mean = 2*x1 + 3, sd = 0.5)
return(data.frame(x1=x1,x2=x2,a=a,y=y))

}
regimeClass = as.formula(a ~ x1+x2)
moCondQuant_0 = as.formula(y ~ x1+x2+I(x1^2)+I(x2^2))
moCondQuant_1 = as.formula(y ~ exp(0.11 - x1 - x2)+ x1^2 + p0 + p1*x1
+ p2*x1^2 + p3*x1^3 +p4*x1^4)
start_1 = list(p0=0, p1=1.5, p2=1, p3 =0,p4=0)

Not run:
n<-200
testdata <- GenerateData.DR(n)
fit1 <- augX(raw.data=testdata, txVec = testdata$a,

moCondQuant_0=moCondQuant_0, moCondQuant_1=moCondQuant_1,
nlCondQuant_0=FALSE, nlCondQuant_1=TRUE,
start_1=start_1,
clnodes=NULL)

How to use parallel computing in AugX():

on Mac OSX/linux
clnodes <- parallel::makeForkCluster(nnodes =getOption("mc.cores",2))
fit2 <- augX(raw.data=testdata, length.out = 5, txVec = testdata$a,

moCondQuant_0=moCondQuant_0, moCondQuant_1=moCondQuant_1,
nlCondQuant_0=FALSE, nlCondQuant_1=TRUE,
start_1=start_1,
clnodes=clnodes)

on Windows
clnodes <- parallel::makeCluster(2, type="PSOCK")
fit3 <- augX(raw.data=testdata, length.out = 5, txVec = testdata$a,

moCondQuant_0=moCondQuant_0, moCondQuant_1=moCondQuant_1,
nlCondQuant_0=FALSE, nlCondQuant_1=TRUE,
start_1=start_1,
clnodes=clnodes)

End(Not run)

6 DR_Qopt

DR_Qopt The Doubly Robust Estimator of the Quantile-Optimal Treatment
Regime

Description

DR_Qopt implements the doubly robust estimation method to estimate the quantile-optimal treat-
ment regime. The double robustness property means that it is consistent when either the propensity
score model is correctly specified, or the conditional quantile function is correctly specified. Both
linear and nonlinear conditional quantile models are considered. See ’Examples’ for an illustrative
example.

Usage

DR_Qopt(data, regimeClass, tau, moPropen = "BinaryRandom",
nlCondQuant_0 = FALSE, nlCondQuant_1 = FALSE, moCondQuant_0,
moCondQuant_1, max = TRUE, length.out = 200, s.tol, it.num = 8,
cl.setup = 1, p_level = 1, pop.size = 3000, hard_limit = FALSE,
start_0 = NULL, start_1 = NULL)

Arguments

data a data frame, must contain all the variables that appear in moPropen, RegimeClass,
moCondQuant_0, moCondQuant_1, and a column named y as the observed re-
sponse.

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass
= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported. See also ’Details’.

tau a value between 0 and 1. This is the quantile of interest.

moPropen The propensity score model for the probability of receiving treatment level 1.
When moPropen equals the string "BinaryRandom", the proportion of observa-
tions receiving treatment level 1 in the sample will be employed as a good es-
timate of the probability for each observation. Otherwise, this argument should
be a formula/string, based on which this function will fit a logistic regression on
the treatment level. e.g. a1~x1.

nlCondQuant_0 Logical. When nlCondQuant_0=TRUE, this means the prespecified model for the
conditional quantile function given a=0 is nonlinear, so the provided moCondQuant_0
should be nonlinear.

nlCondQuant_1 Logical. When nlCondQuant_1=TRUE, this means the prespecified model for the
conditional quantile function given a=1 is nonlinear, so the provided moCondQuant_1
should be nonlinear.

DR_Qopt 7

moCondQuant_0 Either a formula or a string representing the parametric form of the conditional
quantile function given that treatment=0.

moCondQuant_1 Either a formula or a string representing the parametric form of the conditional
quantile function given that treatment=1.

max logical. If max=TRUE, it indicates we wish to maximize the marginal quantile; if
max=FALSE, we wish to minimize the marginal quantile. The default is TRUE.

length.out an integer greater than 1. If one of the conditional quantile model is set to be
nonlinear, this argument will be triggered and we will fit length.out models
across quantiles equally spaced between 0.001 and 0.999. Default is 200.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

hard_limit logical. When it is true the maximum number of generations in rgeound::geound
cannot exceed 100. Otherwise, in this function, only it.num softly controls
when genoud stops. Default is FALSE.

start_0 a named list or named numeric vector of starting estimates for the conditional
quantile function when treatment = 0. This is required when nlCondQuant_0=TRUE.

start_1 a named list or named numeric vector of starting estimates for the conditional
quantile function when treatment = 1. This is required when nlCondQuant_1=TRUE.

Details

• Standardization on covariates AND explanation on the differences between the two returned
regime parameters.
Note that all estimation functions in this package use the same type of standardization on
covariates. Doing so would allow us to provide a bounded domain of parameters for searching
in the genetic algorithm.
This estimated parameters indexing the quantile-optimal treatment regime are returned in two
scales:

1. The returned coefficients is the set of parameters after covariates X are standardized
to be in the interval [0, 1]. To be exact, every covariate is subtracted by the smallest
observed value and divided by the difference between the largest and the smallest value.
Next, we carried out the algorithm in Wang 2016 to get the estimated regime parameters,
coefficients, based on the standardized data. For the identifiability issue, we force the
Euclidean norm of coefficients to be 1.

8 DR_Qopt

2. In contrast, coef.orgn.scale corresponds to the original covariates, so the associated
decision rule can be applied directly to novel observations. In other words, let β denote
the estimated parameter in the original scale, then the estimated treatment regime is:

d(x) = I{β̂0 + β̂1x1 + ...+ β̂kxk > 0}.

The estimated β̂ is returned as coef.orgn.scale. The same as coefficients, we force
the Euclidean norm of coef.orgn.scale to be 1.

If, for each input covariate, the smallest observed value is exactly 0 and the range (i.e. the
largest number minus the smallest number) is exactly 1, then the estimated coefficients
and coef.orgn.scale will render identical.

• Property of the doubly robust(DR) estimator. The DR estimator DR_Qopt is consistent if either
the propensity score model or the conditional quantile regression model is correctly specified.
(Wang et. al. 2016)

Value

This function returns an object with 9 objects. Both coefficients and coef.orgn.scale were
normalized to have unit euclidean norm.

coefficients the parameters indexing the estimated quantile-optimal treatment regime for stan-
dardized covariates.

coef.orgn.scale the parameter indexing the estimated quantile-optimal treatment regime for the
original input covariates.

tau the quantile of interest

hatQ the estimated marginal tau-th quantile when the treatment regime indexed by coef.orgn.scale
is applied on everyone. See the ’details’ for connection between coef.orgn.scale and
coefficient.

call the user’s call.

moPropen the user specified propensity score model

regimeClass the user specified class of treatment regimes

moCondQuant_0 the user specified conditional quantile model for treatment 0

moCondQuant_1 the user specified conditional quantile model for treatment 1

Author(s)

Yu Zhou, <zhou0269@umn.edu>

References

Wang L, Zhou Y, Song R and Sherwood B (2017). “Quantile-Optimal Treatment Regimes.” Journal
of the American Statistical Association.

See Also

dr_quant_est, augX

DR_Qopt 9

Examples

ilogit <- function(x) exp(x)/(1 + exp(x))
GenerateData.DR <- function(n)
{
x1 <- runif(n,min=-1.5,max=1.5)
x2 <- runif(n,min=-1.5,max=1.5)
tp <- ilogit(1 - 1*x1^2 - 1* x2^2)
a <-rbinom(n,1,tp)
y <- a * exp(0.11 - x1- x2) + x1^2 + x2^2 + a*rgamma(n, shape=2*x1+3, scale = 1) +
(1-a)*rnorm(n, mean = 2*x1 + 3, sd = 0.5)
return(data.frame(x1=x1,x2=x2,a=a,y=y))

}

regimeClass <- as.formula(a ~ x1+x2)
moCondQuant_0 <- as.formula(y ~ x1+x2+I(x1^2)+I(x2^2))
moCondQuant_1 <- as.formula(y ~ exp(0.11 - x1 - x2)+ x1^2 + p0 + p1*x1

+ p2*x1^2 + p3*x1^3 +p4*x1^4)
start_1 = list(p0=0, p1=1.5, p2=1, p3 =0,p4=0)

n <- 400
testdata <- GenerateData.DR(n)

Examples below correctly specified both the propensity model and
the conditional quantile model.

system.time(
fit1 <- DR_Qopt(data=testdata, regimeClass = regimeClass,

tau = 0.25,
moPropen = a~I(x1^2)+I(x2^2),
moCondQuant_0 = moCondQuant_0,
moCondQuant_1 = moCondQuant_1,
nlCondQuant_1 = TRUE, start_1=start_1,
pop.size = 1000))

fit1
Go parallel for the same fit. It would save a lot of time.
Could even change the cl.setup to larger values
if more cores are available.

system.time(fit2 <- DR_Qopt(data=testdata, regimeClass = regimeClass,
tau = 0.25,
moPropen = a~I(x1^2)+I(x2^2),
moCondQuant_0 = moCondQuant_0,
moCondQuant_1 = moCondQuant_1,
nlCondQuant_1 = TRUE, start_1=start_1,
pop.size = 1000, cl.setup=2))

fit2

10 dr_quant_est

dr_quant_est The Doubly Robust Quantile Estimator for a Given Treatment Regime

Description

Given a fixed treatment regime, this doubly robust estimator estimates the marginal quantile of re-
sponses when it is followed by every unit in the target population. It took advantages of conditional
quantile functions for different treatment levels when they are available.

Usage

dr_quant_est(beta, x, y, a, prob, tau, y.a.0, y.a.1, num_min = FALSE)

Arguments

beta a vector indexing the treatment regime. It indexes a linear treatment regime:

d(x) = I{β0 + β1x1 + ...+ βkxk > 0}.

x a matrix of observed covariates from the sample. Notice that we assumed the
class of treatment regimes is linear. This is important that columns in x matches
with beta.

y a vector, the observed responses from a sample

a a vector of 0s and 1s, the observed treatments from a sample

prob a vector, the propensity scores of getting treatment 1 in the samples

tau The quantile of interest

y.a.0 Estimated conditional potential outcome given that treatment = 0, which can be
calculated by the function augX.

y.a.1 Estimated conditional potential outcome given that treatment = 1, which can be
calculated by the function augX.

num_min logical. If TRUE, the number of global minimizers for the objective function is
returned.

Details

The double robustness property means that it can consistently estimate the marginal quantile when
either the propensity score model is correctly specified, or the conditional quantile function is cor-
rectly specified.

See Also

augX

get_os 11

get_os Get the OS from R

Description

Get the type of the operating system. The returned value is used in configuring parallel computation
for the implemented algorithms.

Usage

get_os()

References

This function is adapted from https://www.r-bloggers.com/identifying-the-os-from-r/

IPWE_MADopt Estimation of the Optimal Treatment Regime defined as Minimizing
Gini’s Mean Differences

Description

IPWE_MADopt seeks to estimated the treatment regime which minimizes the Gini’s Mean difference
defined below.

Besides mean and quantile criterion, in some applications people seek minimization of dispersion
in the outcome, which, for example, can be described by Gini’s mean difference. Formally, it is
defined as the absolute differences of two random variables Y1 and Y2 drawn independently from
the same distribution:

MAD := E(|Y1 − Y2|).

Given a treatment regime d, define the potential outcome of a subject following the treatment rec-
ommended by d as Y ∗(d). When d is followed by everyone in the target population, the Gini’s
mean absolute difference is

MAD(d) := E(|Y ∗
1 (d)− Y ∗

2 (d)|).

Usage

IPWE_MADopt(data, regimeClass, moPropen = "BinaryRandom", s.tol, it.num = 8,
hard_limit = FALSE, cl.setup = 1, p_level = 1, pop.size = 3000)

https://www.r-bloggers.com/identifying-the-os-from-r/

12 IPWE_MADopt

Arguments

data a data frame, containing variables in the moPropen and RegimeClass and a com-
ponent y as the response.

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass
= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported. See also ’Details’.

moPropen The propensity score model for the probability of receiving treatment level 1.
When moPropen equals the string "BinaryRandom", the proportion of observa-
tions receiving treatment level 1 in the sample will be employed as a good es-
timate of the probability for each observation. Otherwise, this argument should
be a formula/string, based on which this function will fit a logistic regression on
the treatment level. e.g. a1~x1.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

hard_limit logical. When it is true the maximum number of generations in rgeound::geound
cannot exceed 100. Otherwise, in this function, only it.num softly controls
when genoud stops. Default is FALSE.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

Details

Note that all estimation functions in this package use the same type of standardization on covariates.
Doing so would allow us to provide a bounded domain of parameters for searching in the genetic
algorithm.

This estimated parameters indexing the MAD-optimal treatment regime are returned in two scales:

1. The returned coefficients is the set of parameters after covariates X are standardized to be
in the interval [0, 1]. To be exact, every covariate is subtracted by the smallest observed value
and divided by the difference between the largest and the smallest value. Next, we carried
out the algorithm in Wang et al. 2017 to get the estimated regime parameters, coefficients,
based on the standardized data. For the identifiability issue, we force the Euclidean norm of
coefficients to be 1.

IPWE_MADopt 13

2. In contrast, coef.orgn.scale corresponds to the original covariates, so the associated de-
cision rule can be applied directly to novel observations. In other words, let β denote the
estimated parameter in the original scale, then the estimated treatment regime is:

d(x; β̂) = I{β̂0 + β̂1x1 + ...+ β̂kxk > 0}.

The estimated β̂ is returned as coef.orgn.scale. The same as coefficients, we force the
Euclidean norm of coef.orgn.scale to be 1.

If, for every input covariate, the smallest observed value is exactly 0 and the range (i.e. the
largest number minus the smallest number) is exactly 1, then the estimated coefficients and
coef.orgn.scale will render identical.

Value

This function returns an object with 6 objects. Both coefficients and coef.orgn.scale were
normalized to have unit euclidean norm.

coefficients the parameters indexing the estimated MAD-optimal treatment regime for stan-
dardized covariates.

coef.orgn.scale the parameter indexing the estimated MAD-optimal treatment regime for the
original input covariates.

hat_MAD the estimated MAD when a treatment regime indexed by coef.orgn.scale is applied on
everyone. See the ’details’ for connection between coef.orgn.scale and coefficient.

call the user’s call.

moPropen the user specified propensity score model

regimeClass the user specified class of treatment regimes

References

Wang L, Zhou Y, Song R and Sherwood B (2017). “Quantile-Optimal Treatment Regimes.” Journal
of the American Statistical Association.

Examples

GenerateData.MAD <- function(n)
{

x1 <- runif(n)
x2 <- runif(n)
tp <- exp(-1+1*(x1+x2))/(1+exp(-1+1*(x1+x2)))
a<-rbinom(n = n, size = 1, prob=tp)
error <- rnorm(length(x1))
y <- (1 + a*0.6*(-1+x1+x2<0) + a*-0.6*(-1+x1+x2>0)) * error
return(data.frame(x1=x1,x2=x2,a=a,y=y))

}
The true MAD optimal treatment regime for this generative model
can be deduced trivially, and it is: c(-0.5773503, 0.5773503, 0.5773503).

With correctly specified propensity model

14 IPWE_Mopt

n <- 400
testData <- GenerateData.MAD(n)
fit1 <- IPWE_MADopt(data = testData, regimeClass = a~x1+x2,

moPropen=a~x1+x2, cl.setup=2)
fit1

With incorrectly specified propensity model

fit2 <- IPWE_MADopt(data = testData, regimeClass = a~x1+x2,
moPropen="BinaryRandom", cl.setup=2)

fit2

IPWE_Mopt Estimate the Mean-optimal Treatment Regime

Description

IPWE_Mopt aims at estimating the treatment regime which maximizes the marginal mean of the
potential outcomes.

Usage

IPWE_Mopt(data, regimeClass, moPropen = "BinaryRandom", max = TRUE,
s.tol = 1e-04, cl.setup = 1, p_level = 1, it.num = 10,
hard_limit = FALSE, pop.size = 3000)

Arguments

data a data frame, containing variables in the moPropen and RegimeClass and a com-
ponent y as the response.

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass
= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported. See also ’Details’.

moPropen The propensity score model for the probability of receiving treatment level 1.
When moPropen equals the string "BinaryRandom", the proportion of observa-
tions receiving treatment level 1 in the sample will be employed as a good es-
timate of the probability for each observation. Otherwise, this argument should
be a formula/string, based on which this function will fit a logistic regression on
the treatment level. e.g. a1~x1.

IPWE_Mopt 15

max logical. If max=TRUE, it indicates we wish to maximize the marginal mean; If
max=FALSE, we wish to minimize the marginal mean. The default is TRUE.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

hard_limit logical. When it is true the maximum number of generations in rgeound::geound
cannot exceed 100. Otherwise, in this function, only it.num softly controls
when genoud stops. Default is FALSE.

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

Details

Note that all estimation functions in this package use the same type of standardization on covariates.
Doing so would allow us to provide a bounded domain of parameters for searching in the genetic
algorithm.

This functions returns the estimated parameters indexing the mean-optimal treatment regime under
two scales.

The returned coefficients is the set of parameters when covariates are all standardized to be in
the interval [0, 1] by subtracting the smallest observed value and divided by the difference between
the largest and the smallest value.

While the returned coef.orgn.scale corresponds to the original covariates, so the associated de-
cision rule can be applied directly to novel observations. In other words, let β denote the estimated
parameter in the original scale, then the estimated treatment regime is:

d(x) = I{β̂0 + β̂1x1 + ...+ β̂kxk > 0}.

The estimated β̂ is returned as coef.orgn.scale.

If, for every input covariate, the smallest observed value is exactly 0 and the range (i.e. the
largest number minus the smallest number) is exactly 1, then the estimated coefficients and
coef.orgn.scale will render identical.

Value

This function returns an object with 6 objects. Both coefficients and coef.orgn.scale were
normalized to have unit euclidean norm.

coefficients the parameters indexing the estimated mean-optimal treatment regime for standard-
ized covariates.

16 IPWE_Qopt

coef.orgn.scale the parameter indexing the estimated mean-optimal treatment regime for the
original input covariates.

hatM the estimated marginal mean when a treatment regime indexed by coef.orgn.scale is ap-
plied on everyone. See the ’details’ for connection between coef.orgn.scale and coefficient.

call the user’s call.

moPropen the user specified propensity score model

regimeClass the user specified class of treatment regimes

Author(s)

Yu Zhou, <zhou0269@umn.edu>, with substantial contribution from Ben Sherwood.

References

Zhang B, Tsiatis AA, Laber EB and Davidian M (2012). “A robust method for estimating optimal
treatment regimes.” Biometrics, 68(4), pp. 1010–1018.

Examples

GenerateData.test.IPWE_Mopt <- function(n)
{

x1 <- runif(n)
x2 <- runif(n)
tp <- exp(-1+1*(x1+x2))/(1+exp(-1+1*(x1+x2)))
error <- rnorm(length(x1), sd=0.5)
a <- rbinom(n = n, size = 1, prob=tp)
y <- 1+x1+x2 + a*(3 - 2.5*x1 - 2.5*x2) +

(0.5 + a*(1+x1+x2)) * error
return(data.frame(x1=x1,x2=x2,a=a,y=y))

}

n <- 500
testData <- GenerateData.test.IPWE_Mopt(n)
fit <- IPWE_Mopt(data=testData, regimeClass = a~x1+x2,

moPropen=a~x1+x2,
pop.size=1000)

fit

IPWE_Qopt Estimate the Quantile-optimal Treatment Regime

Description

Estimate the Quantile-optimal Treatment Regime by inverse probability of weighting

IPWE_Qopt 17

Usage

IPWE_Qopt(data, regimeClass, tau, moPropen = "BinaryRandom", max = TRUE,
s.tol, it.num = 8, hard_limit = FALSE, cl.setup = 1, p_level = 1,
pop.size = 3000)

Arguments

data a data frame, containing variables in the moPropen and RegimeClass and a com-
ponent y as the response.

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass
= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported. See also ’Details’.
tau a value between 0 and 1. This is the quantile of interest.
moPropen The propensity score model for the probability of receiving treatment level 1.

When moPropen equals the string "BinaryRandom", the proportion of observa-
tions receiving treatment level 1 in the sample will be employed as a good es-
timate of the probability for each observation. Otherwise, this argument should
be a formula/string, based on which this function will fit a logistic regression on
the treatment level. e.g. a1~x1.

max logical. If max=TRUE, it indicates we wish to maximize the marginal quantile; if
max=FALSE, we wish to minimize the marginal quantile. The default is TRUE.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

hard_limit logical. When it is true the maximum number of generations in rgeound::geound
cannot exceed 100. Otherwise, in this function, only it.num softly controls
when genoud stops. Default is FALSE.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

Details

Note that all estimation functions in this package use the same type of standardization on covariates.
Doing so would allow us to provide a bounded domain of parameters for searching in the genetic
algorithm.

This estimated parameters indexing the quantile-optimal treatment regime are returned in two scales:

18 IPWE_Qopt

1. The returned coefficients is the set of parameters after covariates X are standardized to be
in the interval [0, 1]. To be exact, every covariate is subtracted by the smallest observed value
and divided by the difference between the largest and the smallest value. Next, we carried
out the algorithm in Wang et al. 2017 to get the estimated regime parameters, coefficients,
based on the standardized data. For the identifiability issue, we force the Euclidean norm of
coefficients to be 1.

2. In contrast, coef.orgn.scale corresponds to the original covariates, so the associated de-
cision rule can be applied directly to novel observations. In other words, let β denote the
estimated parameter in the original scale, then the estimated treatment regime is:

d(x) = I{β̂0 + β̂1x1 + ...+ β̂kxk > 0}.

The estimated β̂ is returned as coef.orgn.scale. The same as coefficients, we force the
Euclidean norm of coef.orgn.scale to be 1.

If, for every input covariate, the smallest observed value is exactly 0 and the range (i.e. the
largest number minus the smallest number) is exactly 1, then the estimated coefficients and
coef.orgn.scale will render identical.

Value

This function returns an object with 7 objects. Both coefficients and coef.orgn.scale were
normalized to have unit euclidean norm.

coefficients the parameters indexing the estimated quantile-optimal treatment regime for stan-
dardized covariates.

coef.orgn.scale the parameter indexing the estimated quantile-optimal treatment regime for the
original input covariates.

tau the quantile of interest

hatQ the estimated marginal tau-th quantile when the treatment regime indexed by coef.orgn.scale
is applied on everyone. See the ’details’ for connection between coef.orgn.scale and
coefficient.

call the user’s call.

moPropen the user specified propensity score model

regimeClass the user specified class of treatment regimes

Author(s)

Yu Zhou, <zhou0269@umn.edu> with substantial contribution from Ben Sherwood.

References

Wang L, Zhou Y, Song R and Sherwood B (2017). “Quantile-Optimal Treatment Regimes.” Journal
of the American Statistical Association.

mean_est 19

Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 0.5)
tp <- exp(-1+1*(x1+x2))/(1+exp(-1+1*(x1+x2)))
a <- rbinom(n = n, size = 1, prob=tp)
y <- 1+x1+x2 + a*(3 - 2.5*x1 - 2.5*x2) + (0.5 + a*(1+x1+x2)) * error
return(data.frame(x1=x1,x2=x2,a=a,y=y))

}
n <- 300
testData <- GenerateData(n)

1. Estimate the 0.25th-quantile optimal treatment regime.

fit1 <- IPWE_Qopt(data = testData, regimeClass = "a~x1+x2",
tau = 0.25, moPropen="a~x1+x2")

fit1

2. Go parallel. This saves time in calculation.

fit2 <- IPWE_Qopt(data = testData, regimeClass = "a~x1+x2",
tau = 0.25, moPropen="a~x1+x2", cl.setup=2)

fit2

3. Set a quardratic term in the class

fit3 <- IPWE_Qopt(data = testData, regimeClass = "a~x1+x2+I(x1^2)",
tau = 0.25, moPropen="a~x1+x2", pop.size=1000)

fit3

4. Set screen prints level.
Set the p_level to be 0,
then all screen prints from the genetic algorithm will be suppressed.

fit4 <- IPWE_Qopt(data = testData, regimeClass = "a~x1+x2",
tau = 0.25, moPropen="a~x1+x2", cl.setup=2, p_level=0)

fit4

mean_est The Inverse Probability Weighted Estimator of the Marginal Mean
Given a Specific Treatment Regime

20 mestimate

Description

Estimate the marginal mean of the response when the entire population follows a treatment regime.
This function implements the inverse probability weighted estimator proposed by Baqun Zhang et.
al..

This function supports the mestimate function.

Usage

mean_est(beta, x, a, y, prob)

Arguments

beta a vector indexing the treatment regime. It indexes a linear treatment regime:

d(x) = I{β0 + β1x1 + ...+ βkxk > 0}.

x a matrix of observed covariates from the sample. Notice that we assumed the
class of treatment regimes is linear. This is important that columns in x matches
with beta.

a a vector of 0s and 1s, the observed treatments from a sample

y a vector, the observed responses from a sample

prob a vector, the propensity scores of getting treatment 1 in the samples

References

Zhang B, Tsiatis AA, Laber EB and Davidian M (2012). “A robust method for estimating optimal
treatment regimes.” Biometrics, 68(4), pp. 1010–1018.

mestimate The Mean-Optimal Treatment Regime Wrapper Function

Description

The wrapper function for mean-optimal treatment regime that calls a genetic algorithm. This func-
tion supports the IPWE_Mopt function.

Usage

mestimate(x, y, a, prob, p_level, nvars, hard_limit = FALSE, max = TRUE,
cl.setup = 1, s.tol = 1e-04, it.num = 8, pop.size = 3000)

qestimate 21

Arguments

x a matrix of observed covariates from the sample. Notice that we assumed the
class of treatment regimes is linear.

y a vector, the observed responses from a sample

a a vector of 0s and 1s, the observed treatments from a sample

prob a vector, the propensity scores of getting treatment 1 in the samples

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

nvars an integer. The number of parameters indexing a treatment regime.

hard_limit logical. This logical variable determines if the max.generations variable is a
binding constraint for genoud.

max logical. If max=TRUE, it indicates we wish to maximize the marginal mean; If
max=FALSE, we wish to minimize the marginal mean. The default is TRUE.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

References

Zhang B, Tsiatis AA, Laber EB and Davidian M (2012). “A robust method for estimating optimal
treatment regimes.” Biometrics, 68(4), pp. 1010–1018.

See Also

The function IPWE_Mopt is based on this function.

qestimate The Quantile-Optimal Treatment Regime Wrapper Function

Description

The wrapper function for quantile-optimal treatment regime that calls a genetic algorithm. This
function supports the IPWE_Qopt function.

22 qestimate

Usage

qestimate(tau, x, y, a, prob, p_level, nvars, hard_limit, max = TRUE,
cl.setup = 1, s.tol = 1e-04, it.num = 8, pop.size = 3000)

Arguments

tau a numeric value between 0 and 1. The quantile level of interest.

x a matrix of observed covariates from the sample. Notice that we assumed the
class of treatment regimes is linear.

y a vector, the observed responses from a sample

a a vector of 0s and 1s, the observed treatments from a sample

prob a vector, the propensity scores of getting treatment 1 in the samples

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

nvars an integer. The number of parameters indexing a treatment regime.

hard_limit logical. This logical variable determines if the max.generations variable is a
binding constraint for rgenoud::genoud().

max logical. If max=TRUE, it indicates we wish to maximize the marginal quantile; if
max=FALSE, we wish to minimize the marginal quantile. The default is TRUE.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

References

Wang L, Zhou Y, Song R and Sherwood B (2017). “Quantile-Optimal Treatment Regimes.” Journal
of the American Statistical Association.

See Also

The function IPWE_Qopt is based on this function.

quant_est 23

quant_est Estimate the Marginal Quantile Given a Specific Treatment Regime

Description

Estimate the marginal quantile if the entire population follows a treatment regime indexed by the
given parameters. This function supports the qestimate function.

Usage

quant_est(beta, x, y, a, prob, tau)

Arguments

beta a vector indexing the treatment regime. It indexes a linear treatment regime:

d(x) = I{β0 + β1x1 + ...+ βkxk > 0}.

x a matrix of observed covariates from the sample. Notice that we assumed the
class of treatment regimes is linear. This is important that columns in x matches
with beta.

y a vector, the observed responses from a sample

a a vector of 0s and 1s, the observed treatments from a sample

prob a vector, the propensity scores of getting treatment 1 in the samples

tau a numeric value between 0 and 1. The quantile level of interest.

TwoStg_Mopt Estimate the Two-stage Mean-Optimal Treatment Regime

Description

This function implements the estimator of two-stage mean-optimal treatment regime by inverse
probability of weighting proposed by Baqun Zhang. As there are more than one stage, the second
stage treatment regime could take into account the evolving status of an individual after the first
stage and the treatment level received in the first stage. We assume the options at the two stages are
both binary and take the form:

d1(xstage1) = I (β10 + β11x11 + ...+ β1kx1k > 0) ,

d2(xstage2) = I (β20 + β21x21 + ...+ β2jx2j > 0)

24 TwoStg_Mopt

Usage

TwoStg_Mopt(data, regimeClass.stg1, regimeClass.stg2,
moPropen1 = "BinaryRandom", moPropen2 = "BinaryRandom", max = TRUE,
s.tol, cl.setup = 1, p_level = 1, it.num = 10, pop.size = 3000,
hard_limit = FALSE)

Arguments

data a data frame, containing variables in the moPropen and RegimeClass and a com-
ponent y as the response.

regimeClass.stg1

a formula or a string specifying the Class of treatment regimes at stage 1, e.g.
a1~x1+x2

regimeClass.stg2

a formula or a string specifying the Class of treatment regimes at stage 2, e.g.
a2~x1+a1+x2

moPropen1 The propensity score model for the probability of receiving treatment level 1
at the first stage . When moPropen1 equals the string "BinaryRandom", the
proportion of observations receiving treatment level 1 in the sample at the first
stage will be employed as a good estimate of the probability for each observa-
tion. Otherwise, this argument should be a formula/string, based on which this
function will fit a logistic regression on the treatment level. e.g. a1~x1.

moPropen2 The propensity score model for the probability of receiving treatment level 1 at
the second stage . When moPropen2 equals the string "BinaryRandom", the pro-
portion of observations receiving treatment level 1 in the sample at the second
stage will be employed as a good estimate of the probability for each observa-
tion. Otherwise, this argument should be a formula/string, based on which this
function will fit a logistic regression on the treatment level. e.g. a2~x1+a1+x2.

max logical. If max=TRUE, it indicates we wish to maximize the marginal mean; if
max=FALSE, we wish to minimize the marginal mean. The default is TRUE.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

hard_limit logical. When it is true the maximum number of generations in rgeound::geound
cannot exceed 100. Otherwise, in this function, only it.num softly controls
when genoud stops. Default is FALSE.

TwoStg_Mopt 25

Details

Note that all estimation functions in this package use the same type of standardization on covariates.
Doing so would allow us to provide a bounded domain of parameters for searching in the genetic
algorithm.

For every stage k, k = 1, 2, this estimated parameters indexing the two-stage mean-optimal treat-
ment regime are returned in two scales:

1. , the returned coef.k is the set of parameters that we estimated after standardizing every
covariate available for decision-making at stage k to be in the interval [0, 1]. To be exact, every
covariate is subtracted by the smallest observed value and divided by the difference between
the largest and the smallest value. Next, we carried out the algorithm in Wang 2016 to get the
estimated regime parameters, coef.k, based on the standardized data. For the identifiability
issue, we force the Euclidean norm of coef.k to be 1.

2. The difference between coef.k and coef.orgn.scale.k is that the latter set of parameters
correspond to the original covariates, so the associated decision rule can be applied directly to
novel observations. In other words, let β denote the estimated parameter in the original scale,
then the estimated treatment regime is:

d(x) = I{β0 + β1x1 + ...+ βkxk > 0},

where the β values are returned as coef.orgn.scale.k, and the the vector (1, x1, ..., xk)
corresponds to the specified class of treatment regimes in the kth stage.

If, for every input covariate, the smallest observed value is exactly 0 and the range (i.e. the largest
number minus the smallest number) is exactly 1, then the estimated coef.k and coef.orgn.scale.k
will render identical.

Value

This function returns an object with 6 objects. Both coef.1, coef.2 and coef.orgn.scale.1,
coef.orgn.scale.2 were normalized to have unit euclidean norm.

coef.1, coef.2 the set of parameters indexing the estimated mean-optimal treatment regime for
standardized covariates.

coef.orgn.scale.1, coef.orgn.scale.2 the set of parameter indexing the estimated mean-optimal
treatment regime for the original input covariates.

hatM the estimated marginal mean when the treatment regime indexed by coef.orgn.scale.1
and coef.orgn.scale.2 is applied on the entire population. See the ’details’ for connection
between coef.orgn.scale.k and coef.k.

call the user’s call.

moPropen1, moPropen2 the user specified propensity score models for the first and the second stage
respectively

regimeClass.stg1, regimeClass.stg2 the user specified class of treatment regimes for the first
and the second stage respectively

Author(s)

Yu Zhou, <zhou0269@umn.edu>

26 TwoStg_Qopt

References

Zhang B, Tsiatis AA, Laber EB and Davidian M (2013). “Robust estimation of optimal dynamic
treatment regimes for sequential treatment decisions.” Biometrika, 100(3).

Examples

ilogit <- function(x) exp(x)/(1 + exp(x))
GenerateData.2stg <- function(n){
x1 <- runif(n)
p1 <- ilogit(-0.5+x1)
a1 <- rbinom(n, size=1, prob=p1)

x2 <- runif(n, x1, x1+1)
p2 <- ilogit(-1 + x2)
a2 <- rbinom(n, size=1, prob=p2)

mean <- 1+x1+a1*(1-3*(x1-0.2)^2) +x2 + a2*(1-x2-x1)
y <- mean + (1+a1*(x1-0.5)+0.5*a2*(x2-1))*rnorm(n,0,sd = 1)
return(data.frame(x1,a1,x2,a2,y))

}

n <- 400
testdata <- GenerateData.2stg(n)

fit <- TwoStg_Mopt(data=testdata,
regimeClass.stg1="a1~x1", regimeClass.stg2="a2~x1+a1+x2",
moPropen1="a1~x1", moPropen2="a2~x2",
cl.setup=2)

fit

fit2 <- TwoStg_Mopt(data=testdata,
regimeClass.stg1="a1~x1", regimeClass.stg2="a2~a1+x1*x2",
moPropen1="a1~x1", moPropen2="a2~x2",
cl.setup=2)

fit2

TwoStg_Qopt Estimate the Two-stage Quantile-optimal Treatment Regime

Description

This function implements the estimator of two-stage quantile-optimal treatment regime by inverse
probability of weighting proposed by Lan Wang, et al. As there are more than one stage, the second
stage treatment regime could take into account the evolving status of an individual after the first

TwoStg_Qopt 27

stage and the treatment level received in the first stage. We assume the options at the two stages are
both binary and take the form:

d1(x) = I (β10 + β11x11 + ...+ β1kx1k > 0) ,

d2(x) = I (β20 + β21x21 + ...+ β2px2p > 0)

Usage

TwoStg_Qopt(data, tau, regimeClass.stg1, regimeClass.stg2,
moPropen1 = "BinaryRandom", moPropen2 = "BinaryRandom", s.tol = 1e-04,
it.num = 8, max = TRUE, cl.setup = 1, p_level = 1, pop.size = 1000,
hard_limit = FALSE)

Arguments

data a data frame, containing variables in the moPropen and RegimeClass and a com-
ponent y as the response.

tau a value between 0 and 1. This is the quantile of interest.
regimeClass.stg1

a formula or a string specifying the Class of treatment regimes at stage 1, e.g.
a1~x1+x2

regimeClass.stg2

a formula or a string specifying the Class of treatment regimes at stage 2, e.g.
a2~x1+a1+x2

moPropen1 The propensity score model for the probability of receiving treatment level 1
at the first stage . When moPropen1 equals the string "BinaryRandom", the
proportion of observations receiving treatment level 1 in the sample at the first
stage will be employed as a good estimate of the probability for each observa-
tion. Otherwise, this argument should be a formula/string, based on which this
function will fit a logistic regression on the treatment level. e.g. a1~x1.

moPropen2 The propensity score model for the probability of receiving treatment level 1 at
the second stage . When moPropen2 equals the string "BinaryRandom", the pro-
portion of observations receiving treatment level 1 in the sample at the second
stage will be employed as a good estimate of the probability for each observa-
tion. Otherwise, this argument should be a formula/string, based on which this
function will fit a logistic regression on the treatment level. e.g. a2~x1+a1+x2.

s.tol This is the tolerance level used by genoud. Default is 10−5 times the difference
between the largest and the smallest value in the observed responses. This is
particularly important when it comes to evaluating it.num.

it.num integer > 1. This argument will be used in rgeound::geound function. If
there is no improvement in the objective function in this number of generations,
rgenoud::genoud will think that it has found the optimum.

max logical. If max=TRUE, it indicates we wish to maximize the marginal quantile; if
max=FALSE, we wish to minimize the marginal quantile. The default is TRUE.

cl.setup the number of nodes. >1 indicates choosing parallel computing option in rgenoud::genoud.
Default is 1.

28 TwoStg_Qopt

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug.)

pop.size an integer with the default set to be 3000. This is the population number for the
first generation in the genetic algorithm (rgenoud::genoud).

hard_limit logical. When it is true the maximum number of generations in rgeound::geound
cannot exceed 100. Otherwise, in this function, only it.num softly controls
when genoud stops. Default is FALSE.

Details

Note that all estimation functions in this package use the same type of standardization on covariates.
Doing so would allow us to provide a bounded domain of parameters for searching in the genetic
algorithm.

For every stage k, k = 1, 2, this estimated parameters indexing the two-stage quantile-optimal
treatment regime are returned in two scales:

1. , the returned coef.k is the set of parameters that we estimated after standardizing every
covariate available for decision-making at stage k to be in the interval [0, 1]. To be exact,
every covariate is subtracted by the smallest observed value and divided by the difference
between the largest and the smallest value. Next, we carried out the algorithm in Wang et. al.
2017 to get the estimated regime parameters, coef.k, based on the standardized data. For the
identifiability issue, we force the Euclidean norm of coef.k to be 1.

2. The difference between coef.k and coef.orgn.scale.k is that the latter set of parameters
correspond to the original covariates, so the associated decision rule can be applied directly to
novel observations. In other words, let β denote the estimated parameter in the original scale,
then the estimated treatment regime is:

d(x) = I{β0 + β1x1 + ...+ βkxk > 0},

where the β values are returned as coef.orgn.scale.k, and the the vector (1, x1, ..., xk)
corresponds to the specified class of treatment regimes in the kth stage.

If, for every input covariate, the smallest observed value is exactly 0 and the range (i.e. the largest
number minus the smallest number) is exactly 1, then the estimated coef.k and coef.orgn.scale.k
will render identical.

Value

This function returns an object with 7 objects. Both coefficients and coef.orgn.scale were
normalized to have unit euclidean norm.

coef.1, coef.2 the set of parameters indexing the estimated quantile-optimal treatment regime for
standardized covariates.

coef.orgn.scale.1, coef.orgn.scale.2 the set of parameter indexing the estimated quantile-
optimal treatment regime for the original input covariates.

tau the quantile of interest

TwoStg_Qopt 29

hatQ the estimated marginal quantile when the treatment regime indexed by coef.orgn.scale.1
and coef.orgn.scale.2 is applied on the entire population. See the ’details’ for connection
between coef.orgn.scale.k and coef.k.

call the user’s call.

moPropen1, moPropen2 the user specified propensity score models for the first and the second stage
respectively

regimeClass.stg1, regimeClass.stg2 the user specified class of treatment regimes for the first
and the second stage respectively

Author(s)

Yu Zhou, <zhou0269@umn.edu>

References

Wang L, Zhou Y, Song R and Sherwood B (2017). “Quantile-Optimal Treatment Regimes.” Journal
of the American Statistical Association.

Examples

ilogit <- function(x) exp(x)/(1 + exp(x))
GenerateData.2stg <- function(n){
x1 <- runif(n)
p1 <- ilogit(-0.5+x1)
a1 <- rbinom(n, size=1, prob=p1)

x2 <- runif(n,x1,x1+1)
p2 <- ilogit(-1 + x2)
a2 <- rbinom(n, size=1, prob=p2)

mean <- 1+x1+a1*(1-3*(x1-0.2)^2) +x2 + a2*(1-x2-x1)
y <- mean + (1+a1*(x1-0.5)+0.5*a2*(x2-1))*rnorm(n,0,sd = 1)
return(data.frame(x1,a1,x2,a2,y))

}

n <- 400
testdata <- GenerateData.2stg(n)
fit <- TwoStg_Qopt(data=testdata, tau=0.2,

regimeClass.stg1=a1~x1, regimeClass.stg2=a2~x1+a1+x2,
moPropen1=a1~x1, moPropen2=a2 ~ x2,
cl.setup=2)

fit

Index

abso_diff_est, 2
augX, 3, 8, 10

DR_Qopt, 3, 6
dr_quant_est, 8, 10

get_os, 11

IPWE_MADopt, 2, 11
IPWE_Mopt, 14, 20, 21
IPWE_Qopt, 16, 21, 22

mean_est, 19
mestimate, 20, 20

qestimate, 21, 23
quant_est, 23

TwoStg_Mopt, 23
TwoStg_Qopt, 26

30

	abso_diff_est
	augX
	DR_Qopt
	dr_quant_est
	get_os
	IPWE_MADopt
	IPWE_Mopt
	IPWE_Qopt
	mean_est
	mestimate
	qestimate
	quant_est
	TwoStg_Mopt
	TwoStg_Qopt
	Index

