
Package ‘rEMM’
July 23, 2025

Version 1.2.1

Date 2024-04-21

Title Extensible Markov Model for Modelling Temporal Relationships
Between Clusters

Description Implements TRACDS (Temporal Relationships
between Clusters for Data Streams), a generalization of
Extensible Markov Model (EMM). TRACDS adds a temporal or order model
to data stream clustering by superimposing a dynamically adapting
Markov Chain. Also provides an implementation of EMM (TRACDS on top of tNN
data stream clustering). Development of this
package was supported in part by NSF IIS-0948893 and R21HG005912 from
the National Human Genome Research Institute. Hahsler and Dun-
ham (2010) <doi:10.18637/jss.v035.i05>.

Classification/ACM G.4, H.2.8, I.5.1

URL https://github.com/mhahsler/rEMM

Depends R (>= 2.10.0)

Imports methods, stats, stream, cluster, clusterGeneration, MASS,
utils, proxy, igraph

Suggests graph, Rgraphviz, testthat

License GPL-2

NeedsCompilation no

Author Michael Hahsler [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-2716-1405>),

Margaret H. Dunham [ctb]

Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>

Repository CRAN

Date/Publication 2024-04-21 23:03:06 UTC

Contents
16S . 2

1

https://doi.org/10.18637/jss.v035.i05
https://github.com/mhahsler/rEMM
https://orcid.org/0000-0003-2716-1405

2 16S

build . 3
cluster . 4
combine . 5
Derwent . 6
DSC_EMM . 7
EMM . 9
EMM-class . 10
EMMsim . 11
EMMTraffic . 12
fade . 13
find_clusters . 14
merge_clusters . 16
plot . 17
predict . 19
prune . 20
recluster . 21
remove . 23
score . 24
smooth_transitions . 29
synthetic_stream . 30
tNN-class . 31
TRAC . 32
TRACDS-class . 33
transition . 35
transition_table . 36
update . 37

Index 39

16S Count Data for 16S rRNA Sequences

Description

This data set contains count data for 16S ribosomal RNA (rRNA) sequences for the two phyloge-
netic classes Alphaproteobacteria and Mollicutes. The counts for 30 sequences for each class were
obtained by counting the occurrence of triplets of nucleotides in windows of length 100 without any
overlap. To separate sequences a row of dummy count of NA is used.

Usage

data("16S")

Format

Alphaproteobacteria16S and Mollicutes16S are matrices with about 449 rows and 64 (number
of possible triplets) columns.

build 3

Source

The raw sequence information was obtained from the National center for biotechnology information
(NCBI) website at http://www.ncbi.nih.gov/

Examples

data("16S")

emm <- EMM("Kullback", threshold=0.1)
build(emm, Mollicutes16S+1)

start state for sequences have an initial state probability >0
it <- initial_transition(emm)
it[it>0]

build Building an EMM using New Data

Description

Add new data to an EMM.

Usage

build(x, newdata, ...)

Arguments

x an EMM object. Note that the function will change the original EMM!

newdata a vector (one observation), or a matrix or data.frame (each row is an observation)

... further arguments. If newdata is a matrix or a data.frame then verbose = TRUE
can be used to monitor the progress of building the model.

Details

build() performs clustering and also updates the TRACDS temporal layer.

NAs are handled in the data by using only the other dimensions if the data for dissimilarity compu-
tation (see package proxy).

Value

A reference to the changed EMM object with the data added. Note: EMM objects store all variable
data in an environment which enables us to update partial data without copying the whole object.
Assignment will not create a copy! Use the provided method copy().

See Also

Class TRACDS, fade and dist in proxy.

4 cluster

Examples

load EMMTraffic data
data("EMMTraffic")
EMMTraffic

create EMM
emm <- EMM(measure="eJaccard", threshold=0.2)

build model using EMMTraffic data (note that the EMM object is
changed without assignment!)
build(emm, EMMTraffic)
same as: emm <- build(emm, EMMTraffic)

size(emm)
plot(emm)

emm2 <- emm does not create a copy (just a reference)
a "deep" copy is created using copy()
emm2<- copy(emm)

convert the emm into a graph
as.igraph(emm)

cluster Data stream clustering with tNN

Description

Cluster new data into an existing tNN object.

Usage

cluster(x, newdata, ...)

Arguments

x a tNN object. Note that this function canges the original object!

newdata a vector (one observation), or a matrix or data.frame (each row is an observa-
tion).

... further arguments like verbose.

Details

cluster() implements tNN clustering The dissimilarity between the new observation and the cen-
ters of the clusters is calculated. The new observation is assigned to the closest cluster if the dis-
similarity value is smaller than the threshold (for the state). If no such state exists, a new state is
created for the observation. This simple clustering algorithm is called nearest neighbor threshold
nearest neighbor (threshold NN).

combine 5

NAs are handled in the data by using only the other dimensions if the data for dissimilarity compu-
tation (see package~proxy).

The clusters which the data points in the last cluster() operation where assigned to can be re-
trieved using the method last_clustering().

Value

A reference to the changed tNN object with the data added. Note: tNN objects store all variable
data in an environment which enables us to update partial data without copying the whole object.
Assignment will not create a copy! Use the provided method copy().

See Also

Class tNN, fade and dist in proxy.

Examples

load EMMTraffic data
data(EMMTraffic)

create empty clustering
tnn <- tNN(th=0.2, measure="eJaccard")
tnn

cluster some data
cluster(tnn, EMMTraffic)
tnn

what clusters were the data points assigned to?
last_clustering(tnn)

plot the clustering as a scatterplot matrix of the cluster centers
plot(tnn)

combine Combining EMM Objects

Description

Combines two or more EMMs into a single object.

Usage

S4 method for signature 'EMM'
c(x, ..., copy=TRUE, recursive = FALSE)

6 Derwent

Arguments

x first EMM object. Note that this object will be changed by the function if copy=FALSE!

... further objects of the same class as x to be combined.

copy a logical. Copy x first? Otherwise x will be changed!

recursive a logical. If recursive=TRUE, the function recursively descends through lists
combining all their elements into a vector.

Value

Returns invisibly an object of the same class as EMM.

See Also

EMM-class,

Examples

data("16S")

create two EMMs for different data
emm1 <- EMM("Kullback", threshold=0.1, data=Mollicutes16S+1)
emm2 <- EMM("Kullback", threshold=0.1, data=Alphaproteobacteria16S+1)

combine the two EMMs
emm12 <- c(emm1, emm2)
this is the same as:
emm12 <- copy(emm1)
c(emm12, emm2, copy=FALSE)

recluster states so similar states in the to EMMs will be merged
emm12r <- recluster_tNN(emm12)

op <- par(mfrow = c(1, 2), pty = "s")
plot(emm12, main="Two EMMs")
plot(emm12r, main="Two EMMs (reclustered)")
par(op)

Derwent Derwent Catchment Data

Description

Data set with flow readings (in cubic meter per second) for six catchments of in the vicinity of the
Derwent river in the northern UK. The data was collected daily from November 1, 1971 – January
31, 1977. The catchments are Long Bridge, Matlock Bath, Chat Sworth, What Stand Well, Ashford
(Wye) and Wind Field Park (Amber).

The owner of the data is the Ridings Area Office of the Environment Agency North-East, UK.

DSC_EMM 7

Usage

data(Derwent)

Format

A matrix of size 1918 days times 6 catchments.

Source

UK National River Flow Archive (NRFA), https://nrfa.ceh.ac.uk/

The owner of the data is the Ridings Area Office of the Environment Agency North-East, UK.

References

Wikipedia, River Derwent, Yorkshire, https://en.wikipedia.org/wiki/River_Derwent,_Yorkshire

Wikipedia, River Wye, Derbyshire, https://en.wikipedia.org/wiki/River_Wye,_Derbyshire

Wikipedia, River Amber, https://en.wikipedia.org/wiki/River_Amber

Examples

data(Derwent)

i <- 1
plot(Derwent[,i], type="l", main=colnames(Derwent[i]), ylab="Gauged Flows")

DSC_EMM DSC Interface for EMM and tNN (package stream)

Description

Provides Data Stream Clusterer (DSC) interfaces for EMM and tNN so they can be used in the
stream framework.

Usage

DSC_EMM(formula = NULL, threshold = 0.2, measure = "euclidean", distFun = NULL,
centroids = identical(tolower(measure), "euclidean"),
lambda = 0)

DSC_tNN(formula = NULL, threshold = 0.2, measure = "euclidean",
centroids = identical(tolower(measure), "euclidean"), lambda = 0)

get_EMM(dsc)
set_EMM(dsc, x)

https://nrfa.ceh.ac.uk/
https://en.wikipedia.org/wiki/River_Derwent,_Yorkshire
https://en.wikipedia.org/wiki/River_Wye,_Derbyshire
https://en.wikipedia.org/wiki/River_Amber

8 DSC_EMM

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

threshold A "numeric" with the dissimilarity threshold used by the clustering algorithm
for assigning a new observation to existing clusters.

measure A "character" containing the name of the dissimilarity measure used (see dist
in proxy for available measures).

distFun Specify a function passed on as method to dist in proxy (see dist in proxy).
The character string passed on as measure will be used as the measure’s name.

centroids A "logical" indicating if centroids are used for clusters. If FALSE, pseudo
medians (first observation of a cluster) are used to represent a cluster.

lambda A "numeric" specifying the rate for fading.

dsc an object of class "DSC_EMM".

x an object of class "EMM"

Details

DSC_tNN and DSC_EMM wrap the clustering algorithms so they can be used with the stream
framework. See DSC for details.

get_EMM() and set_EMM() can be used to access the EMM object inside the DSC_EMM object.

Value

An object of class "DSC_EMM" or "DSC_tNN".

Examples

library(stream)

tNN clustering example

stream <- DSD_Gaussians()
stream

cl <- DSC_tNN(threshold = .1)
cl

update(cl, stream, 100)
cl

get_centers(cl)
get_weights(cl)

plot(cl, stream)

EMM clustering example
data("EMMsim")

EMM 9

plot(EMMsim_train, pch = NA)
lines(EMMsim_train, col = "gray")
points(EMMsim_train, pch = EMMsim_sequence_train)

stream <- DSD_Memory(EMMsim_train)
stream

cl <- DSC_EMM(threshold = 0.1, measure = "euclidean", lambda = .1)
update(cl, stream, n = 200)
cl

reset_stream(stream)
plot(cl, stream, n = 200, method = "pca")

inspect and recluster the EMM in the DSC_EMM object
emm <- get_EMM(cl)
plot(emm)

emm <- recluster_hclust(emm, k = 4, method = "average")
plot(emm)

set_EMM(cl, emm)

reset_stream(stream)
plot(cl, stream, n = 200, method = "pca")

EMM Creator for Class "EMM"

Description

Create a new object of class "EMM".

Usage

EMM(threshold = 0.2, measure = "euclidean", distFun = NULL,
centroids = identical(tolower(measure), "euclidean"),
lambda = 0, data = NULL)

Arguments

threshold Object of class "numeric" with the dissimilarity threshold used by the clustering
algorithm for assigning a new observation to existing clusters.

measure Object of class "character" containing the name of the dissimilarity measure
used (see dist in proxy for available measures).

distFun Specify a function passed on as method to dist in proxy (see dist in proxy).
The character string passed on as measure will be used as the measure’s name.

centroids Object of class "logical" indicating if centroids are used for clusters. If FALSE,
pseudo medians (first observation of a cluster) are used to represent a cluster.

10 EMM-class

lambda Object of class "numeric" specifying the rate for fading.

data Initial data to build the EMM. This just calls build on the new EMM.

Value

An object of class "EMM".

See Also

EMM-class

Examples

load EMMTraffic data
data(EMMTraffic)

create empty EMM
emm <- EMM(threshold=0.2, measure="eJaccard", lambda=.1)
emm

cluster some data
build(emm, EMMTraffic)
emm

what clusters were the data points assigned to?
last_clustering(emm)

plot the clustering as a graph
plot(emm)

EMM-class Class "EMM"

Description

This class represents the extensible Markov Model. It consists of a simple data stream clustering
algorithm (class "tNN") and a temporal layer (class "TRACDS").

Objects from the Class

Objects can be created using the creator function EMM or by directly calling new("EMM", ...). Most
slots for the extended classes can be used as parameters for EMM.

Slots

The slots are described in corresponding the extended classes (see section Extends).

Extends

Class "tNN", directly. Class "TRACDS", directly.

EMMsim 11

Methods

copy signature(x = "EMM"): Make a copy of the EMM object. Making explicit copies is neces-
sary since the subclasses store information in environments which are not copied for regular
assignements.

size signature(x = "EMM"): Returns the size of the EMM (number of clusters/states).

References

M.H. Dunham, Y. Meng, J. Huang (2004): Extensible Markov Model, In: ICDM ’04: Proceedings
of the Fourth IEEE International Conference on Data Mining, pp. 371–374.

See Also

build, fade, merge_clusters, plot, prune, rare_clusters, rare_transitions, remove_clusters,
remove_transitions, remove_selftransitions, recluster, and score.

EMMsim Synthetic Data to Demonstrate EMMs

Description

A simulated data set with four clusters in R2. Each cluster is represented by a bivariate normally
distributed random variable. µ are the coordinates of the means of the distributions and Σ contains
the covariance matrices. Two data stream are created using a fixed sequence < 1, 2, 1, 3, 4 >
through the four clusters. For the training data, the sequence is repeated 40 times (200 data points)
and for the test data five times (25 data points).

The code to generate the data is shown in the Examples section below.

Usage

data(EMMsim)

Format

EMMsim_train and EMMsim_test are matrices containing the data.

EMMsim_sequence_train and EMMsim_sequence_test contain the sequence of the data through
the four clusters.

Examples

data(EMMsim)
plot(EMMsim_train)
points(EMMsim_test, col = "red")

the data was generated by
Not run:
set.seed(1234)

12 EMMTraffic

simulated data
mu <- cbind(x = c(0, 0.2, 1, 0.9),

y = c(0, 0.7, 1, 0.2))

sd_rho <- cbind(
x = c(0.2, 0.15, 0.05, 0.02),
y = c(0.1, 0.04, 0.03, 0.05),
rho = c(0, 0.7, 0.3,-0.4)

)

Sigma <- lapply(
1:nrow(sd_rho),
FUN = function(i)
rbind(

c(sd_rho[i, "x"] ^ 2, sd_rho[i, "rho"] * sd_rho[i, "x"] * sd_rho[i, "y"]),
c(sd_rho[i, "rho"] * sd_rho[i, "x"] * sd_rho[i, "y"], sd_rho[i, "y"] ^

2)
)

)

sequence <- c(1, 2, 1, 3, 4)

EMMsim_sequence_train <- rep(sequence, 40)
EMMsim_sequence_test <- rep(sequence, 5)

library("MASS")
EMMsim_train <- t(sapply(

EMMsim_sequence_train,
FUN = function(i)
mvrnorm(1, mu = mu[i,], Sigma = Sigma[[i]])

))

EMMsim_test <- t(sapply(
rep(EMMsim_sequence_test),
FUN = function(i)
mvrnorm(1, mu = mu[i,], Sigma = Sigma[[i]])

))

End(Not run)

EMMTraffic Hypothetical Traffic Data Set for EMM

Description

Each observation in this hypothetical data set is a vector of seven values obtained from sensors
located at specific points on roads. Each sensor collects a count of the number of vehicles which
have crossed this sensor in the preceding time interval.

fade 13

Usage

data(EMMTraffic)

Format

A matrix with 12 observations (rows).

References

M.H. Dunham, Y. Meng, J. Huang (2004): Extensible Markov Model, In: ICDM ’04: Proceedings
of the Fourth IEEE International Conference on Data Mining, pp. 371–374.

Examples

data(EMMTraffic)
EMMTraffic

fade Fading Cluster Structure and EMM Layer

Description

Reduces the weight of old observations in the data stream. build has a learning rate parameter
lambda. If this parameter is set, build automatically fades all counts before a new data point is
added. The second mechanism is to explicitly call the function~fade whenever fading is needed.
This has the advantage that the overhead of manipulating all counts in the EMM can be reduced and
that fading can be used in a more flexible manner. For example, if the data points are arriving at an
irregular rate, fade could be called at regular time intervals (e.g., every second).

Usage

fade(x, t, lambda)

Arguments

x an object of class "EMM". Note that this function will change x.

t number of time intervals (if missing 1 is used)

lambda learning rate. If lambda is missing, the learning rate specified for the EMM is
used.

14 find_clusters

Details

Old data points are faded by using a weight. We define the weight for data that is t timesteps in the
past by the following strictly decreasing function:

wt = 2−λt

Since the weight is multiplicative, it can be applied iteratively by multiplying at each time step
all counts by 2−λ. For the clustering algorithm the weight of the clusters (number of data points
assigned to the cluster) is faded. For the EMM the initial count vector and all transition counts are
faded.

Value

Returns a reference to the changed object x.

See Also

EMM and build

Examples

data("EMMTraffic")

For the example we use a very high learning rate
this calls fade after each new data point
emm_l <- EMM(measure="eJaccard", threshold=0.2, lambda = 1)
build(emm_l, EMMTraffic)

build a regular EMM for comparison
emm <- EMM(measure="eJaccard", threshold=0.2)
build(emm, EMMTraffic)

compare the transition matrix
transition_matrix(emm)
transition_matrix(emm_l)

compare graphs
op <- par(mfrow = c(1, 2), pty = "m")
plot(emm, main = "regular EMM")
plot(emm_l, main = "EMM with high learning rate")
par(op)

find_clusters Find the EMM State/Cluster for an Observation

Description

Finds the cluster and thus the EMM states for observations.

find_clusters 15

Usage

S4 method for signature 'tNN,matrix'
find_clusters(x, newdata, match_cluster=c("exact", "nn"), dist = FALSE)

Arguments

x an EMM object.

newdata a matrix/data.frame with observations.

match_cluster find exact or nearest neighbor (nn) cluster/state. If a number is supplied then the
threshold times this number is used for exact matching.

dist also report the distance to the chosen cluster/state (as a data.frame).

Value

Returns the name of the matching clusters/states or a data.frame with columns "state" and "dist" if
dist=TRUE.

See Also

EMM and tNN

Examples

data("EMMTraffic")
emm <- EMM(measure="eJaccard", threshold=0.2)
emm <- build(emm, EMMTraffic)

find_clusters(emm, EMMTraffic)
find_clusters(emm, EMMTraffic, dist=TRUE)

add noise to the data
set.seed(1234)
newdata <- sapply(EMMTraffic, jitter, amount=15)
default is exact match
find_clusters(emm, newdata, dist=TRUE)
match with nearest neighbor
find_clusters(emm, newdata, match_cluster="nn", dist=TRUE)
exact match only if within .5 times threshold
find_clusters(emm, newdata, match_cluster=.5, dist=TRUE)
exact match only if within 2 times threshold
find_clusters(emm, newdata, match_cluster=2, dist=TRUE)

16 merge_clusters

merge_clusters Merge States of an EMM

Description

Merge several clusters/states of an EMM into a single cluster/state.

Usage

S4 method for signature 'EMM,character'
merge_clusters(x, to_merge, clustering = FALSE, new_center = NULL, copy=TRUE)

Arguments

x an "EMM" object. Note that the function will change this EMM!

to_merge vector of names of the states/clusters to merge. The name of the first state in
to_merge is used as the name for the new state representing the merged states.

clustering is to_merge a vector with cluster assignments as created by a clustering algo-
rithm?

new_center supply new centers for the merged clusters. New centroids are automatically
computed. If (pseudo) medoids are used, new medoids should be supplied. If
none is supplied, the medoid of the cluster in to_merge which has the most
assigned observations is used as the new medoid (warning: this is probably not
a good medoid!)

copy logical; make a copy of x before reclustering? Otherwise the function will
change x!

Value

Returns the changed EMM with the states/clusters merged invisibly. If copy=FALSE then it returns
a reference to the changes object passed as x.

Examples

data("EMMTraffic")
emm <- EMM(measure="eJaccard", threshold=0.2)
build(emm, EMMTraffic)
states(emm)

create a new emm with states 1-3 merged
emm_m123 <- merge_clusters(emm, c("1", "2", "3"))
states(emm_m123)

plot 17

plot Visualize EMM Objects

Description

Visualize EMM objects.

Usage

S4 method for signature 'EMM,missing'
plot(x, y,
method=c("igraph", "interactive", "graph", "MDS",

"cluster_counts", "transition_counts"),
data = NULL, parameter=NULL, ...)

Arguments

x an EMM object.

y unused (just for compatibility with the generic for plot in graphics)

method see details section.

data Project the state centers onto these data. Points which do not belong to any
cluster are shown in blue.

parameter a list of parameters for plotting (see Details section).

... further arguments passed on to plot.default or plot.igraph.

Details

There are several methods for plotting:

"igraph" produces a graph representation of the EMM using igraph. Additional arguments like
layout are passed on to plot for igraph.

"interactive" produces an interactive graph representation of the EMM (using igraph). Argu-
ments suitable for plot.igraph in igraph can be passed on as

"graph" produces a graph representation of the EMM using Rgraphviz. If Rgraphviz is not
installed/available then the method reverts to "igraph".

"MDS" projects the cluster centers into 2-dimensional space.

"cluster_counts" produces a barplot for cluster counts.

"transition_counts" produces a barplot for transition counts.

The following plotting parameters are currently supported (by some of the visualizations):

state_counts represent state counts by vertex size? (default: TRUE)

arrow_width represent transition counts/probabilities by arrow width? (default: TRUE)

arrows use "counts" or "probabilities" for arrow width. (default: "counts")

18 plot

arrow_width_multiplier, state_size_multiplier Controls the variation of vertex sizes and edge
widths (default: 1).

add_labels add labels for centers (n/a for type = "graph").

cluster_labels cluster labels to use instead of 1,2,....

mark_clusters Use different markers for points depending on the state they belong to (only avail-
able for MDS when data is specified).

draw_threshold draw a circle around state centers to indicate the area in which points are assigned
to the cluster (experimental, only available for MDS when data is specified).

mark_states, mark_state_color a vector of state names to be marked and the color(s) used for
marking (default: red).

mark_transitions, mark_transitions_color a vector of transition names in the format "3->2" to
be marked and the color(s) used for marking (default: red).

For some plots (e.g., "igraph") ... is passed on to the primitive plotting function and can be used
to change the plot (colors, etc.) See ? igraph.plotting. For "graph" the two special parameters
"nAttrs" and "eAttrs" for node and edge attributes can be used.

See Also

EMM

Examples

data("EMMTraffic")

emm <- EMM(threshold = 0.2,
measure = "eJaccard",
data = EMMTraffic)

op <- par(mfrow = c(2, 2), pty = "s")

plot(emm, main = "Graph")

Plot the graph as a tree with a set root node and an aspect ratio of 1:1.
g <- as.igraph(emm)
plot(emm, main = "Graph (tree layout)",

layout = igraph::layout_as_tree(g, root = 1), asp = 1)

plot(emm, method = "MDS",
main = "Graph (MDS projection)", xlim = c(-0.5, 0.5), ylim = c(-0.5, 0.5)

)

plot(emm, method = "MDS", data = EMMTraffic,
main = "Projection of cluster \ncenters on data")

par(op)

predict 19

predict Predict a Future State

Description

Predict a state or the probability distribution over states in n time steps.

Usage

S4 method for signature 'TRACDS'
predict(object, current_state = NULL, n=1,
probabilities = FALSE, randomized = FALSE, prior=FALSE)

Arguments

object an "EMM"/"TRACDS" object.

current_state use a specified current state. If NULL, the EMM’s current state is used.

n number of time steps.

probabilities if TRUE, instead of the predicted state, the probability distribution is returned.

randomized if TRUE, the predicted state is choosen randomly with a selection probability
proportional to its transition probability

prior add one to each transition count. This is equal to starting with a uniform prior
for the transition count distribution, i.e. initially all transitions are equally likely.
It also prevents the product of probabilities to be zero if a transition was never
observed.

Details

Prediction is done using An where A is the transition probability matrix maintained by the EMM.
Random tie-breaking is used.

Value

The name of the predicted state or a vector with the probability distribution over all states.

See Also

transition_matrix

Examples

data("EMMTraffic")
emm <- EMM(measure="eJaccard", threshold=0.2)
emm <- build(emm, EMMTraffic)

#plot(emm) ## plot graph

20 prune

Predict state starting an state 1 after 1, 2 and 100 time intervals
Note, state 7 is an absorbing state.
predict(emm, n=1, current_state="1")
predict(emm, n=2, current_state="1")
predict(emm, n=100, current_state="1")

Get probability distribution
predict(emm, n=2, current_state="1", probabilities = TRUE)

prune Prune States and/or Transitions

Description

Simplifies an EMM and/or the clustering by removing all clusters/states and/or transitions which
have a count of equal or smaller than a given threshold.

Usage

S4 method for signature 'EMM'
prune(x, count_threshold, clusters = TRUE, transitions = FALSE,

copy = TRUE, compact = TRUE)

rare_clusters(x, count_threshold, ...)
rare_transitions(x, count_threshold, ...)

Arguments

x an object of class "EMM"
count_threshold

all states/edges with a count of less or equal to the threshold are removed from
the model.

clusters logical; prune clusters?

transitions logical; prune transitions?

copy logical; make a copy of x before reclustering? Otherwise the function will
change x!

compact logical; tries make the data structure used for the temporal model more compact
after pruning.

... further arguments (currently not used).

Value

prune returns invisibly an object of class EMM. If copy=FALSE then it returns a reference to the
changes object passed as x.

rare_clusters returns a vector of names of rare clusters.

rare_transitions returns a data.frame of rare transitions.

recluster 21

See Also

remove_transitions, remove_clusters, compact

Examples

data("EMMTraffic")

For the example we use a very high learning rate
emm_l <- EMM(threshold=0.2, measure="eJaccard", lambda = 1)
build(emm_l, EMMTraffic)

show state counts and transition counts
cluster_counts(emm_l)
transition_matrix(emm_l, type="counts")

rare state/transitions
rare_clusters(emm_l, count_threshold=0.1)
rare_transitions(emm_l, count_threshold=0.1)

remove all states with a threshold of 0.1
emm_lr <- prune(emm_l, count_threshold=0.1)

compare graphs
op <- par(mfrow = c(1, 2), pty = "m")
plot(emm_l, main = "EMM with high learning rate")
plot(emm_lr, main = "Simplified EMM")
par(op)

recluster Reclustering EMM states

Description

Use various clustering methods to recluster states/clusters in an EMM. The centers of the clusters
in the EMM object are used as data points by the reclustering algorithm. States/centers put by
reclustering into the same cluster are merged to produce a new reclustered EMM.

Usage

S4 method for signature 'EMM'
recluster_hclust(x, k=NULL, h=NULL, method="average",

...,prune=NULL, copy=TRUE)
S4 method for signature 'EMM'
recluster_kmeans(x, k, ..., prune=NULL, copy=TRUE)
S4 method for signature 'EMM'
recluster_pam(x, k, ..., prune=NULL, copy=TRUE)
S4 method for signature 'EMM'
recluster_reachability(x, h, ..., prune=NULL, copy=TRUE)

22 recluster

S4 method for signature 'EMM'
recluster_tNN(x, threshold=NULL, ..., prune=NULL, copy=TRUE)
S4 method for signature 'EMM'
recluster_transitions(x, threshold=NULL, ..., prune=NULL, copy=TRUE)

Arguments

x an "EMM" object.

k number of clusters.

h heights where the dendrogram tree should be cut.

threshold threshold used on the dissimilarity to join clusters for tNN. If no threshold is
specified then the threshold stored in the EMM is used.

method clustering method used by hclust.

... additional arguments passed on to the clustering algorithm.

prune logical; prune states with less than prune counts before reclustering.

copy logical; make a copy of x before reclustering? Otherwise the function will
change x!

Details

For recluster_kmeans k can also be a set of initial cluster centers (see argument centers for
kmeans in package stats).

For recluster_hclust k or h can also be a vector. The result is then a list with several (nested)
EMMs, one for each value.

For recluster_reachability reclusters all clusters which are reachable from each other. A clus-
ter j is reachable from i if j’s center is closer to i’s center than h or if j is reachable by any cluster
reachable by i.

For recluster_tNN reclusters such that two clusters with centers less than the threshold apart will
be reclustered into a single cluster. This is useful, for example, after combining two models.

For recluster_transitions does not recluster clusters! It find groups of clusters which are over-
lapping (centers are less than 2 thresholds apart) and then redistributes the transition weights such
that all members of one group are connected to all the members of the other group using the same
weight.

Value

An object of class "EMM" or, if copy=FALSE a refernece to the changed object passed as x.

Clustering information is available as the attribute "cluster_info". The information provided
depends in the clustering algorithm (see hclust, kmeans and pam).

See Also

merge_clusters, prune, kmeans, hclust, pam

remove 23

Examples

data(EMMsim)
emm <- EMM(threshold = .2)
build(emm, EMMsim_train)

do reclustering on a copy of the emm and plot dendrogram
emm_hc <- recluster_hclust(emm, h = 0.6)

attr(emm_hc, "cluster_info")

compare original and clustered EMM
op <- par(mfrow = c(2, 2), pty = "m")
plot(emm, method= "MDS", main ="original EMM", data = EMMsim_train)
plot(attr(emm_hc, "cluster_info")$dendrogram)
abline(h=0.6, col="red")
plot(emm_hc, method="MDS", main ="clustered EMM", data = EMMsim_train)
plot(emm_hc, method="MDS", main ="clustered EMM")
par(op)

remove Remove States/Clusters or Transitions from an EMM

Description

Remove states/clusters or transitions from an EMM.

Usage

remove_clusters(x, to_remove, copy = TRUE)
remove_transitions(x, from, to,copy = TRUE)
remove_selftransitions(x, copy = TRUE)

Arguments

x an EMM object.
to_remove Names of states/clusters to remove.
from, to Names of states for removing transitions. If to is missing from has to contain a

matrix with two columns (from and to state names).
copy logical; make a copy of x before reclustering? Otherwise the function will

change x!

Details

remove_selftransitions removes the transitions from each state to itself.

Value

Returns a EMM with removed states/transitions. If copy=FALSE a reference to the object x with the
states/transistions removed is returned.

24 score

Examples

data("EMMTraffic")
emm <- EMM(measure="eJaccard", threshold=0.2)
emm <- build(emm, EMMTraffic)

remove state 3
emm_rs3 <- remove_clusters(emm, "3")

remove transition 5->2
emm_rt52 <- remove_transitions(emm, "5", "2")

compare EMMs
op <- par(mfrow = c(2, 2), pty = "m")
plot(emm, method = "igraph", main = "original EMM")
plot(emm_rs3, method = "igraph", main = "state 3 removed")
plot(emm_rt52, method = "igraph", main = "transition 5->2 removed")
par(op)

score Score a New Sequence Given an EMM

Description

Calculates a score of how likely it is that a new sequence was generated by the same process as the
sequences used to build the EMM.

Usage

S4 method for signature 'EMM,matrix'
score(x, newdata, method = c("product", "log_sum", "sum",

"log_odds", "supported_transitions", "supported_states",
"sum_transitions", "log_loss", "likelihood", "log_likelihood", "AIC"),
match_cluster = "exact", random = FALSE, prior = TRUE, normalize = TRUE,
initial_transition = FALSE, threshold = NA)

S4 method for signature 'EMM,EMM'
score(x, newdata, method = c("product", "log_sum", "sum",

"supported_transitions"), match_cluster = "exact", random = FALSE, prior = TRUE,
initial_transition = FALSE)

Arguments

x an EMM object.

newdata sequence or another EMM object to score.

method method to calculate the score (see details)

match_cluster do the new observations have to fall within the threshold of the cluster ("exact")
or is nearest neighbor ("nn") or weighted nearest neighbor (weighted) used? If
match_cluster is a number n then observations need to fall within n times the
clustering threshold of the cluster.

score 25

random logical; should the order of newdata be randomized? Can be used to compare
the score with the actual score.

prior logical; add one to each transition count. This is equal to start with a count of
one for each transition, i.e. initially all transitions are equally likely. It prevents
the product of probabilities to be zero if a transition was never observed.

normalize logical; normalize the score by the length of the sequence.
initial_transition

logical; include the initial transition in the computation?
threshold minimum count threshold used by supported transitions and supported states.

Details

The scores for a new sequence x of length l can be computed by the following methods. For
match_cluster="exact" or "nn":

"product" Product of transition probabilities along the path of x in the model. A single missing
transition (transition probability of zero) will result in a score of 0. Use prior to avoid this.

Sproduct =
l−1

√√√√l−1∏
i=1

as(i),s(i+1)

where as(i),s(j) is the transition probability between the state representing positions i and j in
the sequence.

"sum" Average of transition probabilities along the path of x in the model.

Ssum =
1

l − 1

l−1∑
i=1

as(i),s(i+1)

"log_sum" Average of the log of the transition probabilities along the path of x in the model. The
ranking of the scores is equivalent to the product of probabilities, however, the calculation is
more reliable since the product of probabilities might become a very small number.
A single missing transition (transition probability of zero) will result in a score of neg. infinity.
Use prior to avoid this.

Slog_sum =
1

l − 1

l−1∑
i=1

log(as(i),s(i+1))

"supported_transitions" Fraction of transitions in the new sequence x supported (present) in the
model after assigning each data point in x to a state in the model.

Ssupported_transitions =
1

l − 1

l−1∑
i=1

I(as(i),s(i+1))

"supported_states" Fraction of points in the new sequence x for which a state (cluster) exists in
the model. match_cluster is always "exact" because for "nn" this measure would always
give 1. Note that this measure ignores transition information.
If threshold is given, then only states with a count greater than the given threshold are counted
as supported.

26 score

"sum_transitions" Sum of the counts on the edges in the model on the path of sequence x nor-
malized by the total number of transition counts in the model.

Ssum_transitions =
1

l − 1

l−1∑
i=1

cs(i),s(i+1)

where cs(i),s(i+1) is the transition count between the state representing positions i and j in the
sequence.
If threshold is given, then only transitions with a count greater than the given threshold are
counted as supported.

"likelihood", "log_likelihood" The likelihood of the model given the new data is the unnormal-
ized product score (product of transition probabilities).

"log_loss" The average log loss is defined as

−sum(log2(as(i), s(i+ 1)))/(l − 1)

It represents the average compression rate of the new sequence given the model.
"AIC" Akaike Information Criterion corrected for finite sample size.

2k − 2log(L)2k(k − 1)/(n− k − 1)

where n = l − 1 and k is the model complexity measured by the number of non-zero entries
in the transition matrix. We use the likelihood of the model given by the proportion of sup-
ported transitions. AIC can be used for model selection where the smallest value indicates the
preferred model.

where xi represents the i-th data point in the new sequence, a(i, j) is the transition probability from
state i to state j in the model, s(i) is the state the i-th data point (xi) in the new sequence is assigned
to. I(v) is an indicator function which is 0 for v = 0 and 1 otherwise.

For match_cluster="weighted":

"product" Weighted version of the product of probabilities. The weight is the similarity between
a new data point and the state in the model it is assigned to.

Sweighted_product =
l−1

√√√√l−1∏
i=1

simil(xi, s(i))simil(xi, s(i+ 1))as(i),s(i+1)

"sum" Weighted version of the sum of probabilities.

Sweighted_sum =
1

l − 1

l−1∑
i=1

simil(xi, s(i))simil(xi, s(i+ 1))as(i),s(i+1)

"log_sum" Weighted version of the sum of the log of probabilities.

Sweighted_log_sum =
1

l − 1

l−1∑
i=1

log(simil(xi, s(i))simil(xi, s(i+ 1))as(i),s(i+1))

"supported_states" Same as "supported_states" but instead of counting the supported states,
the similarity simil(xi, s(i)) is used as a weight. Threshold is not implemented.

where simil(·) is a modified and normalized similarity function given by simil(x, s) = 1− 1

1+e−
d(x,s)/t−1.5

.2

where d is the distance measure and t is the threshold that was used to create the model.

score 27

Value

A scalar score value.

See Also

transition to access transition probabilities and find_clusters for assigning observations to
states/clusters.

Examples

data("EMMsim")

emm <- EMM(threshold = .2)
emm <- build(emm, EMMsim_train)

default is method "product". The score is much higher compared to a randomized order.
score(emm, EMMsim_test)
score(emm, EMMsim_test, random = TRUE)

create shuffled data (destroy temporal relationship)
and create noisy data
test_shuffled <- EMMsim_test[sample(1:nrow(EMMsim_test)),]
test_noise <- jitter(EMMsim_test, amount = .3)

helper for plotting
mybars <- function(...) {

oldpar <- par(mar = c(5, 10, 4, 2))
ss <- rbind(...)
barplot(
ss[, ncol(ss):1],
xlim = c(-1, 4),
beside = TRUE,
horiz = TRUE,
las = 2,
legend = rownames(ss)

)
par(oldpar)

}

compare various scores
methods <- c(

"product",
"sum",
"log_sum",
"supported_states",
"supported_transitions",
"sum_transitions",
"log_loss",
"likelihood"

)

28 score

default is exact matching
clean <-

sapply(
methods,
FUN = function(m)

score(emm, EMMsim_test, method = m)
)

shuffled <-
sapply(

methods,
FUN = function(m)

score(emm, test_shuffled, method = m)
)

noise <-
sapply(

methods,
FUN = function(m)

score(emm, test_noise, method = m)
)

mybars(shuffled, noise, clean)

weighted matching is better for noisy data
clean <-

sapply(
methods,
FUN = function(m)

score(emm, EMMsim_test, method = m,
match = "weighted")

)

shuffled <-
sapply(

methods,
FUN = function(m)

score(emm, test_shuffled, method = m,
match = "weighted")

)

noise <-
sapply(

methods,
FUN = function(m)

score(emm, test_noise, method = m,
match = "weighted")

)

mybars(shuffled, noise, clean)

smooth_transitions 29

smooth_transitions Smooths transition counts between neighboring states/clusters

Description

Each state/cluster gets the average count if all the outgoing transitions of its neighbors (i.e., clusters
which are within range x its threshold).

Usage

S4 method for signature 'EMM'
smooth_transitions(x, range = 2, copy = TRUE)

Arguments

x an object of class "EMM"

range threshold multiplier for the smoothing range.

copy logical; make a copy of x before reclustering? Otherwise the function will
change x!

Value

smooth_transitions returns invisibly an object of class EMM. If copy=FALSE then it returns a
reference to the changes object passed as x.

See Also

prune

Examples

data("EMMTraffic")

learn a model
emm <- EMM(threshold=0.2, measure="eJaccard")
build(emm, EMMTraffic)

smooth the model by adding tansitions
emm_s <- smooth_transitions(emm)

compare graphs
op <- par(mfrow = c(1, 2), pty = "m")
plot(emm, method="MDS", main="Original")
plot(emm_s, method="MDS", main="Smoothed")
par(op)

30 synthetic_stream

synthetic_stream Create a Synthetic Data Stream

Description

This function creates a synthetic data stream with data points in roughly [0, 1]p by choosing points
form k clusters following a sequence through these clusters. Each cluster has a density function
following a d-dimensional normal distributions. In the test set outliers are introduced.

Usage

synthetic_stream(k = 10, d = 2, n_subseq = 100, p_transition = 0.5, p_swap = 0,
n_train = 5000, n_test = 1000, p_outlier = 0.01, rangeVar = c(0, 0.005))

Arguments

k number of clusters.

d dimensionality of data set.

n_subseq length of subsequence which will be repeat to create the data set.

p_transition probability that the next position in the subsequence will belong to a different
cluster.

p_swap probability that two data points are swapped. This represents measurement er-
rors (e.g., a data points arrive out of order) or that the data stream does not
exactly follow the subsequence.

n_train size of training set (without outliers).

n_test size of test set (with outliers).

p_outlier probability that a data point is replaced by an outlier (a randomly chosen point
in [0, 1]p).

rangeVar Used to create the random covariance matrices for the clusters. See genPositiveDefMat()
in clusterGeneration for details.

Details

The data generation process creates a data set consisting of k clusters in roughly [0, 1]d. The data
points for each cluster are be drawn from a multivariate normal distribution given a random mean
and a random variance/covariance matrix for each cluster. The temporal aspect is modeled by a fixed
subsequence (of length n_subseq) through the k clusters. In each step in the subsequence we have a
transition probability p_transition that the next data point is in the same cluster or in a randomly
chosen other cluster, thus we can create slowly or fast changing data. For the complete sequence,
the subsequence is repeated to create n_test/n_train data points. The data set is generated by
drawing a data point from the cluster corresponding to each position in the sequence. Outliers
are introduced by replacing data points in the data set with probability $p_outlier by randomly
chosen data points in [0, 1]d. Finally, to introduce imperfection in the temporal sequence (e.g.,
because the data does not follow exactly a repeating sequence or because observations do not arrive
in the correct order), we swap two consecutive observations with probability p_swap.

tNN-class 31

Value

A list with the following elements:

test test data.

train training data.

sequence_test sequence of the test data points through the clusters.

sequence_train sequence of the training data points through the clusters.

swap_test index where points are swapped.

swap_train index where points are swapped.
outlier_position

logical vector for outliers in test data.

model centers and covariance matrices for the clusters.

Examples

create only test data (with outliers)
ds <- synthetic_stream(n_train = 0)

plot test data
plot(ds$test, pch = ds$sequence_test, col = "gray")
text(ds$model$mu[, 1], ds$model$mu[, 2], 1:10)

mark outliers
points(ds$test[ds$outlier_position,],

pch = 3, lwd = 2, col = "red")

tNN-class Class "tNN"

Description

Implements the threshold Nearest Neighbor clustering algorithm used by EMM.

Objects from the Class

Objects can be created with new() or by the creator function tNN.

Slots

measure: Object of class "character" containing the name of the dissimilarity measure used (see
dist in proxy for available measures)

centroids: Object of class "logical" indicating if centroids are used for clusters. If FALSE,
pseudo medians (first observation of a cluster) are used to represent a cluster.

threshold: Object of class "numeric" with the dissimilarity threshold used by the NN clustering
algorithm for assigning a new observation to existing clusters.

32 TRAC

lambda: Object of class "numeric" specifying the rate for fading.

lambda_factor: Object of class "numeric" expressing the fading rate expressed as a factor.

tnn_d: An environment containing the variable data for the tNN object:

centers: Object of class "matrix" containing the cluster centers.
counts: Object of class "numeric" with the number of observations assigned to each cluster.
var_thresholds: Object of class "numeric" with the dissimilarity thresholds for individual

clusters (usually the same as threshold).
last: A "character" vector containing the cluster names the points for the previous call of

cluster() were assigned to.

Methods

copy signature(x = "tNN"): Make a copy of the tNN object. Making explicit copies is necessary
since information is stored in an environment which is not copied for regular assignements.

cluster_centers signature(x = "tNN"): returns the cluster centers as a matrix.

cluster_counts signature(x = "tNN"): returns the cluster counts as a vector.

clusters signature(x = "tNN"): returns the names of the clusters.

last_clustering signature(x = "tNN"): returns the indices of the clusters the data points in the
last cluster operation where assigned to. To save memory the last clustering information can
be removed by setting the formal parameter remove to TRUE.

nclusters signature(x = "tNN"): returns the number of clusters in the clustering.

plot signature(x = "tNN", y = "missing"): plots the cluster centers using a scatterplot matrix
(see pairs).

References

M.H. Dunham, Y. Meng, J. Huang (2004): Extensible Markov Model, In: ICDM ’04: Proceedings
of the Fourth IEEE International Conference on Data Mining, pp. 371–374.

See Also

cluster for adding new data to the clustering. find_clusters to find the nearest neighbor cluster
for given data points. EMM extends "tNN".

TRAC TRAC: Creating a Markov Model from a Regular Clustering

Description

Create an Markov model from a regular clustering (k-means or PAM) of sequence data.

Usage

TRAC(x, data = NULL, centers = NULL, measure = "euclidean")

TRACDS-class 33

Arguments

x a clustering object (result of kmeans or PAM), a data set (a data matrix), or a
vector with (integer) cluster assignments.

data the data used for clustering (only used if x is a cluster assignment vector).

centers if x is a cluster assignment vector, then a data.frame or matrix with the cluster
centers needs to be supplies. Otherwise, centers is ignored.

measure used distance measure.

Details

The order is inferred from the order in the original data set.

Value

A EMM object representing the clustering of sequence data.

Examples

data("EMMsim")

using kmeans
cl <- kmeans(EMMsim_train, 10)
emm <- TRAC(cl)
emm
plot(emm, method = "MDS")

using a cluster assignment vector (taken from the k-means clustering above)
x <- cl$cluster
emm <- TRAC(x, data = EMMsim_train)
emm
plot(emm, method = "MDS")

TRACDS-class Class "TRACDS"

Description

Representation of the temporal structure of a data stream clustering using a extensible Markov
model.

Objects from the Class

Objects can be created using the creator function TRACDS or by directly calling new("TRACDS",
...). Most slots for the extended classes can be used as parameters.

34 TRACDS-class

Slots

lambda: Object of class "numeric" specifying the rate for fading.

lambda_factor: Object of class "numeric" expressing the fading rate expressed as a factor.

tracds_d: An environment containing all the variable data of the TRACDS object:

mm: Object of class "SimpleMC" representing the first order Markov model of the EMM.
current_state: Object of class "character" with the name of current state in the EMM.

NA means no current state.

Methods

copy signature(x = "TRACDS"): Make a copy of the TRACDS object. Making explicit copies
is necessary since information is stored in an environment which is not copied for regular
assignements.

current_state signature(x = "TRACDS"): returns the name of the current state.

nstates signature(x = "TRACDS"): returns the number of states.

ntransitions signature(x = "TRACDS"): returns the number of transitions with a count larger than
0 stored in the object.

plot signature(x = "TRACDS", y = "missing"): Plots the object as a directed graph.

states signature(x = "TRACDS"): returns the names of the states.

transitions signature(x = "TRACDS"): returns all transitions as a matrix of state names with a
from and a to column.

Note

A TRACDS object can be coerced to igraph or graph objects using as.igraph() and as.graph().

References

Michael Hahsler and Margaret H. Dunham. Temporal structure learning for clustering massive data
streams in real-time. In SIAM Conference on Data Mining (SDM11), pages 664–675. SIAM, April
2011. doi:10.1137/1.9781611972818.57

M. Hahsler, M. H. Dunham (2010): rEMM: Extensible Markov Model for Data Stream Clustering
in R, Journal of Statistical Software, 35(5), 1-31, URL doi:10.18637/jss.v035.i05

M.H. Dunham, Y. Meng, J. Huang (2004): Extensible Markov Model, In: ICDM ’04: Proceedings
of the Fourth IEEE International Conference on Data Mining, pp. 371–374.

See Also

Look at transition, transition_matrix and initial_transition to access the transition in-
formation in the EMM. predict is used to predict future states of an EMM. EMM extends "TRACDS".

https://doi.org/10.1137/1.9781611972818.57
https://doi.org/10.18637/jss.v035.i05

transition 35

transition Access Transition Probabilities/Counts in an EMM

Description

Calculates individual transition probabilities/counts or a complete transition matrix for an EMM
(which contains "TRACDS").

Usage

S4 method for signature 'TRACDS,character,character'
transition(x, from, to,

type = c("probability", "counts", "log_odds"), prior = TRUE)
S4 method for signature 'TRACDS'
transition_matrix(x,

type = c("probability", "counts", "log_odds"), prior = TRUE)
S4 method for signature 'TRACDS'
initial_transition(x,

type = c("probability", "counts", "log_odds"), prior = TRUE)

Arguments

x an object of class "EMM"/"TRACDS".

from, to Names a states. If to is missing, from has to contain a matrix with two columns
(a from column and a to column as returned by transitions).

type What should be calculated?

prior add one to each transition count. This is equal to starting with a uniform prior for
the transition count distribution, i.e., initially all transitions are equally likely.

Details

Log odds are calculated as ln(a/(1/n)) where a is the probability of the transition and n is the
number of states in the EMM. 1/n is the probability of a transition under the null model which
assumes that the transition probability from each state to each other state (including staying in the
same state) is the same, i.e., the null model has a transition matrix with all entries equal to 1/n.

Value

A scalar (for transition), a square matrix (for transition_matrix) or a vector (for initial_transition).

See Also

EMM which contains TRACDS

36 transition_table

Examples

data("EMMTraffic")
emm <- EMM(measure="eJaccard", threshold=0.2)
emm <- build(emm, EMMTraffic)

get transition matrix
transition_matrix(emm, type="count", prior=FALSE)
transition_matrix(emm, type="count")
transition_matrix(emm, prior=FALSE)
transition_matrix(emm)

get initial state probabilities
initial_transition(emm)

access individual transition probability (state 1 -> 2)
transition(emm, "1","2")

get counts for all existing transitions
tr <- transitions(emm)
tr
cbind(as.data.frame(tr), counts=transition(emm, tr, type="counts"))

transition_table Extract a Transition Table for a New Sequence Given an EMM

Description

Finds the state sequence of a new sequence in an EMM and returns a table with the transition
probabilities or counts.

Usage

S4 method for signature 'EMM,matrix'
transition_table(x, newdata,
type = c("probability", "counts", "log_odds"),
match_cluster = "exact", prior=TRUE, initial_transition = FALSE)

Arguments

x an EMM object.

newdata new sequence,

type the measure to return.

match_cluster do the new observations have to fall within the threshold of the cluster ("exact")
or is nearest neighbor used ("nn")?

update 37

prior add one to each transition count. This is equal to starting with a uniform prior
for the transition count distribution, i.e. initially all transitions are equally likely.
It also prevents the product of probabilities to be zero if a transition was never
observed.

initial_transition

include the initial transition in the table?

Value

A data.frame with three columns (from state, to state and the transition probability/count.)

See Also

transition to access transition probabilities and find_clusters for assigning observations to
states/clusters.

Examples

data("EMMsim")

emm <- EMM(threshold=.5)
emm <- build(emm, EMMsim_train)

head(transition_table(emm, EMMsim_test))
head(transition_table(emm, EMMsim_test, type ="prob", initial_transition=TRUE))

update Update a TRACDS temporal structure with new state assignements

Description

Add a sequence of new state assignments to a TRACDS object.

Usage

S4 method for signature 'TRACDS'
update(object, newdata, verbose=FALSE, ...)
reset(x)
compact(x)

Arguments

x, object a TRACDS object. Note that this function changes the original object!

newdata a vector with a state assignemnt sequence (typically produced by clustering).

verbose logical; verbose output?

... further arguments.

38 update

Details

update() adds a new state assignemnt sequenc to the TRACDS object by increasing the transition
counts and, if needed, creating new states.

reset() resets the current state to NA for reading in a new sequence. An NA in newdata also resets
the current state.

compact() reduces the size (memory) used to store the temporal transition matrix.

Value

A reference to the changed TRACDS object with the data added. Note: EMM objects store all
variable data in an environment which enables us to update partial data without copying the whole
object. Assignment will not create a copy! Use the provided method copy().

See Also

Class TRACDS, fade.

Examples

create an empty TRACDS object
tracds <- TRACDS()
tracds

update with an cluster assignment sequence
update(tracds, c(1,2,5,5,2))
tracds

plot(tracds)

Index

∗ classes
EMM-class, 10
tNN-class, 31
TRACDS-class, 33

∗ cluster
cluster, 4
recluster, 21

∗ datagen
synthetic_stream, 30

∗ datasets
16S, 2
Derwent, 6
EMMsim, 11
EMMTraffic, 12

∗ hplot
plot, 17

∗ manip
combine, 5
fade, 13
merge_clusters, 16
prune, 20
recluster, 21
remove, 23
smooth_transitions, 29

∗ models
build, 3
cluster, 4
DSC_EMM, 7
EMM, 9
find_clusters, 14
predict, 19
recluster, 21
score, 24
TRAC, 32
transition, 35
transition_table, 36
update, 37

16S, 2

Alphaproteobacteria16S (16S), 2

as.graph (TRACDS-class), 33
as.igraph (TRACDS-class), 33

build, 3, 11, 14
build,EMM,data.frame-method (build), 3
build,EMM,matrix-method (build), 3
build,EMM,numeric-method (build), 3

c (combine), 5
c,EMM-method (combine), 5
cluster, 4, 32
cluster,tNN,data.frame-method

(cluster), 4
cluster,tNN,matrix-method (cluster), 4
cluster,tNN,numeric-method (cluster), 4
cluster_centers (tNN-class), 31
cluster_centers,tNN-method (tNN-class),

31
cluster_counts (tNN-class), 31
cluster_counts,tNN-method (tNN-class),

31
clusters (tNN-class), 31
clusters,tNN-method (tNN-class), 31
combine, 5
compact, 21
compact (update), 37
compact,TRACDS-method (update), 37
copy (EMM-class), 10
copy,EMM-method (EMM-class), 10
copy,tNN-method (tNN-class), 31
copy,TRACDS-method (TRACDS-class), 33
current_state (TRACDS-class), 33
current_state,TRACDS-method

(TRACDS-class), 33

Derwent, 6
dist, 3, 5
DSC, 8
DSC_EMM, 7
DSC_tNN (DSC_EMM), 7

39

40 INDEX

EMM, 9, 14, 15, 18, 32, 34, 35
EMM-class, 10
EMMsim, 11
EMMsim_sequence_test (EMMsim), 11
EMMsim_sequence_train (EMMsim), 11
EMMsim_test (EMMsim), 11
EMMsim_train (EMMsim), 11
EMMTraffic, 12

fade, 3, 5, 11, 13, 38
fade,EMM,missing,missing-method (fade),

13
fade,EMM,missing,numeric-method (fade),

13
fade,EMM,numeric,missing-method (fade),

13
fade,EMM,numeric,numeric-method (fade),

13
find_clusters, 14, 27, 32, 37
find_clusters,tNN,data.frame-method

(find_clusters), 14
find_clusters,tNN,matrix-method

(find_clusters), 14
find_clusters,tNN,numeric-method

(find_clusters), 14
formula, 8

get_EMM (DSC_EMM), 7

hclust, 22

initial_transition, 34
initial_transition (transition), 35
initial_transition,TRACDS-method

(transition), 35

kmeans, 22

last_clustering (tNN-class), 31
last_clustering,tNN-method (tNN-class),

31

merge_clusters, 11, 16, 22
merge_clusters,EMM,character-method

(merge_clusters), 16
merge_clusters,EMM,integer-method

(merge_clusters), 16
Mollicutes16S (16S), 2

nclusters (tNN-class), 31

nclusters,tNN-method (tNN-class), 31
nstates (TRACDS-class), 33
nstates,TRACDS-method (TRACDS-class), 33
ntransitions (TRACDS-class), 33
ntransitions,TRACDS-method

(TRACDS-class), 33

object.size,EMM-method (EMM), 9
object.size,tNN-method (tNN-class), 31
object.size,TRACDS-method

(TRACDS-class), 33

pam, 22
plot, 11, 17
plot,EMM,missing-method (plot), 17
plot,tNN,missing-method (tNN-class), 31
plot,TRACDS,missing-method

(TRACDS-class), 33
plot.default, 17
plot.igraph, 17
predict, 19, 34
predict,TRACDS-method (predict), 19
prune, 11, 20, 22, 29
prune,EMM-method (prune), 20

rare_clusters, 11
rare_clusters (prune), 20
rare_clusters,tNN-method (prune), 20
rare_transitions, 11
rare_transitions (prune), 20
rare_transitions,TRACDS-method (prune),

20
recluster, 11, 21
recluster_hclust (recluster), 21
recluster_hclust,EMM-method

(recluster), 21
recluster_kmeans (recluster), 21
recluster_kmeans,EMM-method

(recluster), 21
recluster_pam (recluster), 21
recluster_pam,EMM-method (recluster), 21
recluster_reachability (recluster), 21
recluster_reachability,EMM-method

(recluster), 21
recluster_tNN (recluster), 21
recluster_tNN,EMM-method (recluster), 21
recluster_transitions (recluster), 21
recluster_transitions,EMM-method

(recluster), 21

INDEX 41

remove, 23
remove_clusters, 11, 21
remove_clusters (remove), 23
remove_clusters,EMM,character-method

(remove), 23
remove_selftransitions, 11
remove_selftransitions (remove), 23
remove_selftransitions,EMM-method

(remove), 23
remove_transitions, 11, 21
remove_transitions (remove), 23
remove_transitions,EMM,character,character-method

(remove), 23
remove_transitions,EMM,matrix,missing-method

(remove), 23
reset (update), 37
reset,TRACDS-method (update), 37

score, 11, 24
score,EMM,data.frame-method (score), 24
score,EMM,EMM-method (score), 24
score,EMM,matrix-method (score), 24
score,EMM,numeric-method (score), 24
set_EMM (DSC_EMM), 7
show,EMM-method (EMM-class), 10
show,TRACDS-method (TRACDS-class), 33
size (EMM-class), 10
size,EMM-method (EMM-class), 10
smooth_transitions, 29
smooth_transitions,EMM-method

(smooth_transitions), 29
states (TRACDS-class), 33
states,TRACDS-method (TRACDS-class), 33
StreamClustering-class (tNN-class), 31
synthetic_stream, 30

tNN, 5, 10, 15
tNN (tNN-class), 31
tNN-class, 31
TRAC, 32
TRACDS, 3, 10, 35, 38
TRACDS (TRACDS-class), 33
TRACDS-class, 33
transition, 27, 34, 35, 37
transition,TRACDS,character,character-method

(transition), 35
transition,TRACDS,data.frame,missing-method

(transition), 35

transition,TRACDS,matrix,missing-method
(transition), 35

transition_matrix, 19, 34
transition_matrix (transition), 35
transition_matrix,TRACDS-method

(transition), 35
transition_table, 36
transition_table,EMM,data.frame-method

(transition_table), 36
transition_table,EMM,matrix-method

(transition_table), 36
transition_table,EMM,numeric-method

(transition_table), 36
transitions (TRACDS-class), 33
transitions,TRACDS-method

(TRACDS-class), 33

update, 37
update,TRACDS-method (update), 37

	16S
	build
	cluster
	combine
	Derwent
	DSC_EMM
	EMM
	EMM-class
	EMMsim
	EMMTraffic
	fade
	find_clusters
	merge_clusters
	plot
	predict
	prune
	recluster
	remove
	score
	smooth_transitions
	synthetic_stream
	tNN-class
	TRAC
	TRACDS-class
	transition
	transition_table
	update
	Index

