Package ‘rSFA’

July 23, 2025

Maintainer Martin Zaefferer <martin.zaefferer@gmx.de>
License GPL (>=2)

Title Slow Feature Analysis

Type Package

Author Wolfgang Konen <wolfgang.konen@fh-koeln.de>, Martin Zaefferer,
Patrick Koch; Bug hunting and testing by Ayodele Fasika, Ashwin
Kumar, Prawyn Jebakumar

Description Slow Feature Analysis (SFA), ported to R based on
'matlab’ implementations of SFA: 'SFA toolkit' 1.0 by Pietro Berkes and 'SFA toolkit'
2.8 by Wolfgang Konen.

Version 1.5

Date 2022-03-29

Depends R (>=2.0.0)

Imports stats, MASS, graphics, grDevices
NeedsCompilation no

Repository CRAN

RoxygenNote 7.1.2

Date/Publication 2022-03-29 10:00:07 UTC

Contents

rSFA-package
addNoisyCopies
etaval L L
gaussClassifier
gaussCreate e e e e
sfal .
sfalCreate e
sfa2 .o e
sfa2Create e
sfaClassify e

2 rSFA-package
sfaClassPredict e 10
sfaExecute 11
sfaExpand 12
sfaNIRegress o e e 12
sfaPBootstrap e e e 13
sfaStep e e 14
sfaTimediff 15
xpDim . . .o e 15

Index 17

rSFA-package Slow Feature Analysis

Description

Slow Feature Analysis
Details
Package: rSFA
Type: Package
Version: 1.5
Date: 29.03.2022
Maintainer: Martin Zaefferer <martin.zaefferer@gmx.de>
License: GPL (>=2)
LazyLoad: yes
Slow Feature Analysis (SFA), ported to R based on the matlab implementations SFA toolkit 1.0 by
Pietro Berkes and SFA toolkit 2.8 by Wolfgang Konen.
Author(s)

Wolfgang Konen <wolfgang.konen@fh-koeln.de>, Martin Zaefferer, Patrick Koch; Bug hunting
and testing by Ayodele Fasika, Ashwin Kumar, Prawyn Jebakumar

addNoisyCopies 3

addNoisyCopies Add noisy copies for parametric bootstrap

Description

Given training data X with true labels REALCLASS, add new records to X and REALCLASS,
which are noisy copies of the training data.

Usage

addNoisyCopies(realclass, x, pars)

Arguments

realclass true class of training data (can be vector, numerics, integers, factors)
X a matrix containing the training data

pars list of parameters:
pars$ncopies: Number of new records to add
pars$ncsort: Defines if training data should be sorted by class. Default is
FALSE
pars$ncsigma: The noise in each column of x has the std.dev. pars$ncsigma*(standard
deviation of column). Default Value: 0.8
pars$ncmethod: =1: each ’old’ record from X in turn is the centroid for a new
pattern;
=2: the centroid is the average of all records from the same class, the std.dev. is
the same for all classes;
=3: centroid as in ’2’, the std.dev. is the std.dev. of all records from the same
class (*recommended®)

Value

list res
- res contains two list entries: realclass and x (including added copies)

References

sfaPBootstrap

4 gaussClassifier

etaval Computes the eta value of a signal (slowness)

Description

Computes the eta value of a signal (slowness)

Usage

etaval(x, T = length(x))

Arguments
X The columns of signal correspond to different input components. Must be nor-
malized (zero mean, unit variance)
T Time interval
Value

returns the eta value of the signal in a time interval T time units long.

gaussClassifier Classifier for SFA demos

Description

Train or apply a Gaussian classifier..

Usage
gaussClassifier(gauss, y, realC, method = "train")
Arguments
gauss List created by gaussCreate. Contains also the elements:

aligned =0: do not align the Gaussian classifiers with axes, use full covariance
matrix
=1 (default): set the off-diagonals in covariance matrix to 0, i.e. the Gaus-
sian classifier is forced to be aligned with the axes. This is more robust in
the case where the data deviate largely from a multivariate normal distribu-
tion.

epsD [defaults to 0.04] replace diagonal elements of COV smaller than epsD
with epsD to avoid too small Gaussians

gaussCreate 5

y K x M matrix where K is the total number of patterns and M is the number of
variables used for classification. I.e. each row of y contains the data for one
pattern.

realC 1 x K matrix with NCLASS distinct real class labels needed only for method="train’.
In case of method="apply" realC is not used and can have any value

method either "train" (default) or "apply"

Value

list gauss containing

gauss$predC 1 x K matrix: the predicted class

gauss$prob K x NCLASS matrix: prob(k,n) is the estimated probability that pattern k be-
longs to class m

See Also

gaussCreate

gaussCreate Create an Gaussian classifier object

Description

Create an Gaussian classifier object

Usage

gaussCreate(nclass, dimY)

Arguments
nclass number of classes
dimY dimension

Value

list of defaults for gauss classifier

See Also

gaussClassifier

6 sfalCreate

sfal The SFA1 algorithm, linear SFA.

Description

Y = sfal(X) performs linear Slow Feature Analysis on the input data X and returns the output
signals Y ordered by increasing temporal variation, i.e. the first signal Y[,1] is the slowest varying
one, Y[,2] the next slowest and so on. The input data have to be organized with each variable in a
column and each data (time) point in a row, i.e. X(t,i) is the value of variable nr. i at time t.

Usage
sfal(x)

Arguments

X Input data, each column a different variable

Value

list sfaList with all learned information, where sfalList$y contains the outputs

See Also

sfaStep sfalCreate sfaExecute

sfalCreate Create structured list for linear SFA

Description

Create structured list for linear SFA

Usage

sfalCreate(sfaRange, axType = "ORD1", regCt = 0)

Arguments
sfaRange number of slowly-varying functions to be kept
axType is the type of derivative approximation to be used, see sfaTimediff

regCt regularization constant, currently not used

sfa2

Value

list sfaList contains all arguments passed into sfalcreate plus

deg

2

This list will be expanded by other SFA functions with further SFa results

See Also

sfal sfaStep sfa2Create

sfa2

The SFA2 algorithm, SFA with degree 2 expansion.

Description

Y = sfa2(X) performs expanded Slow Feature Analysis on the input data X and returns the output
signals Y ordered by increasing temporal variation, i.e. the first signal Y[,1] is the slowest varying
one, Y[,2] the next slowest varying one and so on. The input data have to be organized with each
variable in a column and each data (time) point in a row, i.e. X(t,i) is the value of variable i at time
t. By default an expansion to the space of 2nd degree polynomials is done, this can be changed by
using different functions for xpDimFun and sfaExpandFun.

Usage
sfa2(
X,
method = "SVDSFA",
ppType = "PCA",
xpDimFun = xpDim,
sfaExpandFun = sfaExpand
)
Arguments
X input data
method eigenvector calculation method: ="SVDSFA" for singular value decomposi-
tion (recommended) or ="GENEIG" for generalized eigenvalues (unstable!).
GENEIG is not implemented in the current version, since R lacks an easy option
to calculate generalized eigenvalues.
ppType preprocessing type: ="PCA" (principal component analysis) or ="SFA1" (linear
sfa)
xpDimFun function to calculate dimension of expanded data
sfaExpandFun function to expand data

8 sfa2Create

Value

list sfaList with all SFA information, among them are

y a matrix containing the output Y (as described above)
- all input parameters to sfa2Create

- all elements of sfalList as specified in sfa2Step

See Also

sfa2Step sfa2Create sfaExecute sfal

Examples

prepare input data for simple demo

t=seq.int(from=0,by=0.011,to=2%pi)

xT1=sin(t)+cos(11*t)*2

x2=cos(11*t)

x=data.frame(x1,x2)

perform sfa2 algorithm with data

res = sfa2(x)

plot slowest varying function of result

plot(t, res$y[,1],type="1",main="output of the slowest varying function")
see http://www.scholarpedia.org/article/Slow_feature_analysis#The_algorithm
for detailed description of this example

sfa2Create Create structured list for expanded SFA

Description

’Expanded’ SFA means that the input data are expanded into a higher-dimensional space with the
function sfaExpandFun. See sfaExpand for the default expansion function.

Usage

sfa2Create(
ppRange,
sfaRange,
ppType = "SFA1",
axType = "ORD1",
regCt = 0,
opts = NULL,
xpDimFun = xpDim,
sfaExpandFun = sfaExpand

staClassify 9

Arguments

ppRange umber of dimensions to be kept after preprocessing step - or - a two-number
vector with lower and upper dimension number

sfaRange umber of slowly-varying functions to be kept

ppType preprocessing type: ="PCA", "PCA2" (principal component analysis) or ="SFA1"
(linear sfa)

axType is the type of derivative approximation to be used, see sfaTimediff

regCt regularization constant, currently not used

opts optional list of additional options

xpDimFun Function to calculate dimension of expanded data

sfaExpandFun Function to expand data

Value

list sfaList contains all arguments passed into sfa2create plus

XpRange evaluates to xpDimFun(ppRange)

deg 2

This list will be expanded by other SFA functions with further SFa results

See Also

sfa2 sfaStep sfalCreate

sfaClassify Predict Class for SFA classification

Description

Create a SFA classification mode, predict & evaluate on new data (xtst,realc_tst).

Author of orig. matlab version: Wolfgang Konen, May 2009 - Jan 2010

See also [Berkes05] Pietro Berkes: Pattern recognition with Slow Feature Analysis. Cognitive
Sciences EPrint Archive (CogPrint) 4104, http://cogprints.org/4104/ (2005)

Usage

sfaClassify(x, realclass, xtst = @, realcTst = @, opts)

10 staClassPredict

Arguments
X NREC x IDIM, training input data
realclass 1 x NREC, training class labels
xtst NTST x IDIM, test input data
realcTst 1 x NTST, test class labels
opts list with several parameter settings:
gaussdim
Filename [= s,g,x] from where to load the models (see sfaClassify)
Value

list res containing

res$errtrn 1 x 2 matrix: error rate with / w/o SFA on training set
res$errtst 1 x 2 matrix: error rate with / w/o SFA on test set
res$y output from SFA when applied to training data
res$ytst output from SFA when applied to test data
res$predT predictions with SFA + GaussClassifier on test set
res$predX predictions w/o SFA (only GaussClassifier) on test set (only if opts.xFilename
exists)
See Also

sfaClassPredict sfaExecute

sfaClassPredict Predict Class for SFA classification

Description

Use a SFA classification model (stored in opts$*Filename), predict & evaluate on new data (xtst,realc_tst).
Author of orig. matlab version: Wolfgang Konen, Jan 2011-Mar 2011.

See also [Berkes05] Pietro Berkes: Pattern recognition with Slow Feature Analysis. Cognitive
Sciences EPrint Archive (CogPrint) 4104, http://cogprints.org/4104/ (2005)

Usage

sfaClassPredict(xtst, realcTst, opts)

staExecute

Arguments

xtst
realcTst
opts

Value

list res containing

res$errtst
res$ytst
res$predT
res$predX

See Also

11

NTST x IDIM, test input data
1 x NTST, test class labels
list with several parameter settings:

gaussdim

Filename [= s,g,x] from where to load the models (see sfaClassify)

1 x 2 matrix: error rate with / w/o SFA on test set
output from SFA when applied to test data
predictions with SFA + GaussClassifier on test set

predictions w/o SFA (only GaussClassifier) on test set (only if opts.xFilename
exists)

sfaClassify sfaExecute

sfaExecute

Execute learned function for input data

Description

After completion of the learning phase (step="sfa") this function can be used to apply the learned
function to the input data.

The execution is completed in 4 steps:

1. projection on the input principal components (dimensionality reduction)

2. expansion (if necessary)

3. projection on the whitened (expanded) space

4. projection on the slow functions

Usage

sfaExecute(sfalList, DATA, prj = NULL, ncomp = NULL)

Arguments
sfalList
DATA

prj
ncomp

A list that contains all information about the handled sfa-structure
Input data, each column a different variable
If not NULL, the preprocessing step 1 is skipped for SFA2

number of learned functions to be used

12 sfaNIRegress

Value

matrix DATA containing the calculated output

See Also

sfa2 sfal sfaStep

sfaExpand Degree 2 Expansion

Description
Expand a signal in the space of polynomials of degree 2. This is the default expansion function used
by rSFA.

Usage

sfaExpand(sfalList, DATA)

Arguments
sfalist A list that contains all information about the handled sfa-structure
DATA Input data, each column a different variable

Value

expanded matrix DATA

See Also

sfa2 nlExpand xpDim

sfaNlRegress Perform non-linear regression

Description

Given the data in arg, expand them nonlinearly in the same way as it was done in the SFA-object
sfalist (expanded dimension M) and search the vector RCOEF of M constant coefficients, such that
the sum of squared residuals between a given function in time FUNC and the function

R(t) = (v(t) - vO)’ * RCOEEF, t=1,...,T,

is minimal

sfaPBootstrap 13

Usage

sfaNlRegress(sfaList, arg, func)

Arguments
sfalList A list that contains all information about the handled sfa-structure
arg Input data, each column a different variable
func (T x 1) the function to be fitted nonlinearly

Value

returns a list res with elements

res$R (T x 1) the function fitted by NL-regression
res$rcoef (M x 1) the coefficients for the NL-expanded dimensions
sfaPBootstrap Parametric Bootstrap
Description

If training set too small, augment it with parametric bootstrap

Usage

sfaPBootstrap(realclass, x, sfalList)

Arguments
realclass true class of training data (can be vector, numerics, integers, factors)
X matrix containing the training data
sfalList list with several parameter settings, e.g. as created by sfa2Create
sfaList$xpDimFun (=xpDim by default) calculated dimension of expaned SFA
space
sfalList$deg degree of expansion (should not be 1, not implemented)
sfaList$ppRange ppRange for SFA algorithm
sfalist$nclass number of unique classes
sfalList$doPB do (1) or do no (0) param. bootstrap.
Value

a list list containing:

X training set extended to minimu number of recors1.5*(xpdim-+nclass), if neces-
sary

realclass training class labels, extended analogously

14 sfaStep

See Also

addNoisyCopies

sfaStep Update a step of the SFA algorithm.

Description
sfaStep() updates the current step of the SFA algorithm. Depending on sfaList$deg it calls either
sfalStep or sfa2Step to do the main work. See further documentation there

Usage

sfaStep(sfaList, arg, step = NULL, method = NULL)

Arguments
sfalList A list that contains all information about the handled sfa-structure
arg Input data, each column a different variable
step Specifies the current SFA step. Must be given in the right sequence: for SFA1
objects: "preprocessing”, "sfa"
for SFA2 objects: "preprocessing”, "expansion”, "sfa" Each time a new step is
invoked, the previous one is closed, which might take some time.
method Method to be used: For sfaList$step="expansion” the choices are "TIME-
SERIES" or "CLASSIF".
For sfaList$step="sfa" (sfa2Step only) the choices are "SVDSFA" (recom-
mended) or "GENEIG" (unstable).
Value

list sfaList taken from the input, with new information added to this list. See sfalStep or
sfa2Step for details.

See Also

sfalStep sfa2Step sfalCreate sfa2Create sfaExecute

Examples

Suppose you have divided your training data into two chunks,

DATA1 and DATA2. Let the number of input dimensions be N. To apply
SFA on them write:

Not run:

sfaList = sfa2Create(N,xpDim(N))

sfalList = sfaStep(sfalList, DATA1, "preprocessing")

sfaList = sfaStep(sfalList, DATA2)

sfaList = sfaStep(sfalList, DATA1, "expansion")

staTimediff 15

sfalList = sfaStep(sfalList, DATA2)
sfaList = sfaStep(sfalList, NULL, "sfa")
outputl = sfaExecute(sfalList, DATA1)
output2 = sfaExecute(sfalList, DATA2)

End(Not run)

sfaTimediff Calculates the first derivative of signal data

Description

Calculates the first derivative of signal data

Usage

sfaTimediff (DATA, axType = "ORD1")

Arguments
DATA The matrix of signals for which the derivative is calculated (one column per
signal)
axType Type of interpolation: "ORD1" (default) first order, "SCD" second ,"TRD" third,
"ORD3a" cubic polynom
Value

matrix DATA
- DATA contains the derivative signals, with the same structure as the input data.

Note

setting axType to invalid values will lead to first order interpolation.

xpDim Degree 2 Dimension Calculation

Description

Compute the dimension of a vector expanded in the space of polynomials of 2nd degree.

Usage
xpDim(n)

16

Arguments

n Dimension of input vector

Value

Dimension of expanded vector

See Also

sfa2 sfaExpand

xpDim

Index

* analysis
rSFA-package, 2
x classification
rSFA-package, 2
x feature
rSFA-package, 2
* slow
rSFA-package, 2
* timeseries
rSFA-package, 2

addNoisyCopies, 3, 14
etaval, 4

gaussClassifier, 4,5
gaussCreate, 5, 5

nlExpand, 12

rSFA (rSFA-package), 2
rSFA-package, 2

sfal,6,7, 8,12
sfalCreate, 6, 6, 9, 14
sfalStep, 14
sfa2,7,9,12, 16
sfa2Create, 7, 8,8, 13, 14
sfa2Step, 8, 14
sfaClassify, 9, 10, 11
sfaClassPredict, /0, 10
sfaExecute, 6, 8, 10, 11, 11, 14
sfaExpand, 8, 12, 16
sfaNlRegress, 12
sfaPBootstrap, 3, 13
sfaStep, 6, 7,9, 12, 14
sfaTimediff, 6, 9, 15

xpDim, 12, 15

17

	rSFA-package
	addNoisyCopies
	etaval
	gaussClassifier
	gaussCreate
	sfa1
	sfa1Create
	sfa2
	sfa2Create
	sfaClassify
	sfaClassPredict
	sfaExecute
	sfaExpand
	sfaNlRegress
	sfaPBootstrap
	sfaStep
	sfaTimediff
	xpDim
	Index

