
Package ‘ragtop’
July 23, 2025

Type Package

Title Pricing Equity Derivatives with Extensions of Black-Scholes

Version 1.2.0

Date 2025-07-09

Description Algorithms to price American and European
equity options, convertible bonds and a
variety of other financial derivatives. It uses an
extension of the usual Black-Scholes model in which
jump to default may occur at a probability specified
by a power-law link between stock price and hazard
rate as found in the paper by Takahashi, Kobayashi,
and Nakagawa (2001) <doi:10.3905/jfi.2001.319302>. We
use ideas and techniques from Andersen and
Buffum (2002) <doi:10.2139/ssrn.355308> and
Linetsky (2006) <doi:10.1111/j.1467-9965.2006.00271.x>.

Depends limSolve (>= 2.0.1), futile.logger (>= 1.4.1), R (>= 3.5),
methods (>= 3.2.2)

Suggests testthat, roxygen2, knitr, rmarkdown, reshape2, stringr,
ggplot2, MASS, RColorBrewer, BondValuation, R.cache, lubridate,
treasury

License GPL (>= 2)

Encoding UTF-8

LazyData TRUE

VignetteBuilder knitr

RoxygenNote 7.3.2

NeedsCompilation no

Author Brian K. Boonstra [aut, cre]

Maintainer Brian K. Boonstra <ragtop@boonstra.org>

Repository CRAN

Date/Publication 2025-07-10 21:40:02 UTC

1

https://doi.org/10.3905/jfi.2001.319302
https://doi.org/10.2139/ssrn.355308
https://doi.org/10.1111/j.1467-9965.2006.00271.x


2 Contents

Contents
accelerated_coupon_value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
adjust_for_dividends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
american . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
AmericanOption-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
american_implied_volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
blackscholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
black_scholes_on_term_structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
CallableBond-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
construct_implicit_grid_structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
construct_tridiagonals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
control_variate_pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ConvertibleBond-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CouponBond-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
coupon_value_at_exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
detail_from_AnnivDates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
EquityOption-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
equivalent_bs_vola_to_jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
equivalent_jump_vola_to_bs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
EuropeanOption-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
find_present_value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
fit_to_option_market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
fit_to_option_market_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
fit_variance_cumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
form_present_value_grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
GridPricedInstrument-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
implied_jump_process_volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
implied_volatilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
implied_volatilities_with_rates_struct . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
implied_volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
implied_volatility_with_term_struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
infer_conforming_time_grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
integrate_pde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
is.blank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
iterate_grid_from_timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
penalty_with_intensity_link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
price_with_intensity_link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ragtop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
shift_for_dividends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
spot_to_df_fcn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
take_implicit_timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
timestep_instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
time_adj_dividends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TIME_RESOLUTION_FACTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TIME_RESOLUTION_SIGNIF_DIGITS . . . . . . . . . . . . . . . . . . . . . . . . . 55



accelerated_coupon_value 3

treasury_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
treasury_df_raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
TSLAMarket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
value_from_prior_coupons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
variance_cumulation_from_vols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ZeroCouponBond-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Index 59

accelerated_coupon_value

Present value of coupons according to an acceleration schedule

Description

Compute "present" value as of time t for coupons that would otherwise have been paid up to time
acceleration_t, in the case of accelerated coupon provisions for forced conversions (or sometimes
even unforced ones).

Usage

accelerated_coupon_value(
t,
coupons_df,
discount_factor_fcn,
acceleration_t = Inf

)

Arguments

t The time toward which all coupons should be present valued

coupons_df A data.frame of details for each coupon. It should have the columns payment_time
and payment_size.

discount_factor_fcn

A function specifying how the contract says future coupons should be discounted
for this instrument in case the acceleration clause is triggered

acceleration_t Time limit, up to which coupons will be accelerated

See Also

Other Bond Coupons: coupon_value_at_exercise(), value_from_prior_coupons()

Other Bond Coupon Acceleration: coupon_value_at_exercise()



4 adjust_for_dividends

adjust_for_dividends Find the sum of time-adjusted dividend values and adjust grid prices
according to their size in the given interval

Description

Analyze dividends to find ones paid in the interval (t,t+dt]. Form present value as of time t for
them, and then use spline interpolation to adjust instrument values accordingly.

Usage

adjust_for_dividends(grid_values, t, dt, r, h, S, S0, dividends)

Arguments

grid_values A matrix with one row for each level of S and one column per set of S-associated
instrument values

t Time after this timestep has been taken

dt Interval to end of timestep

r risk-free interest rate

h Default intensities

S Underlying equity values for the grid

S0 Time zero price of the base equity

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

Value

An object like grid_values with entries modified according to the dividends

See Also

Other Dividends: shift_for_dividends(), time_adj_dividends()



american 5

american Price one or more american-exercise options

Description

Use a control-variate scheme to simultaneously estimate the present values of a collection of one
or more American-exercise options under a default model with survival probabilities not linked to
equity prices.

Usage

american(
callput,
S0,
K,
time,
const_short_rate = 0,
const_default_intensity = 0,
discount_factor_fcn = function(T, t, ...) {

exp(-const_short_rate * (T - t))
},
survival_probability_fcn = function(T, t, ...) {

exp(-const_default_intensity * (T
- t))

},
default_intensity_fcn = function(t, S, ...) {

const_default_intensity + 0 * S
},
...,
num_time_steps = 100,
structure_constant = 2,
std_devs_width = 5

)

Arguments

callput 1 for calls, -1 for puts (may be a vector of the same)

S0 initial underlying price

K strike (may be a vector)

time Time from 0 until expiration (may be a vector)
const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

const_default_intensity

A constant to use for the instantaneous default intensity in case default_intensity_fcn
is not given



6 american

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

survival_probability_fcn

(Implied argument) A function for probability of survival, with arguments T, t
and T>t. E.g. with a constant volatility s this takes the form (T − t)s2. Should
be matched to default_intensity_fcn

default_intensity_fcn

A function for computing default intensity occurring at a given time, dependent
on time and stock price, with arguments t, S. Should be matched to survival_probability_fcn

... Further arguments passed on to find_present_value

num_time_steps Number of steps to use in the grid solver. Can usually be set quite low due to
the control variate scheme.

structure_constant

The maximum ratio between time intervals dt and the square of space intervals
dz^2

std_devs_width The number of standard deviations, in sigma * sqrt(T) units, to incorporate
into the grid

Details

The scheme uses find_present_value() to price the options and their European-exercise equivalents.
It then compares the latter to black-scholes formula output and uses the results as an error correction
on the prices of the American-exercise options.

Value

A vector of estimated option present values

See Also

Other Equity Independent Default Intensity: american_implied_volatility(), black_scholes_on_term_structures(),
blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Other American Exercise Equity Options: american_implied_volatility(), control_variate_pairs()

Examples

american(PUT, S0=100, K=110, time=0.77, const_short_rate = 0.06,
const_volatility=0.20, num_time_steps=200)

american(callput=-1, S0=100, K=90, time=1, const_short_rate=0.025,
variance_cumulation_fcn = function(T, t) { # Term structure of vola

0.45 ^ 2 * (T - t) + 0.15^2 * max(0, T-0.25)
})



AmericanOption-class 7

AmericanOption-class A standard option contract allowing for early exercise at the choice of
the option holder

Description

A standard option contract allowing for early exercise at the choice of the option holder

Methods

optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality condi-
tions.

recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Sub-
classes may be more elaborate, this method simply returns 0.0.

american_implied_volatility

Implied volatility of an american option with equity-independent term
structures

Description

Use the grid solver to generate american option values under a default model with survival prob-
abilities not linked to equity prices. and run them through a bisective root search method until a
constant volatility matching the provided option price has been found.

Usage

american_implied_volatility(
option_price,
callput,
S0,
K,
time,
const_default_intensity = 0,
survival_probability_fcn = function(T, t, ...) {

exp(-const_default_intensity * (T
- t))

},
default_intensity_fcn = function(t, S, ...) {

const_default_intensity + 0 * S
},
...,
num_time_steps = 30,
structure_constant = 2,



8 american_implied_volatility

std_devs_width = 5,
relative_tolerance = 1e-04,
max.iter = 100,
max_vola = 4

)

Arguments

option_price Option price to match

callput 1 for calls, -1 for puts

S0 An initial stock price, for setting grid scale

K strike

time Time from 0 until expiration
const_default_intensity

A constant to use for the instantaneous default intensity in case default_intensity_fcn
is not given

survival_probability_fcn

(Implied argument) A function for probability of survival, with arguments T, t
and T>t.

default_intensity_fcn

A function for computing default intensity occurring at a given time, dependent
on time and stock price, with arguments t, S. Should be matched to survival_probability_fcn

... Additional arguments to be passed on to implied_volatility_with_term_struct
and american

num_time_steps Minimum number of time steps in the grid
structure_constant

The maximum ratio between time intervals dt and the square of space intervals
dz^2

std_devs_width The number of standard deviations, in sigma * sqrt(T) units, to incorporate
into the grid

relative_tolerance

Relative tolerance in instrument price defining the root-finder halting condition

max.iter Maximum number of root-finder iterations allowed

max_vola Maximum volatility to try

Value

Estimated volatility

See Also

implied_volatility_with_term_struct for implied volatility of European options under the
same conditions, american for the underlying pricing algorithm

Other Implied Volatilities: equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(),
fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()



blackscholes 9

Other Equity Independent Default Intensity: american(), black_scholes_on_term_structures(),
blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Other American Exercise Equity Options: american(), control_variate_pairs()

Examples

american_implied_volatility(25,CALL,S0=100,K=100,time=2.2,
const_short_rate=0.03, num_time_steps=5)

df250 = function(t) ( exp(-0.02*t)*exp(-0.03*max(0,t-1.0))) # Simple term structure
df25 = function(T,t){df250(T)/df250(t)} # Relative discount factors
american_implied_volatility(25,-1,100,100,2.2,

discount_factor_fcn=df25, num_time_steps=5)

blackscholes Vectorized Black-Scholes pricing of european-exercise options

Description

Price options according to the famous Black-Scholes formula, with the optional addition of a jump-
to-default intensity and discrete dividends.

Usage

blackscholes(
callput,
S0,
K,
r,
time,
vola,
default_intensity = 0,
divrate = 0,
borrow_cost = 0,
dividends = NULL

)

Arguments

callput 1 for calls, -1 for puts

S0 initial underlying price

K strike

r risk-free interest rate

time Time from 0 until expiration

vola Default-free volatility of the underlying



10 black_scholes_on_term_structures

default_intensity

hazard rate of underlying default

divrate A continuous rate for dividends and other cashflows such as foreign interest rates

borrow_cost A continuous rate for stock borrow costs

dividends A data.frame with columns time, fixed, and proportional. Dividend size at
the given time is then expected to be equal to fixed + proportional * S / S0.
Fixed dividends will be converted to proportional for purposes of this algorithm.

Details

Note that if the default_intensity is set larger than zero then put-call parity still holds. Greeks
are reduced according to cumulated default probability.

All inputs must either be scalars or have the same nonscalar shape.

Value

A list with elements

Price The present value(s)

Delta Sensitivity to underlying price

Vega Sensitivity to volatility

See Also

Other European Options: black_scholes_on_term_structures(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
black_scholes_on_term_structures(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(),
implied_volatilities(), implied_volatilities_with_rates_struct(), implied_volatility(),
implied_volatility_with_term_struct()

Examples

blackscholes(callput=-1, S0=100, K=90, r=0.03, time=1, # -1 is a PUT
vola=0.5, default_intensity=0.07)

black_scholes_on_term_structures

Black-Scholes pricing of european-exercise options with term struc-
ture arguments

Description

Price an option according to the famous Black-Scholes formula, with the optional addition of a
jump-to-default intensity and discrete dividends. Volatility and rates may be provided as constants
or as 2+ parameter functions with first argument T corresponding to maturity and second argument
t corresponding to model date.



black_scholes_on_term_structures 11

Usage

black_scholes_on_term_structures(
callput,
S0,
K,
time,
const_volatility = 0.5,
const_short_rate = 0,
const_default_intensity = 0,
discount_factor_fcn = function(T, t, ...) {

exp(-const_short_rate * (T - t))
},
survival_probability_fcn = function(T, t, ...) {

exp(-const_default_intensity * (T
- t))

},
variance_cumulation_fcn = function(T, t) {

const_volatility^2 * (T - t)
},
dividends = NULL,
borrow_cost = 0,
dividend_rate = 0

)

Arguments

callput 1 for calls, -1 for puts

S0 initial underlying price

K strike

time Time from 0 until expiration

const_volatility

A constant to use for volatility in case variance_cumulation_fcn is not given

const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

const_default_intensity

A constant to use for the instantaneous default intensity in case default_intensity_fcn
is not given

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

survival_probability_fcn

A function for probability of survival, with arguments T, t and T>t. E.g. with a
constant volatility s this takes the form (T − t)s2.



12 CALL

variance_cumulation_fcn

A function for computing total stock variance occurring during this timestep,
with arguments T, t. E.g. with a constant volatility s this takes the form (T −
t)s2.

dividends A data.frame with columns time, fixed, and proportional. Dividend size at
the given time is then expected to be equal to fixed + proportional * S / S0.
Fixed dividends will be converted to proportional for purposes of this algorithm.

borrow_cost A continuous rate for stock borrow costs

dividend_rate A continuous rate for dividends and other cashflows such as foreign interest rates

Details

Any term structures will be converted to equivalent constant arguments by calling them with the
arguments (time, 0).

See Also

Other European Options: blackscholes(), implied_volatilities(), implied_volatilities_with_rates_struct(),
implied_volatility(), implied_volatility_with_term_struct()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Examples

black_scholes_on_term_structures(callput=-1, S0=100, K=90, time=1,
discount_factor_fcn = function(T, t, ...) {

exp(-0.03 * (T - t))
},
survival_probability_fcn = function(T, t, ...) {

exp(-0.07 * (T - t))
},
variance_cumulation_fcn = function(T, t) {

0.45 ^ 2 * (T - t)
})

CALL Constant CALL for defining option contracts

Description

Constant CALL for defining option contracts

Usage

CALL



CallableBond-class 13

Format

An object of class numeric of length 1.

CallableBond-class Callable (and putable) corporate or government bond.

Description

When a bond is callable, the issuer may choose to pay the call price to the bond holder and end the
life of the contract.

Details

When a bond is putable, the bond holder may choose to force the issuer pay the put price to the
bond holder thus ending the life of the contract.

Fields

calls A data.frame of details for each call. It should have the columns call_price and effective_time.
puts A data.frame of details for each put. It should have the columns put_price and effective_time.

Methods

critical_times() Important times in the life of this instrument for simulation and grid solvers

construct_implicit_grid_structure

Structure of implicit numerical integration grid

Description

Infer a reasonable structure for our implicit grid solver based on the voltime, structure constant, and
requested grid width in standard deviations.

Usage

construct_implicit_grid_structure(
tenors,
M,
S0,
K,
c,
sigma,
structure_constant,
std_devs_width,
min_z_width = 0

)



14 construct_implicit_grid_structure

Arguments

tenors Tenors of instruments to be treated on this grid

M Minimum number of timesteps on this grid

S0 An initial stock price, for setting grid scale

K An instrument reference stock price, for setting grid scale

c A continuous stock drift rate

sigma Volatility of diffusion process (without jumps to default)
structure_constant

The maximum ratio between time intervals dt and the square of space intervals
dz^2

std_devs_width The number of standard deviations, in sigma * sqrt(T) units, to incorporate
into the grid

min_z_width Minimum grid width, in log space

Details

Generally speaking pricing will be good to about 10bp of relative accuracy when the ratio of
timesteps to voltime (in annualized units) is over 200.

Cases with pathologically low volatility may go awry (in the sense of yielding ultimately inaccurate
PDE solutions), as the structure_constant will force a step in z space much bigger than the
width in standard deviations.

Value

A list with elements

T The maximum time for this grid

dt Largest permissible timestep size

dz Distance between space grid points

z0 Center of space grid

z_width Width in z space

half_N A misnomer, actually (N − 1)/2

N The number of space points

z Locations of space points

See Also

Other Implicit Grid Solver: find_present_value(), form_present_value_grid(), infer_conforming_time_grid(),
integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(), timestep_instruments()



construct_tridiagonals 15

construct_tridiagonals

Matrix entries for implicit numerical differentiation using Neumann
boundary conditions

Description

Matrix entries for implicit numerical differentiation using Neumann boundary conditions

Usage

construct_tridiagonals(sigma, structure_constant, drift)

Arguments

sigma Volatility of diffusion process (without jumps to default)
structure_constant

The ratio between time interval dt and the square of space interval dz^2

drift Vector of drift rate of underlying equity grid points, including induced drift from
default intensity

Value

A list with elements super, diag and sub containing the superdiagonal, diagonal and subdiagonal
of the implicit timestep differencing matrix

control_variate_pairs Form instrument objects for vanilla options

Description

Form a list twice as long as the longest of the arguments callput, K, time whose first half consists
of AmericanOption objects and second half consists of EuropeanOption objects having the same
exercise specification

Usage

control_variate_pairs(callput, K, time)

Arguments

callput 1 for calls, -1 for puts

K strike

time Time from 0 until expiration



16 CouponBond-class

See Also

Other American Exercise Equity Options: american(), american_implied_volatility()

ConvertibleBond-class Convertible bond with exercise into stock

Description

Convertible bond with exercise into stock

Fields

conversion_ratio The number of shares, per bond, that result from exercise

dividend_ceiling The level of dividend protection (if any) specified in terms and conditions

Methods

exercise_decision(v, S, t, discount_factor_fctn = discount_factor_fcn, ...) Find in-
dexes where hold value v will be inferior to conversion value at each stock price level in S,
adjusted to include all past coupons

optionality_fcn(v, S, t, discount_factor_fctn = discount_factor_fcn, ...) Return the
greater of hold value v or exercise value at each stock price level in S. If the given date is be-
yond maturity, return value at maturity.

terminal_values(v, ...) Return a terminal value. defaults to simply calling optionality_fcn.

update_cashflows( small_t, big_t, discount_factor_fctn = discount_factor_fcn, include_notional = TRUE, ... )
Update last_computed_cash and return cashflow information for the given time period, valued
at big_t

CouponBond-class Standard corporate or government bond

Description

A coupon bond is treated here as the entire collection of cashflows. In particular, coupons are
included in the package even after they have been paid, accruing at the risk-free rate.

Fields

coupons A data.frame of details for each coupon. It should have the columns payment_time and
payment_size.



coupon_value_at_exercise 17

Methods

accumulate_coupon_values_before(t, discount_factor_fctn = discount_factor_fcn) Compute
the sum of coupon present values as of t according to discount_factor_fctn

critical_times() Important times in the life of this instrument for simulation and grid solvers

optionality_fcn(v, S, t, ...) Return the notional value in the shape of S at any time on or
after maturity, otherwise just return v

total_coupon_values_between( small_t, big_t, discount_factor_fctn = discount_factor_fcn )
Compute the sum (as of big_t) of present values of coupons paid between small_t and big_t

update_cashflows( small_t, big_t, discount_factor_fctn = discount_factor_fcn, include_notional = TRUE, ... )
Update last_computed_cash and return cashflow information for the given time period, valued
at big_t

coupon_value_at_exercise

Present value of coupons according to an acceleration schedule

Description

Compute "present" value as of time t for coupons that would otherwise have been paid up to time
acceleration_t, in the case of accelerated coupon provisions for forced conversions (or some-
times even unforced ones).

Usage

coupon_value_at_exercise(
t,
coupons_df,
discount_factor_fcn,
model_t = 0,
accelerate_future_coupons = FALSE,
acceleration_discount_factor_fcn = discount_factor_fcn,
acceleration_t = Inf

)

Arguments

t The time toward which all coupons should be present valued

coupons_df A data.frame of details for each coupon. It should have the columns payment_time
and payment_size.

discount_factor_fcn

A function specifying how future cashflows should generally be discounted for
this instrument

model_t Model timestamp passed to value_from_prior_coupons

accelerate_future_coupons

If TRUE, future coupons will be accelerated on exercise to pad present value



18 detail_from_AnnivDates

acceleration_discount_factor_fcn

A function specifying how future coupons should be discounted for this instru-
ment under coupon acceleration conditions

acceleration_t The maximum time up to which future coupons will be counted for acceleration,
passed on to accelerated_coupon_value

Value

A scalar equal to the present value

See Also

Other Bond Coupons: accelerated_coupon_value(), value_from_prior_coupons()

Other Bond Coupon Acceleration: accelerated_coupon_value()

detail_from_AnnivDates

Convert output of BondValuation::AnnivDates to inputd for Bond

Description

The BondValuation package provides day count convention treatments superior to quantmod or
any other R package known (as of May 2019). This function takes output from BondValua-
tion::AnnivDates(...) and parses it into notionals, maturity time, and coupon times and sizes.

Usage

detail_from_AnnivDates(
anvdates,
as_of = Sys.time(),
normalization_factor = 365.25

)

Arguments

anvdates Output of BondValuation::AnnivDates(), which must have included a ‘Coup‘
argument so that the resulting list contains an entry for ‘PaySched‘

as_of Date or time from whose perspective times should be computed
normalization_factor

Factor by which raw R time differences should be multiplied. If volatilites are
going to be annualized, then this should typically be 365 or so.

Details

Note: volatilities used in ‘ragtop‘ must have compatible time units to these times.



EquityOption-class 19

Value

A list with some of the arguments appropriate for defining a Bond as follows: maturity - maturity
notional - notional amount coupons - ‘data.frame‘ with ‘payment_time‘, ‘payment_size‘

EquityOption-class An option contract with call or put terms

Description

An option contract with call or put terms

Fields

strike A decision price for the contract
callput Either 1 for a call or -1 for a put

equivalent_bs_vola_to_jump

Find straight Black-Scholes volatility equivalent to jump process with
a given default risk

Description

Find Black-Scholes volatility based on known interest rates and hazard rates, using an at-the-money
put option at the given tenor to set the standard price.

Usage

equivalent_bs_vola_to_jump(
jump_process_vola,
time,
const_short_rate = 0,
const_default_intensity = 0,
discount_factor_fcn = function(T, t, ...) {

exp(-const_short_rate * (T - t))
},
survival_probability_fcn = function(T, t, ...) {

exp(-const_default_intensity * (T
- t))

},
dividends = NULL,
borrow_cost = 0,
dividend_rate = 0,
relative_tolerance = 1e-06,
max.iter = 100

)



20 equivalent_bs_vola_to_jump

Arguments

jump_process_vola

Volatility of default-free process

time Time to expiration of associated option contracts

const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

const_default_intensity

A constant to use for the instantaneous default intensity in case survival_probability_fcn
is not given

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

survival_probability_fcn

(Implied argument) A function for probability of survival, with arguments T, t
and T>t.

dividends A data.frame with columns time, fixed, and proportional. Dividend size at
the given time is then expected to be equal to fixed + proportional * S / S0.
Fixed dividends will be converted to proportional for purposes of this algorithm.

borrow_cost A continuous rate for stock borrow costs

dividend_rate A continuous accumulation rate for the stock, affecting the drift

relative_tolerance

Relative tolerance in instrument price defining the root-finder halting condition

max.iter Maximum number of root-finder iterations allowed

Value

A scalar defaultable volatility of an option

See Also

Other Implied Volatilities: american_implied_volatility(), equivalent_jump_vola_to_bs(),
fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
black_scholes_on_term_structures(), blackscholes(), equivalent_jump_vola_to_bs(),
implied_volatilities(), implied_volatilities_with_rates_struct(), implied_volatility(),
implied_volatility_with_term_struct()



equivalent_jump_vola_to_bs 21

equivalent_jump_vola_to_bs

Find jump process volatility with a given default risk from a straight
Black-Scholes volatility

Description

Find default-free volatility (i.e. volatility of a Wiener process with a companion jump process to
default) based on known interest rates and hazard rates, using and at-the-money put option at the
given tenor to set the standard price.

Usage

equivalent_jump_vola_to_bs(
bs_vola,
time,
const_short_rate = 0,
const_default_intensity = 0,
discount_factor_fcn = function(T, t, ...) {

exp(-const_short_rate * (T - t))
},
survival_probability_fcn = function(T, t, ...) {

exp(-const_default_intensity * (T
- t))

},
dividends = NULL,
borrow_cost = 0,
dividend_rate = 0,
relative_tolerance = 1e-06,
max.iter = 100

)

Arguments

bs_vola BlackScholes volatility of an option with no default assumption

time Time to expiration of associated option contracts
const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

const_default_intensity

A constant to use for the instantaneous default intensity in case survival_probability_fcn
is not given

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t



22 EuropeanOption-class

survival_probability_fcn

(Implied argument) A function for probability of survival, with arguments T, t
and T>t.

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

borrow_cost Stock borrow cost, affecting the drift rate

dividend_rate A continuous accumulation rate for the stock, affecting the drift
relative_tolerance

Relative tolerance in instrument price defining the root-finder halting condition

max.iter Maximum number of root-finder iterations allowed

Value

A scalar volatility

See Also

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
implied_volatilities(), implied_volatilities_with_rates_struct(), implied_volatility(),
implied_volatility_with_term_struct()

EuropeanOption-class A standard option contract

Description

At maturity, the call option holder will "exercise", i.e. choose stock, with value S, if the stock price
is above the strike K, paying K to the option issuer, realizing value S-K. The put option holder will
exercise, receiving K while surrendering stock worth S, if the stock price is below K.

Details

Therefore the value at maturity is equal to max(0,callput*(S-K))

Methods

optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality condi-
tions.

recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Sub-
classes may be more elaborate, this method simply returns 0.0.



find_present_value 23

find_present_value Use a model to estimate the present value of financial derivatives

Description

Use a finite difference scheme to form estimates of present values for a variety of stock prices. Once
the grid has been created, interpolate to obtain the value of each instrument at the present stock price
S0

Usage

find_present_value(
S0,
num_time_steps,
instruments,
const_volatility = 0.5,
const_short_rate = 0,
const_default_intensity = 0,
override_Tmax = NA,
discount_factor_fcn = function(T, t, ...) {

exp(-const_short_rate * (T - t))
},
default_intensity_fcn = function(t, S, ...) {

const_default_intensity + 0 * S
},
variance_cumulation_fcn = function(T, t) {

const_volatility^2 * (T - t)
},
dividends = NULL,
borrow_cost = 0,
dividend_rate = 0,
structure_constant = 2,
std_devs_width = 3

)

Arguments

S0 An initial stock price, for setting grid scale

num_time_steps Minimum number of time steps in the grid

instruments A list of instruments to be priced. Each one must have a strike and a optionality_fcn,
as with GridPricedInstrument and its subclasses.

const_volatility

A constant to use for volatility in case variance_cumulation_fcn is not given
const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given



24 fit_to_option_market

const_default_intensity

A constant to use for the instantaneous default intensity in case default_intensity_fcn
is not given

override_Tmax A different maximum time on the grid to enforce
discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

default_intensity_fcn

A function for computing default intensity occurring during this timestep, de-
pendent on time and stock price, with arguments t, S.

variance_cumulation_fcn

A function for computing total stock variance occurring during this timestep,
with arguments T, t. E.g. with a constant volatility s this takes the form (T −
t)s2.

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

borrow_cost Stock borrow cost, affecting the drift rate

dividend_rate Continuous dividend rate, affecting the drift rate
structure_constant

The maximum ratio between time intervals dt and the square of space intervals
dz^2

std_devs_width The number of standard deviations, in sigma * sqrt(T) units, to incorporate
into the grid

Value

A list of present values, with the same names as instruments

See Also

Other Equity Dependent Default Intensity: fit_to_option_market_df(), fit_variance_cumulation(),
form_present_value_grid(), implied_jump_process_volatility()

Other Implicit Grid Solver: construct_implicit_grid_structure(), form_present_value_grid(),
infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(),
timestep_instruments()

fit_to_option_market Calibrate volatilities and equity-linked default intensity

Description

Given derivative instruments (subclasses of GridPricedInstrument, though typically either AmericanOption
or EuropeanOption objects), along with their prices and spreads, calibrate variance cumulation (the
at-the-money volatility of the continuous process) and equity linked default intensity of the form
$h(s + (1-s)(S0/S_t)^p)$.



fit_to_option_market 25

Usage

fit_to_option_market(
variance_instruments,
variance_instrument_prices,
variance_instrument_spreads,
fit_instruments,
fit_instrument_prices,
fit_instrument_spreads,
fit_instrument_weights,
S0,
num_time_steps = 30,
const_short_rate = 0,
discount_factor_fcn = function(T, t) {

exp(-const_short_rate * (T - t))
},
...,
base_default_intensity = 0.05,
relative_spread_tolerance = 0.15,
num_variance_time_steps = 30

)

Arguments

variance_instruments

A list of instruments in strictly increasing order of maturity, from which the
volatility term structure will be inferred. Once the calibration is finished, the
chosen parameters will reproduce the prices of these instruments with fairly
high precision.

variance_instrument_prices

Central price targets for the variance instruments
variance_instrument_spreads

Bid-offer spreads used to normalize errors in variance instrument prices during
term structure fitting

fit_instruments

A list of instruments in any order, from which the mispricing penalties used for
judging fit quality will be computed

fit_instrument_prices

Central price targets for the variance instruments
fit_instrument_spreads

Bid-offer spreads used to normalize errors in fit instrument prices during default
intensity

fit_instrument_weights

Weights applied to relative errors in fit instrument prices before summing to
form the penalty

S0 Current underlying price

num_time_steps Time step count passed on to find_present_value while fitting instrument
values



26 fit_to_option_market_df

const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

... Further arguments passed to penalty_with_intensity_link

base_default_intensity

Overall default intensity (in natural units)
relative_spread_tolerance

Tolerance to apply in calling fit_variance_cumulation

num_variance_time_steps

Number of time steps to use in calling fit_variance_cumulation

Details

In its present form, this function uses a brain-dead grid search.

See Also

penalty_with_intensity_link for the penalty function used as an optimization target

fit_to_option_market_df

Calibrate volatilities and equity-linked default intensity making many
assumptions

Description

This is a convenience function for calibrating variance cumulation (the at-the-money volatility of
the continuous process) and equity linked default intensity of the form $h(s + (1-s)(S0/S_t)^p)$,
using a data.frame of option market data.

Usage

fit_to_option_market_df(
S0 = ragtop::TSLAMarket$S0,
discount_factor_fcn = spot_to_df_fcn(ragtop::TSLAMarket$risk_free_rates),
options_df = ragtop::TSLAMarket$options,
min_maturity = 1/12,
min_moneyness = 0.8,
max_moneyness = 1.2,
base_default_intensity = 0.05

)



fit_variance_cumulation 27

Arguments

S0 Current underlying price
discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

options_df A data frame of American option details. It should have columns callput, K,
time, mid, bid, and ask,

min_maturity Minimum option maturity to allow in calibration

min_moneyness Maximum option strike as a proportion of S0 to allow in calibration

max_moneyness Maximum option strike as a proportion of S0 to allow in calibration
base_default_intensity

Overall default intensity (in natural units)

See Also

fit_to_option_market the underlying fit algorithm

Other Equity Dependent Default Intensity: find_present_value(), fit_variance_cumulation(),
form_present_value_grid(), implied_jump_process_volatility()

fit_variance_cumulation

Fit piecewise constant volatilities to a set of equity options

Description

Given a set of equity options with increasing tenors, along with target prices for those options, and
a set of equity-lined default SDE parameters, fit a vector of piecewise constant volatilities and an
associated cumulative variance function to them.

Usage

fit_variance_cumulation(
S0,
eq_options,
mid_prices,
spreads = NULL,
initial_vols_guess = 0.55 + 0 * mid_prices,
use_impvol = TRUE,
relative_spread_tolerance = 0.01,
force_same_grid = FALSE,
num_time_steps = 40,
const_short_rate = 0,
const_default_intensity = 0,
discount_factor_fcn = function(T, t, ...) {



28 fit_variance_cumulation

exp(-const_short_rate * (T - t))
},
survival_probability_fcn = function(T, t, ...) {

exp(-const_default_intensity * (T
- t))

},
default_intensity_fcn = function(t, S, ...) {

const_default_intensity + 0 * S
},
dividends = NULL,
borrow_cost = 0,
dividend_rate = 0,
...

)

Arguments

S0 Current stock price

eq_options A list of options to find prices for. Each must have fields callput, maturity,
and strike. This list must be in strictly increasing order of maturity.

mid_prices Prices to match

spreads Spreads within which any match is tolerable
initial_vols_guess

Initial set of volatilities to try in the root finder

use_impvol Judge fit quality on implied vol distance rather than price distance
relative_spread_tolerance

Tolerance multiplier on bid-ask spreads taken from vol normalization
force_same_grid

Price all options on the same grid, rather than having smaller timestep sizes for
earlier maturities

num_time_steps Minimum number of time steps in the grid
const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

const_default_intensity

A constant to use for the instantaneous default intensity in case default_intensity_fcn
is not given

discount_factor_fcn

A function for computing present values to time t of various cashflows occur-
ring, with arguments T, t

survival_probability_fcn

A function for probability of survival, with arguments T, t and T>t. E.g. with a
constant volatility s this takes the form (T − t)s2. This argument is only used in
normalization of prices to vols for root finder tolerance, and is therefore entirely
optional



form_present_value_grid 29

default_intensity_fcn

A function for computing default intensity occurring during this timestep, de-
pendent on time and stock price, with arguments t, S. Should be consistent with
survival_probability_fcn if specified

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is

borrow_cost Stock borrow cost, affecting the drift rate

dividend_rate Continuous dividend rate, affecting the drift rate

... Further arguments to find_present_value

Details

By default, the fitting happens in implied Black-Scholes volatility space for better normalization.
That is to say, the fitting does pricing using the full SDE and PDE solver via find_present_value,
but judges fit quality on the basis of running resulting prices through a nonlinear transformation that
just happens to come from the straight Black-Scholes model.

Value

A list with two elements, volatilities and cumulation_function. The cumulation_function
will be a 2-parameter function giving cumulated variances, as created by variance_cumulation_from_vols

See Also

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), implied_jump_process_volatility(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Other Equity Dependent Default Intensity: find_present_value(), fit_to_option_market_df(),
form_present_value_grid(), implied_jump_process_volatility()

form_present_value_grid

Use a model to estimate the present value of financial derivatives on a
grid of initial underlying values

Description

Use a finite difference scheme to form estimates of present values for a variety of stock prices on
a grid of initial underlying prices, determined by constructing a logarithmic equivalent conforming
to the grid parameters structure_constant and structure_constant



30 form_present_value_grid

Usage

form_present_value_grid(
S0,
num_time_steps,
instruments,
const_volatility = 0.5,
const_short_rate = 0,
const_default_intensity = 0,
override_Tmax = NA,
discount_factor_fcn = function(T, t, ...) {

exp(-const_short_rate * (T - t))
},
default_intensity_fcn = function(t, S, ...) {

const_default_intensity + 0 * S
},
variance_cumulation_fcn = function(T, t) {

const_volatility^2 * (T - t)
},
dividends = NULL,
borrow_cost = 0,
dividend_rate = 0,
structure_constant = 2,
std_devs_width = 3,
grid_center = NA

)

Arguments

S0 An initial stock price, for setting grid scale

num_time_steps Minimum number of time steps in the grid

instruments A list of instruments to be priced. Each one must have a strike and a optionality_fcn,
as with GridPricedInstrument and its subclasses.

const_volatility

A constant to use for volatility in case variance_cumulation_fcn is not given
const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

const_default_intensity

A constant to use for the instantaneous default intensity in case default_intensity_fcn
is not given

override_Tmax A different maximum time on the grid to enforce
discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

default_intensity_fcn

A function for computing default intensity occurring during this timestep, de-
pendent on time and stock price, with arguments t, S.



GridPricedInstrument-class 31

variance_cumulation_fcn

A function for computing total stock variance occurring during this timestep,
with arguments T, t. E.g. with a constant volatility s this takes the form (T −
t)s2.

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

borrow_cost Stock borrow cost, affecting the drift rate

dividend_rate Continuous dividend rate, affecting the drift rate
structure_constant

The maximum ratio between time intervals dt and the square of space intervals
dz^2

std_devs_width The number of standard deviations, in sigma * sqrt(T) units, to incorporate
into the grid

grid_center A reasonable central value for the grid, defaults to S0 or an instrument strike

Details

If any instrument in the instruments has a strike, then the grid will be normalized to the last such
instrument’s strike.

See Also

Other Equity Dependent Default Intensity: find_present_value(), fit_to_option_market_df(),
fit_variance_cumulation(), implied_jump_process_volatility()

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(),
timestep_instruments()

GridPricedInstrument-class

Representation of financial instrument amenable to grid pricing
schemes

Description

Our basic instrument defines a tenor/maturity, a method to provide values in case of default, and a
method to correct instrument prices in light of exercise decisions.

Fields

maturity The tenor, expiration date or terminal date by which the value of this security will be
certain.

last_computed_grid The most recently computed set of values from a grid pricing scheme. Used
internally for pricing chains of derivatives.

name A mnemonic name for the instrument, not used by ragtop



32 implied_jump_process_volatility

Methods

optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality condi-
tions.

recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Sub-
classes may be more elaborate, this method simply returns 0.0.

terminal_values(v, ...) Return a terminal value. defaults to simply calling optionality_fcn.

implied_jump_process_volatility

Implied volatility of any instrument

Description

Use the grid solver to generate instrument prices via find_present_value and run them through a
bisective root search method until a constant volatility matching the provided instrument price has
been found.

Usage

implied_jump_process_volatility(
instrument_price,
instrument,
...,
starting_volatility_estimate = 0.85,
relative_tolerance = 0.005,
max.iter = 100,
max_vola = 4

)

Arguments

instrument_price

Target price for root finder

instrument Instrument to search for the target price on, passed as the sole instrument to
find_present_value

... Additional arguments to be passed on to find_present_value

starting_volatility_estimate

Bisection method original guess
relative_tolerance

Relative tolerance in instrument price defining the root-finder halting condition

max.iter Maximum number of root-finder iterations allowed

max_vola Maximum volatility to try



implied_volatilities 33

Details

Unlike american_implied_volatility, this routine allows for any legal term structures and equity-
linked default intensities. For that reason, it eschews the control variate tricks that make american_implied_volatility
so much faster.

Note that equity-linked default intensities can result in instrument prices that are not monotonic in
volatility. This bisective root finder will find a solution but not necessarily any particular one.

Value

A list of present values, with the same names as instruments

See Also

find_present_value for the underlying pricing algorithm, implied_volatility_with_term_struct
for European options without equity dependence of default intensity, american_implied_volatility
for the same on American options

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_volatilities(), implied_volatilities_with_rates_struct(),
implied_volatility(), implied_volatility_with_term_struct()

Other Equity Dependent Default Intensity: find_present_value(), fit_to_option_market_df(),
fit_variance_cumulation(), form_present_value_grid()

Examples

implied_jump_process_volatility(
25, AmericanOption(maturity=1.1, strike=100, callput=-1),
S0=100, num_time_steps=50, relative_tolerance=1.e-3)

implied_volatilities Implied volatilities of european-exercise options under Black-Scholes
or a jump-process extension

Description

Find default-free volatilities based on known interest rates and hazard rates, using a given option
price.

Usage

implied_volatilities(
option_price,
callput,
S0,
K,
r,



34 implied_volatilities

time,
const_default_intensity = 0,
divrate = 0,
borrow_cost = 0,
dividends = NULL,
relative_tolerance = 1e-06,
max.iter = 100,
max_vola = 4

)

Arguments

option_price Present option values (may be a vector)
callput 1 for calls, -1 for puts (may be a vector)
S0 initial underlying price (may be a vector)
K strike (may be a vector)
r risk-free interest rate (may be a vector)
time Time from 0 until expiration (may be a vector)
const_default_intensity

hazard rate of underlying default (may be a vector)
divrate A continuous rate for dividends and other cashflows such as foreign interest rates

(may be a vector)
borrow_cost A continuous rate for stock borrow costs (may be a vector)
dividends A data.frame with columns time, fixed, and proportional. Dividend size at

the given time is then expected to be equal to fixed + proportional * S / S0.
Fixed dividends will be converted to proprtional for purposes of this algorithm.

relative_tolerance

Relative tolerance in option price to achieve before halting the search
max.iter Number of iterations to try before abandoning the search
max_vola Maximum volatility to try in the search

Value

Scalar volatilities

See Also

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(),
implied_volatilities_with_rates_struct(), implied_volatility(), implied_volatility_with_term_struct()

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities_with_rates_struct(),
implied_volatility(), implied_volatility_with_term_struct()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), implied_volatilities_with_rates_struct(), implied_volatility(),
implied_volatility_with_term_struct()



implied_volatilities_with_rates_struct 35

implied_volatilities_with_rates_struct

Find the implied volatility of european-exercise options with a term
structure of interest rates

Description

Use the provided discount factor function to infer constant short rates applicable to each expiration
time, then use the Black-Scholes formula to generate European option values and run them through
Newton’s method until a constant volatility matching each provided option price has been found.

Usage

implied_volatilities_with_rates_struct(
option_price,
callput,
S0,
K,
discount_factor_fcn,
time,
const_default_intensity = 0,
divrate = 0,
borrow_cost = 0,
dividends = NULL,
relative_tolerance = 1e-06,
max.iter = 100,
max_vola = 4

)

Arguments

option_price Present option values (may be a vector)

callput 1 for calls, -1 for puts (may be a vector)

S0 initial underlying prices (may be a vector)

K strikes (may be a vector)
discount_factor_fcn

A function for computing present values to time t, with arguments T, t

time Time from 0 until expirations (may be a vector)
const_default_intensity

hazard rates of underlying default (may be a vector)

divrate A continuous rate for dividends and other cashflows such as foreign interest rates
(may be a vector)

borrow_cost A continuous rate for stock borrow costs (may be a vector)



36 implied_volatility

dividends A data.frame with columns time, fixed, and proportional. Dividend size at
the given time is then expected to be equal to fixed + proportional * S / S0.
Fixed dividends will be converted to proprtional for purposes of this algorithm.

relative_tolerance

Relative tolerance in option price to achieve before halting the search

max.iter Number of iterations to try before abandoning the search

max_vola Maximum volatility to try in the search

Details

Differs from implied_volatility_with_term_struct by first computing constant interest rates
for each option, and then calling implied_volatilities

Value

Scalar volatilities

See Also

implied_volatility for simpler cases with constant parameters, implied_volatilities for the
underlying algorithm with constant rates, implied_volatility_with_term_struct when volatil-
ities or survival probabilities also have a nontrivial term structure

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(),
implied_volatilities(), implied_volatility(), implied_volatility_with_term_struct()

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities(),
implied_volatility(), implied_volatility_with_term_struct()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), implied_volatilities(), implied_volatility(), implied_volatility_with_term_struct()

Examples

d_fcn = function(T,t) {exp(-0.03*(T-t))}
implied_volatilities_with_rates_struct(c(23,24,25),

c(-1,1,1), 100, 100,
discount_factor_fcn=d_fcn, time=c(4,4,5))

implied_volatility Implied volatility of european-exercise option under Black-Scholes or
a jump-process extension

Description

Find default-free volatility (not necessarily just Black-Scholes) based on known interest rates and
hazard rates, using a given option price.



implied_volatility 37

Usage

implied_volatility(
option_price,
callput,
S0,
K,
r,
time,
const_default_intensity = 0,
divrate = 0,
borrow_cost = 0,
dividends = NULL,
relative_tolerance = 1e-06,
max.iter = 100,
max_vola = 4

)

Arguments

option_price Present option value

callput 1 for calls, -1 for puts

S0 initial underlying price

K strike

r risk-free interest rate

time Time from 0 until expiration
const_default_intensity

hazard rate of underlying default

divrate A continuous rate for dividends and other cashflows such as foreign interest rates

borrow_cost A continuous rate for stock borrow costs

dividends A data.frame with columns time, fixed, and proportional. Dividend size at
the given time is then expected to be equal to fixed + proportional * S / S0.
Fixed dividends will be converted to proportional for purposes of this algorithm.
To handle truly fixed dividends, see implied_jump_process_volatility

relative_tolerance

Relative tolerance in option price to achieve before halting the search

max.iter Number of iterations to try before abandoning the search

max_vola Maximum volatility to try in the search

Details

To get a straight Black-Scholes implied volatility, simply call this function with const_default_intensity
set to zero (the default).

Value

A scalar volatility



38 implied_volatility_with_term_struct

See Also

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(),
implied_volatilities(), implied_volatilities_with_rates_struct(), implied_volatility_with_term_struct()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), implied_volatilities(), implied_volatilities_with_rates_struct(),
implied_volatility_with_term_struct()

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility_with_term_struct()

Examples

implied_volatility(2.5, 1, 100, 105, 0.01, 0.75)
implied_volatility(option_price = 17,

callput = CALL, S0 = 250, K=245,
r = 0.005, time = 2,
const_default_intensity = 0.03)

implied_volatility_with_term_struct

Find the implied volatility of a european-exercise option with term
structures

Description

Use the Black-Scholes formula to generate European option values and run them through Newton’s
method until a constant volatility matching the provided option price has been found.

Usage

implied_volatility_with_term_struct(
option_price,
callput,
S0,
K,
time,
...,
starting_volatility_estimate = 0.5,
relative_tolerance = 1e-06,
max.iter = 100,
max_vola = 4

)



implied_volatility_with_term_struct 39

Arguments

option_price Option price to match

callput 1 for calls, -1 for puts

S0 initial underlying price

K strike

time Time to expiration

... Further arguments to be passed on to black_scholes_on_term_structures

starting_volatility_estimate

The Newton method’s original guess
relative_tolerance

Relative tolerance in instrument price defining the root-finder halting condition

max.iter Maximum number of root-finder iterations allowed

max_vola Maximum volatility to try

Details

Differs from implied_volatility by calling black_scholes_on_term_structures for pricing,
thereby allowing term structures of rates, and a nontrivial survival_probability_fcn

Value

Estimated volatility

See Also

implied_volatility for simpler cases with constant parameters, black_scholes_on_term_structures
for the underlying pricing algorithm, implied_volatilities_with_rates_struct when neither
volatilities nor survival probabilities have a nontrivial term structure

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(),
implied_volatilities(), implied_volatilities_with_rates_struct(), implied_volatility()

Other Equity Independent Default Intensity: american(), american_implied_volatility(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), implied_volatilities(), implied_volatilities_with_rates_struct(),
implied_volatility()

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities(),
implied_volatilities_with_rates_struct(), implied_volatility()

Examples

## Dividends
divs = data.frame(time=seq(from=0.11, to=2, by=0.25),

fixed=seq(1.5, 1, length.out=8),
proportional = seq(1, 1.5, length.out=8))

surv_prob_fcn = function(T, t, ...) {
exp(-0.07 * (T - t)) }



40 infer_conforming_time_grid

disc_factor_fcn = function(T, t, ...) {
exp(-0.03 * (T - t)) }

implied_volatility_with_term_struct(
option_price = 12, S0 = 150, callput=PUT,
K = 147.50, time=1.5,
discount_factor_fcn=disc_factor_fcn,
survival_probability_fcn=surv_prob_fcn,
dividends=divs)

infer_conforming_time_grid

A time grid with extra times inserted for coupons, calls and puts

Description

At its base, this function chooses a time grid with 1+min_num_time_steps elements from 0 to
Tmax. Any coupon, call, or put times occurring in one of the supplied instruments are also inserted.

Usage

infer_conforming_time_grid(min_num_time_steps, Tmax, instruments = NULL)

Arguments

min_num_time_steps

The minimum number of timesteps the output vector should have

Tmax The maximum time on the grid

instruments A set of instruments whose maturity and terms and conditions can introduce
extra timesteps. Each will be queried for the output of a critical_times func-
tion.

Value

A vector of times at which the grid should have nodes

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(),
timestep_instruments()



integrate_pde 41

integrate_pde Numerically integrate the pricing differential equation

Description

Use an implicit integration scheme to numerically integrate the pricing differential equation for each
of the given instruments, backwardating from time Tmax to time 0.

Usage

integrate_pde(
z,
min_num_time_steps,
S0,
Tmax,
instruments,
stock_level_fcn,
discount_factor_fcn,
default_intensity_fcn,
variance_cumulation_fcn,
dividends = NULL

)

Arguments

z Space grid value morphable to stock prices using stock_level_fcn

min_num_time_steps

The minimum number of timesteps used. Calls, puts and coupons may result in
extra timesteps taken.

S0 Time zero price of the base equity

Tmax The maximum time on the grid, from which all backwardation steps will take
place.

instruments A list of instruments to be priced. Each one must have a strike and a optionality_fcn,
as with GridPricedInstrument and its subclasses.

stock_level_fcn

A function for changing space grid value to stock prices, with arguments z and
t

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

default_intensity_fcn

A function for computing default intensity occurring during this timestep, de-
pendent on time and stock price, with arguments t, S.



42 iterate_grid_from_timestep

variance_cumulation_fcn

A function for computing total stock variance occurring during this timestep,
with arguments T, t. E.g. with a constant volatility s this takes the form (T −
t)s2.

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

Value

A grid of present values of derivative prices, adapted to z at each timestep. Time zero value will
appear in the first index.

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), infer_conforming_time_grid(), iterate_grid_from_timestep(),
take_implicit_timestep(), timestep_instruments()

is.blank Return TRUE if the argument is empty, NULL or NA

Description

Return TRUE if the argument is empty, NULL or NA

Usage

is.blank(x, false.triggers = FALSE)

Arguments

x Argument to test

false.triggers Whether to allow nonempty vectors of all FALSE to trigger this condition

iterate_grid_from_timestep

Iterate over a set of timesteps to integrate the pricing differential equa-
tion

Description

Timestep an implicit integration scheme to numerically integrate the pricing differential equation
for each of the given instruments, backwardating from time Tmax to time 0.



iterate_grid_from_timestep 43

Usage

iterate_grid_from_timestep(
starting_time_step,
time_pts,
z,
S0,
instruments,
stock_level_fcn,
discount_factor_fcn,
default_intensity_fcn,
variance_cumulation_fcn,
dividends = NULL,
grid = NULL,
original_grid_values = as.matrix(grid[1 + starting_time_step, , ])

)

Arguments

starting_time_step

The index into time_pts of the first timestep to be emplyed. This must be no
larger than the length of time_pts, minus one

time_pts Time nodes to be treated on the grid

z Space grid value morphable to stock prices using stock_level_fcn

S0 Time zero price of the base equity

instruments A list of instruments to be priced. Each one must have a strike and a optionality_fcn,
as with GridPricedInstrument and its subclasses.

stock_level_fcn

A function for changing space grid value to stock prices, with arguments z and
t

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

default_intensity_fcn

A function for computing default intensity occurring during this timestep, de-
pendent on time and stock price, with arguments t, S.

variance_cumulation_fcn

A function for computing total stock variance occurring during this timestep,
with arguments T, t. E.g. with a constant volatility s this takes the form (T −
t)s2.

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

grid An optional grid into which results at each timestep will be written. Its size
should be at least (1+starting_time_step, length(z), length(instruments))

original_grid_values

Grid values to timestep from



44 penalty_with_intensity_link

Value

Either a populated grid of present values of derivative prices, or a matrix of values at the first time
point, adapted to z at each timestep. Time zero value will appear in the first index of any grid.

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), take_implicit_timestep(),
timestep_instruments()

penalty_with_intensity_link

Helper function (volatility-normalized pricing error) for calibration of
equity-linked default intensity

Description

Given a set SDE parameters, form a volatility term structure that fairly precisely matches the sup-
plied prices of the variance_instruments. Then use that term structure and the default intensity
to price all the fit_instruments, and compare them to the fit_instrument_prices.

Usage

penalty_with_intensity_link(
p,
s,
h,
variance_instruments,
variance_instrument_prices,
variance_instrument_spreads,
fit_instruments,
fit_instrument_prices,
fit_instrument_spreads,
fit_instrument_weights,
S0,
num_time_steps = 30,
const_short_rate = 0,
discount_factor_fcn = function(T, t) {

exp(-const_short_rate * (T - t))
},
...,
relative_spread_tolerance = 0.15,
num_variance_time_steps = 30

)



penalty_with_intensity_link 45

Arguments

p Power of default intensity
s Proportion of constant default intensity
h Base default intensity
variance_instruments

A list of instruments in strictly increasing order of maturity, from which the
volatility term structure will be inferred. Once the calibration is finished, the
chosen parameters will reproduce the prices of these instruments with fairly
high precision.

variance_instrument_prices

Central price targets for the variance instruments
variance_instrument_spreads

Bid-offer spreads used to normalize errors in variance instrument prices during
term structure fitting

fit_instruments

A list of instruments in any order, from which the mispricing penalties used for
judging fit quality will be computed

fit_instrument_prices

Central price targets for the variance instruments
fit_instrument_spreads

Bid-offer spreads used to normalize errors in fit instrument prices during default
intensity

fit_instrument_weights

Weights applied to relative errors in fit instrument prices before summing to
form the penalty

S0 Current underlying price
num_time_steps Time step count passed on to find_present_value while fitting instrument

values
const_short_rate

A constant to use for the instantaneous interest rate in case discount_factor_fcn
is not given

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

... Further arguments passed to price_with_intensity_link
relative_spread_tolerance

Tolerance to apply in calling fit_variance_cumulation
num_variance_time_steps

Number of time steps to use in calling fit_variance_cumulation

Details

Forms implied Black-Scholes volatilities from all supplied mid prices, and their implied bid and
offer prices, as well as from the prices computed by the grid solver. Each instrument is then assigned
an error term component in proportion to its weight and the pricing error (in implied vol terms)
divided by the spread (also in implied vol terms).



46 price_with_intensity_link

See Also

price_with_intensity_link for the pricing function

price_with_intensity_link

Helper function (instrument pricing) for calibration of equity-linked
default intensity

Description

Given derivative instruments (subclasses of GridPricedInstrument, though typically either AmericanOption
or EuropeanOption objects), along with their prices and spreads, calibrate variance cumulation (the
at-the-money volatility of the continuous process) and then price the instruments via equity linked
default intensity of the form $h(s + (1-s)(S0/S_t)^p)$.

Usage

price_with_intensity_link(
p,
s,
h,
variance_instruments,
variance_instrument_prices,
variance_instrument_spreads,
fit_instruments,
S0,
num_time_steps = 30,
...,
relative_spread_tolerance = 0.15,
num_variance_time_steps = 30

)

Arguments

p Power of default intensity

s Proportion of constant default intensity

h Base default intensity
variance_instruments

A list of instruments in strictly increasing order of maturity, from which the
volatility term structure will be inferred. Once the calibration is finished, the
chosen parameters will reproduce the prices of these instruments with fairly
high precision.

variance_instrument_prices

Central price targets for the variance instruments



PUT 47

variance_instrument_spreads

Bid-offer spreads used to normalize errors in variance instrument prices during
term structure fitting

fit_instruments

A list of instruments in any order, from which the mispricing penalties used for
judging fit quality will be computed

S0 Current underlying price

num_time_steps Time step count passed on to find_present_value while fitting instrument
values

... Further arguments passed to both fit_variance_cumulation and to find_present_value

relative_spread_tolerance

Tolerance to apply in calling fit_variance_cumulation

num_variance_time_steps

Number of time steps to use in calling fit_variance_cumulation

PUT Constant PUT for defining option contracts

Description

Constant PUT for defining option contracts

Usage

PUT

Format

An object of class numeric of length 1.

ragtop Pricing schemes for derivatives using equity-linked default intensity

Description

Using numerical integration, we price convertible bonds, straight bonds, equity options and various
other derivatives consistently using a jump-diffusion model in which default intensity can vary with
equity price in a user-specified deterministic manner.



48 ragtop

Details

We apply the stochastic model

dS/S = (r + h− q)dt+ σdZ − dJ

where r and q play their usual roles, h is a deterministic function of stock price and time, and J
is a Poisson jump process adapted to the default intensity or hazard rate h. This model is a jump-
diffusion extension of Black-Scholes, with the jump process J representing default, compensated
by extra drift in the equity at rate h.

Volatilities, default intensities and risk-free rates may all be represented with arbitrary term struc-
tures. Default intensity term structures may also take the underlying equity price into account.

Pricing in the standard Black-Scholes model is a special case with default intensity set to zero.
Therefore this package also serves to price securities in the standard Black-Scholes model, while
still allowing risk-free rates and volatilites have nontrivial term structures.

Important Features

Black-Scholes The standard model is automatically supported as a special case, but also has opti-
mized routines

Term Structures The package allows for any kind of instrument to be priced with time-varying
rates, volatility and default intensity

Dividends Allows for discrete dividends in an arbitrary combination of fixed and proportional
amounts. The difference between fixed and proprtional can be up to 10 percent in implied
volatility terms.

Calibration Model calibration routines are included

Bankruptcy Realism A parsimonious deterministic model of default intensity gives rich behavior
and conforms reasonably well to observed market data

Algorithm Parameters Default parameters for the algorithm work well for a very wide variety of
pricing and implied volatility scenarios

Author(s)

Maintainer: Brian K. Boonstra <ragtop@boonstra.org>

Examples

## Vanilla European exercise
blackscholes(callput=-1, S0=100, K=90, r=0.03, time=1, vola=0.5)
blackscholes(PUT, S0=100, K=90, r=0.03, time=1, vola=0.5,

default_intensity=0.07, borrow_cost=0.005)
## With a term structure of volatility
## Not run:
black_scholes_on_term_structures(callput=-1, S0=100, K=90, time=1,

const_short_rate=0.025,
variance_cumulation_fcn = function(T, t) {

0.45 ^ 2 * (T - t) + 0.15^2 * max(0, T-0.25)
})



ragtop 49

## End(Not run)

## Vanilla American exercise
## Not run:
american(PUT, S0=100, K=110, time=0.77, const_short_rate = 0.06,

const_volatility=0.20, num_time_steps=200)

## End(Not run)
## With a term structure of volatility
## Not run:
american(callput=-1, S0=100, K=90, time=1, const_short_rate=0.025,

variance_cumulation_fcn = function(T, t) {
0.45 ^ 2 * (T - t) + 0.15^2 * max(0, T-0.25)

})

## End(Not run)
## With discrete dividends, combined fixed and proportional
divs = data.frame(time=seq(from=0.11, to=2, by=0.25),

fixed=seq(1.5, 1, length.out=8),
proportional = seq(1, 1.5, length.out=8))

## Not run:
american(callput=-1, S0=100, K=90, time=1, const_short_rate=0.025,

const_volatility=0.20, dividends=divs)

## End(Not run)

## American Exercise Implied Volatility
american_implied_volatility(25,CALL,S0=100,K=100,time=2.2, const_short_rate=0.03)
df250 = function(t) ( exp(-0.02*t)*exp(-0.03*max(0,t-1.0))) # Simple term structure
df25 = function(T,t){df250(T)/df250(t)} # Relative discount factors
## Not run:
american_implied_volatility(25,-1,100,100,2.2,discount_factor_fcn=df25)

## End(Not run)

## Convertible Bond
## Not Run
pct4 = function(T,t=0) { exp(-0.04*(T-t)) }
cb = ConvertibleBond(conversion_ratio=3.5, maturity=1.5, notional=100,

discount_factor_fcn=pct4, name='Convertible')
S0 = 10; p = 6.0; h = 0.10
h_fcn = function(t, S, ...){0.9 * h + 0.1 * h * (S0/S)^p } # Intensity linked to equity price
## Not run:
find_present_value(S0=S0, instruments=list(Convertible=cb), num_time_steps=250,

default_intensity_fcn=h_fcn,
const_volatility = 0.4, discount_factor_fcn=pct4,
std_devs_width=5)

## End(Not run)

## Fitting Term Structure of Volatility
## Not Run
opts = list(m1=AmericanOption(callput=-1, strike=9.9, maturity=1/12, name="m1"),



50 spot_to_df_fcn

m2=AmericanOption(callput=-1, strike=9.8, maturity=1/6, name="m2"))
## Not run:
vfit = fit_variance_cumulation(S0, opts, c(0.6, 0.8), default_intensity_fcn=h_fcn)
print(vfit$volatilities)

## End(Not run)

shift_for_dividends Shift a set of grid values for dividends paid, using spline interpolation

Description

Shift a set of grid values for dividends paid, using spline interpolation

Usage

shift_for_dividends(grid_values_before_shift, stock_prices, div_sum)

Arguments

grid_values_before_shift

Values on grid before accounting for expected dividends

stock_prices Stock prices for which to shift the grid

div_sum Sum of dividend values at each grid point

Value

An object like grid_values_before_shift with entries shifted according to the dividend sums

See Also

Other Dividends: adjust_for_dividends(), time_adj_dividends()

spot_to_df_fcn Create a discount factor function from a yield curve

Description

Use a piecewise constant approximation to the given spot curve to generate a function capable of
returning corresponding discount factors

Usage

spot_to_df_fcn(yield_curve)



take_implicit_timestep 51

Arguments

yield_curve A data.frame with numeric columns time (in increasing order) and rate (in
natural units)

Value

A function taking two time arguments, which returns the discount factor from the second to the first

Examples

disct_fcn = ragtop::spot_to_df_fcn(
data.frame(time=c(1, 5, 10, 15),

rate=c(0.01, 0.02, 0.03, 0.05)))
print(disct_fcn(1, 0.5))

take_implicit_timestep

Backwardate grid values one timestep

Description

Take one timestep of an implicit solver for a given instrument

Usage

take_implicit_timestep(
t,
S,
full_discount_factor,
local_discount_factor,
discount_factor_fcn,
prev_grid_values,
survival_probabilities,
tridiag_matrix_entries,
instrument = NULL,
dividends = NULL,
instr_name = "this instrument"

)

Arguments

t Time after this timestep has been taken

S Underlying equity values for the grid
full_discount_factor

A discount factor for the transform from grid values to actual derivative prices
local_discount_factor

A discount factor to apply to recovery values



52 timestep_instruments

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

prev_grid_values

A vector of space grid values from the previously calculated timestep
survival_probabilities

Vector of probabilities of survival for each space grid node
tridiag_matrix_entries

Diagonal, superdiagonal and subdiagonal of tridiagonal matrix from the numer-
ical integrator

instrument If not NULL/NA, must have a recovery_fcn and an optionality_fcn though
those properties are themselves allowed to be NA.

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

instr_name Name of instrument to use in log messages

Value

Grid values for the instrument after taking the implicit timestep

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(),
timestep_instruments()

timestep_instruments Take an implicit timestep for all the given instruments

Description

Backwardate grid values for all the given instruments from a set of grid values matched to time
t+dt to form a new set of grid value as of time t.

Usage

timestep_instruments(
z,
prev_grid_values,
t,
dt,
S0,
instruments,
stock_level_fcn,
discount_factor_fcn,



timestep_instruments 53

default_intensity_fcn,
variance_cumulation_fcn,
dividends = NULL

)

Arguments

z Space grid value morphable to stock prices using stock_level_fcn

prev_grid_values

A matrix with one column for each instrument and one row for each of the N
values of z

t Time after this timestep has been taken

dt Interval to the end of this timestep

S0 Time zero price of the base equity

instruments Instruments corresponding to layers of the value grid in prev_grid_values

stock_level_fcn

A function for changing space grid value to stock prices, with arguments z and
t

discount_factor_fcn

A function for computing present values to time t of various cashflows occurring
during this timestep, with arguments T, t

default_intensity_fcn

A function for computing default intensity occurring during this timestep, de-
pendent on time and stock price, with arguments t, S.

variance_cumulation_fcn

A function for computing total stock variance occurring during this timestep,
with arguments T, t. E.g. with a constant volatility s this takes the form (T −
t)s2.

dividends A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

Value

Grid values after applying an implicit timestep

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(),
take_implicit_timestep()



54 TIME_RESOLUTION_FACTOR

time_adj_dividends Find the sum of time-adjusted dividend values

Description

For each of the N elements of S/h find the sum of the given M dividends, discounted to t_final
by r and h

Usage

time_adj_dividends(relevant_divs, t_final, r, h, S, S0)

Arguments

relevant_divs A data.frame with columns time, fixed, and proportional. Dividend size
at the given time is then expected to be equal to fixed + proportional * S /
S0

t_final Time beyond which to ignore dividends

r risk-free interest rate

h Default intensities

S Stock prices

S0 initial underlying price

Value

Sum of dividends, at each grid node

See Also

Other Dividends: adjust_for_dividends(), shift_for_dividends()

TIME_RESOLUTION_FACTOR

Constant to define when times are considered so close to each other
that they should be treated as simultaneous

Description

Constant to define when times are considered so close to each other that they should be treated as
simultaneous

Usage

TIME_RESOLUTION_FACTOR



TIME_RESOLUTION_SIGNIF_DIGITS 55

Format

An object of class numeric of length 1.

TIME_RESOLUTION_SIGNIF_DIGITS

Constant to define when times are considered so close to each other
that they should be treated as simultaneous, in terms of significant
digits

Description

Constant to define when times are considered so close to each other that they should be treated as
simultaneous, in terms of significant digits

Usage

TIME_RESOLUTION_SIGNIF_DIGITS

Format

An object of class numeric of length 1.

treasury_df Get a US Treasury curve discount factor function

Description

This is a caching wrapper for treasury_df_raw

Usage

treasury_df(..., envir = parent.frame())

Arguments

... Arguments passed to treasury_df_raw

envir Environment passed to treasury_df_raw

Value

A function taking two time arguments, which returns the discount factor from the second to the first
(see spot_to_df_fcn)



56 TSLAMarket

treasury_df_raw Get a US Treasury curve discount factor function

Description

Get a US Treasury curve discount factor function

Usage

treasury_df_raw(on_date)

Arguments

on_date Date for which to query for the curve, year-month-day format

Value

A function taking two time arguments, which returns the discount factor from the second to the first

TSLAMarket Market information snapshot for TSLA options

Description

A dataset containing option contract details and a snapshot of market prices for Tesla Motors
(TSLA) equity options, interest rates and an equity price.

Usage

data(TSLAMarket)

Format

A list with these prices and rates

Details

The TSLAMarket list contains three elements:

S0 The stock price as of snapshot time

risk_free_rates The spot risk-free rate curve as of snapshot time

options A data frame with details of the options market



value_from_prior_coupons 57

value_from_prior_coupons

Present value of past coupons paid

Description

Present value as of time t for coupons paid since the model_t

Usage

value_from_prior_coupons(t, coupons_df, discount_factor_fcn, model_t = 0)

Arguments

t The time toward which all coupons should be present valued

coupons_df A data.frame of details for each coupon. It should have the columns payment_time
and payment_size.

discount_factor_fcn

A function specifying how the contract says future coupons should be discounted
for this instrument in case the acceleration clause is triggered

model_t The payment time beyond which coupons will be included in this computation

See Also

Other Bond Coupons: accelerated_coupon_value(), coupon_value_at_exercise()

variance_cumulation_from_vols

Create a variance cumulation function from a volatility term structure

Description

Given a volatility term structure, create a corresponding variance cumulation function. The function
assumes piecewise constant forward volatility, with the final such forward volatility extending to
infinity.

Usage

variance_cumulation_from_vols(vols_df)

Arguments

vols_df A data.frame with numeric columns time (in increasing order) and volatility
(not decreasing so quickly as to give negative forward variance)



58 ZeroCouponBond-class

Value

A function taking two time arguments, which returns the cumulated variance from the second to the
first

Examples

vc = variance_cumulation_from_vols(
data.frame(time=c(0.1,2,3),
volatility=c(0.2,0.5,1.2)))

vc(1.5, 0)

ZeroCouponBond-class A simple contract paying the notional amount at the maturity

Description

A simple contract paying the notional amount at the maturity

Fields

notional The amount that will be paid at maturity, conditional on survival

recovery_rate The proportion of notional that would be expected to be paid to bond holders after
bankruptcy court proceedings

discount_factor_fcn A function specifying how cashflows should generally be discounted for
this instrument

Methods

optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality condi-
tions.

recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Sub-
classes may be more elaborate, this method simply returns 0.0.



Index

∗ American Exercise Equity Options
american, 5
american_implied_volatility, 7
control_variate_pairs, 15

∗ Black-Scholes
fit_variance_cumulation, 27
implied_volatility, 36

∗ Bond Coupon Acceleration
accelerated_coupon_value, 3
coupon_value_at_exercise, 17

∗ Bond Coupons
accelerated_coupon_value, 3
coupon_value_at_exercise, 17
value_from_prior_coupons, 57

∗ Dividends
adjust_for_dividends, 4
shift_for_dividends, 50
time_adj_dividends, 54

∗ Equity Dependent Default Intensity
find_present_value, 23
fit_to_option_market_df, 26
fit_variance_cumulation, 27
form_present_value_grid, 29
implied_jump_process_volatility,

32
∗ Equity Independent Default Intensity

american, 5
american_implied_volatility, 7
black_scholes_on_term_structures,

10
blackscholes, 9
equivalent_bs_vola_to_jump, 19
equivalent_jump_vola_to_bs, 21
implied_volatilities, 33
implied_volatilities_with_rates_struct,

35
implied_volatility, 36
implied_volatility_with_term_struct,

38

∗ European Options
black_scholes_on_term_structures,

10
blackscholes, 9
implied_volatilities, 33
implied_volatilities_with_rates_struct,

35
implied_volatility, 36
implied_volatility_with_term_struct,

38
∗ Implicit Grid Solver

construct_implicit_grid_structure,
13

find_present_value, 23
form_present_value_grid, 29
infer_conforming_time_grid, 40
integrate_pde, 41
iterate_grid_from_timestep, 42
take_implicit_timestep, 51
timestep_instruments, 52

∗ Implied Volatilities
american_implied_volatility, 7
equivalent_bs_vola_to_jump, 19
equivalent_jump_vola_to_bs, 21
fit_variance_cumulation, 27
implied_jump_process_volatility,

32
implied_volatilities, 33
implied_volatilities_with_rates_struct,

35
implied_volatility, 36
implied_volatility_with_term_struct,

38
∗ bond

CallableBond-class, 13
∗ calibration

american_implied_volatility, 7
fit_variance_cumulation, 27
implied_jump_process_volatility,

59



60 INDEX

32
∗ callable

CallableBond-class, 13
∗ datasets

CALL, 12
PUT, 47
TIME_RESOLUTION_FACTOR, 54
TIME_RESOLUTION_SIGNIF_DIGITS, 55
TSLAMarket, 56

∗ implied volatility
american_implied_volatility, 7
fit_variance_cumulation, 27
implied_jump_process_volatility,

32
∗ putable

CallableBond-class, 13

accelerated_coupon_value, 3, 18, 57
adjust_for_dividends, 4, 50, 54
american, 5, 8–10, 12, 16, 20, 22, 34, 36, 38,

39
american_implied_volatility, 6, 7, 10, 12,

16, 20, 22, 29, 33, 34, 36, 38, 39
AmericanOption, 24, 46
AmericanOption (AmericanOption-class), 7
AmericanOption-class, 7

black_scholes_on_term_structures, 6, 9,
10, 10, 20, 22, 34, 36, 38, 39

blackscholes, 6, 9, 9, 12, 20, 22, 34, 36, 38,
39

CALL, 12
CallableBond (CallableBond-class), 13
CallableBond-class, 13
construct_implicit_grid_structure, 13,

24, 31, 40, 42, 44, 52, 53
construct_tridiagonals, 15
control_variate_pairs, 6, 9, 15
ConvertibleBond

(ConvertibleBond-class), 16
ConvertibleBond-class, 16
coupon_value_at_exercise, 3, 17, 57
CouponBond (CouponBond-class), 16
CouponBond-class, 16

detail_from_AnnivDates, 18

EquityOption (EquityOption-class), 19

EquityOption-class, 19
equivalent_bs_vola_to_jump, 6, 8–10, 12,

19, 22, 29, 33, 34, 36, 38, 39
equivalent_jump_vola_to_bs, 6, 8–10, 12,

20, 21, 29, 33, 34, 36, 38, 39
EuropeanOption, 24, 46
EuropeanOption (EuropeanOption-class),

22
EuropeanOption-class, 22

find_present_value, 6, 14, 23, 25, 27, 29,
31–33, 40, 42, 44, 45, 47, 52, 53

fit_to_option_market, 24, 27
fit_to_option_market_df, 24, 26, 29, 31,

33
fit_variance_cumulation, 8, 20, 22, 24, 26,

27, 27, 31, 33, 34, 36, 38, 39, 45, 47
form_present_value_grid, 14, 24, 27, 29,

29, 33, 40, 42, 44, 52, 53

GridPricedInstrument, 23, 30, 41, 43
GridPricedInstrument

(GridPricedInstrument-class),
31

GridPricedInstrument-class, 31

implied_jump_process_volatility, 8, 20,
22, 24, 27, 29, 31, 32, 34, 36–39

implied_volatilities, 6, 8–10, 12, 20, 22,
29, 33, 33, 36, 38, 39

implied_volatilities_with_rates_struct,
6, 8–10, 12, 20, 22, 29, 33, 34, 35,
38, 39

implied_volatility, 6, 8–10, 12, 20, 22, 29,
33, 34, 36, 36, 39

implied_volatility_with_term_struct, 6,
8–10, 12, 20, 22, 29, 33, 34, 36, 38,
38

infer_conforming_time_grid, 14, 24, 31,
40, 42, 44, 52, 53

integrate_pde, 14, 24, 31, 40, 41, 44, 52, 53
is.blank, 42
iterate_grid_from_timestep, 14, 24, 31,

40, 42, 42, 52, 53

penalty_with_intensity_link, 26, 44
price_with_intensity_link, 45, 46, 46
PUT, 47

ragtop, 47



INDEX 61

ragtop-package (ragtop), 47

shift_for_dividends, 4, 50, 54
spot_to_df_fcn, 50

take_implicit_timestep, 14, 24, 31, 40, 42,
44, 51, 53

time_adj_dividends, 4, 50, 54
TIME_RESOLUTION_FACTOR, 54
TIME_RESOLUTION_SIGNIF_DIGITS, 55
timestep_instruments, 14, 24, 31, 40, 42,

44, 52, 52
treasury_df, 55
treasury_df_raw, 55, 56
TSLAMarket, 56

value_from_prior_coupons, 3, 17, 18, 57
variance_cumulation_from_vols, 29, 57

ZeroCouponBond (ZeroCouponBond-class),
58

ZeroCouponBond-class, 58


	accelerated_coupon_value
	adjust_for_dividends
	american
	AmericanOption-class
	american_implied_volatility
	blackscholes
	black_scholes_on_term_structures
	CALL
	CallableBond-class
	construct_implicit_grid_structure
	construct_tridiagonals
	control_variate_pairs
	ConvertibleBond-class
	CouponBond-class
	coupon_value_at_exercise
	detail_from_AnnivDates
	EquityOption-class
	equivalent_bs_vola_to_jump
	equivalent_jump_vola_to_bs
	EuropeanOption-class
	find_present_value
	fit_to_option_market
	fit_to_option_market_df
	fit_variance_cumulation
	form_present_value_grid
	GridPricedInstrument-class
	implied_jump_process_volatility
	implied_volatilities
	implied_volatilities_with_rates_struct
	implied_volatility
	implied_volatility_with_term_struct
	infer_conforming_time_grid
	integrate_pde
	is.blank
	iterate_grid_from_timestep
	penalty_with_intensity_link
	price_with_intensity_link
	PUT
	ragtop
	shift_for_dividends
	spot_to_df_fcn
	take_implicit_timestep
	timestep_instruments
	time_adj_dividends
	TIME_RESOLUTION_FACTOR
	TIME_RESOLUTION_SIGNIF_DIGITS
	treasury_df
	treasury_df_raw
	TSLAMarket
	value_from_prior_coupons
	variance_cumulation_from_vols
	ZeroCouponBond-class
	Index

