
Package ‘rai’
July 23, 2025

Type Package

Title Revisiting-Alpha-Investing for Polynomial Regression

Version 1.0.0

Description A modified implementation of stepwise regression that greedily searches
the space of interactions among features in order to build polynomial regression models.
Furthermore, the hypothesis tests conducted are valid-post model selection
due to the use of a revisiting procedure that implements an alpha-investing
rule. As a result, the set of rejected sequential hypotheses is proven to
control the marginal false discover rate. When not searching for polynomials,
the package provides a statistically valid algorithm
to run and terminate stepwise regression. For more information, see
Johnson, Stine, and Foster (2019) <doi:10.48550/arXiv.1510.06322>.

License GPL-3

Encoding UTF-8

LazyData true

URL https://github.com/korydjohnson/rai

BugReports https://github.com/korydjohnson/rai/issues

Imports stats, dplyr, ggplot2, readr, rlang

Suggests testthat

RoxygenNote 6.1.1

NeedsCompilation no

Author Kory D. Johnson [aut, cre],
Robert A. Stine [aut]

Maintainer Kory D. Johnson <korydjohnson@gmail.com>

Repository CRAN

Date/Publication 2019-07-02 15:40:03 UTC

1

https://doi.org/10.48550/arXiv.1510.06322
https://github.com/korydjohnson/rai
https://github.com/korydjohnson/rai/issues


2 Auction

Contents
Auction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Feature-Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ProcessRAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
RAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 10

Auction Internal function to manage multiple experts.

Description

runAuction is the workhorse of the rai package: it takes an initial expert list and runs the Revisiting
Alpha-Investing algorithm to greedily fit (optional) polynomials and interactions to data. The term
"auction" is the result of multiple experts bidding to perform the test which determines stepwise
ordering. This function is not intended to be called directly, but through rai.

Usage

vif(res, y, X, x, n, p, m, TSS, lmFit)

runAuction(experts, gWealth, theData, y, alg, poly, searchType, m, sigma,
omega, reuse, nMaxTest, verbose, save, lmFit)

Arguments

res residuals from current model.

y the response as a single column matrix.

X covariates in the current model.

x covariate being tested for addition into the model.

n number of observations.

p number of predictors in the current model.

m number of observations used in subsampling for variance inflation factor esti-
mate of r.squared.

TSS total sum of squares; considering current residuals to be the response.

lmFit The core function that will be used to estimate linear model fits. The default
is .lm.fit, but other alternatives are possible. Note that it does not use formula
notation as this is costly. Another recommended option is fastLmPure from
RcppEigen or related packages.

experts list of expert objects. Each expert is the output of makeStepwiseExpert or
makeScavengerExpert.



Bidders 3

gWealth global wealth object, output of gWealthStep.
theData covariate matrix.
alg algorithm can be one of "rai", "raiPlus", or "RH" (Revisiting Holm).
poly logical. Should the algorithm look for higher-order polynomials?
searchType A character string specifying the prioritization of higher-order polynomials. One

of "breadth" (more base features) or "depth" (higher order).
sigma type of error estimate used in gWealthStep; one of "ind" or "step".
omega return from rejecting a test in Alpha-Investing.
reuse logical. Should repeated tests of the same covariate be considered a test of the

same hypothesis? Reusing wealth isn’t implemented for RAI or RAIplus (effect
is negligible).

nMaxTest maximum number of tests
verbose logical. Should auction output be printed?
save logical. Should the auction results be saved? If TRUE, returns a summary ma-

trix.

Value

A list which includes the following components:

formula final model formula.
y response.
X model matrix from final model.
features list of interactions included in formula.
summary included if save=TRUE; matrix where each row contains the summary informa-

tion of a single test.

Bidders Making Bidder Objects

Description

These functions create objects that manage alpha-wealth. There is only one stepwise "bidder"
that manages the global wealth (gWealth) but it can have multiple "offspring" when searching
for polynomials. The outer rai function creates one gWealthStep object and one stepwise bid-
der at the beginning. The stepwise bidder makes a local modification to gWealth, though bidAc-
cepted/bidRejected still call gWealth. More stepwise bidders are created as "scavengers" tied to
the global wealth. Defaults are not set because these are internal functions called by rai and
runAuction and all arguments are required.

Usage

gWealthStep(wealth, alg, r, TSS, p, reuse, rmse, df)

makeStepwiseBidder(gWealth)



4 Experts

Arguments

wealth starting alpha-wealth.
alg algorithm can be one of "rai", "raiPlus", or "RH" (Revisiting Holm).
r RAI rejects tests which increase R^2 by a factor r^s, where s is the epoch.
TSS total sum of squares of the response.
p number of covariates (only used when alg == "RH").
reuse logical. Should repeated tests of the same covariate be considered a test of the

same hypothesis?
rmse initial (or independent) estimate of residual standard error
df degrees of freedom of rmse.
gWealth a global wealth object; output of gWealthStep.

Value

A closure containing a list of functions.

Experts Making Expert Objects

Description

Experts are the "actors" which "bid" to see who conducts the next test. They contain an object
"bidder" that determines bidding strategy and an object "constructor" that determines which feature
it wants to text next. The runAuction function calls functions from experts and gWealth. The
makeExpert function is not called directly, but through makeStepwiseExpert or makeScavengerEx-
pert. Defaults are not set because these are internal functions called by rai and runAuction and all
arguments are required.

Usage

makeExpert(bidder, constructor)

makeStepwiseExpert(gWealth, ncolumns)

makeScavengerExpert(gWealth, theModelFeatures, name)

Arguments

bidder bidder object; output of makeStepwiseBidder.
constructor constructor object; output of makeRawSource or makeLocalScavenger.
gWealth global wealth object, output of gWealthStep.
ncolumns number of features the constructor should manage, thought of as columns of the

design matrix.
theModelFeatures

list of feature names in the model when the feature was rejected.
name name of base feature used in interactions with other features in the model.



Feature-Constructors 5

Value

A closure containing a list of functions.

Feature-Constructors Making Source Objects

Description

These functions create and manage the features to test. The raw source only tests marginal features
(the covariates in the design matrix) while the scavenger source tests for interactions between a base
feature and those features already in the model. makeLocalScavenger builds on makeRawSource.
Defaults are not set because these are internal functions called by rai and runAuction and all
arguments are required.

Usage

makeRawSource(ncolumns)

makeLocalScavenger(theModelFeatures, name)

Arguments

ncolumns number of features this constructor should manage, thought of as columns of the
design matrix.

theModelFeatures

other features currently in the model.

name name of the base feature with which to create interactions.

Value

A closure containing a list of functions.

ProcessRAI Summarising RAI Output

Description

Processes the output from the rai function. Requires dplyr, tibble, and ggplot2 packages.



6 ProcessRAI

Usage

plot_ntest_rS(rawSum)

plot_ntest_wealth(rawSum)

## S3 method for class 'rai'
predict(object, newdata = NULL, alpha = NULL,
omega = NULL, ...)

## S3 method for class 'rai'
summary(object, ...)

Arguments

rawSum processed version of rai summary stored as a tibble with correct column parsing.

object an object of class rai; expected to be the list output from the rai function.

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

alpha level of procedure.

omega return from rejecting a test in Alpha-Investing (<= alpha).

... additional arguments affecting the summary or predict methods.

Value

A list which includes the following components:

plot_rS plot of the change in r.squared over time (number of tests conducted).

plot_wealth plot of the change in r.squared over time (number of tests conducted).

experts summary of expert performance: number of features, number of rejections, or-
der in which they were added to the expert list.

tests table of number of times features were tested: how many features tested k times;
which expert(s) conducted tests.

epochs in which epochs were tests rejected and the corresponding rejection thresholds.

stats summary statistics: number of tests, number of epochs, bound on percentage re-
duction in ESS by adding a single feature, number of passes through to features,
final r.squared, cost of raiPlus (0 for rai).

options options given to RAI: algorithm, searchType, poly, startDegree, r.

Examples

data("CO2")
theResponse = CO2$uptake
theData = CO2[ ,-5]
rai_out = rai(theData, theResponse)
summary(rai_out) # summary information including graphs
predict(rai_out) # fitted values from selected model



RAI 7

RAI Main function for Revisiting Alpha-Investing (RAI) regression.

Description

The function rai is a wrapper that creates and manages the inputs and outputs of the runAuction
function. Using poly=FALSE is an efficient and statistically valid way to run and terminate stepwise
regression. The function prepareData is provided in order to make generating predictions on test
data easier: it is used by rai to process the data prior to running, and is necessary to make column
names and information match in order to use the model object returned by rai.

Usage

prepareData(theData, poly = TRUE, startDeg = 1)

is.rai(x)

rai(theData, theResponse, alpha = 0.1, alg = "rai", r = 0.8,
poly = alg != "RH", startDeg = 1, searchType = "breadth",
m = 500, sigma = "step", rmse = NA, df = NA, omega = alpha,
reuse = (alg == "RH"), maxTest = Inf, verbose = FALSE,
save = TRUE, lmFit = .lm.fit)

Arguments

theData matrix of covariates.

poly logical. Should the algorithm look for higher-order polynomials?

startDeg This is the starting degree for polynomial regression. It allows the search to
start with lower order polynomials such as square roots. This alleviates some
problems with high-dimensional polynomials as a 4th degree polynomial where
startDeg=1/2 is only a quadratic on the original scale.

x an R object.

theResponse response vector or single column matrix.

alpha level of procedure.

alg algorithm can be one of "rai", "raiPlus", or "RH" (Revisiting Holm).

r threshold parameter, with 0 < r < 1. RAI rejects tests which increase remaining
R^2 by a factor r^s, where s is the epoch. Larger values of r yield a closer
approximation to stepwise regression.

searchType A character string specifying the prioritization of higher-order polynomials. One
of "breadth" (more base features) or "depth" (higher orders).

m number of observations used in subsampling for variance inflation factor esti-
mate of r.squared. Set m=Inf to use full data.

sigma type of error estimate used; one of "ind" or "step". If "ind", you must provide a
numeric value for rmse and df.



8 RAI

rmse user provided value for rmse. Must be used with sigma="ind".

df degrees of freedom for user specified rmse. Must be used with sigma="ind".

omega return from rejecting a test in Alpha-Investing (<= alpha).

reuse logical. Should repeated tests of the same covariate be considered a test of the
same hypothesis? reusing wealth isn’t implemented for RAI or RAIplus as the
effect is negligible.

maxTest maximum number of tests.

verbose logical. Should auction output be printed?

save logical. Should the auction results be saved? If TRUE, returns a summary ma-
trix.

lmFit The core function that will be used to estimate linear model fits. The default
is .lm.fit, but other alternatives are possible. Note that it does not use formula
notation as this is costly. Another recommended option is fastLmPure from
RcppEigen or related packages.

Details

Missing values are treated as follows: all observations with missing values in theResponse are
removed; numeric columns in theData have missing values imputed by the mean of the column and
an indicator column is added to note missingness; missing values in factor or binary columns are
given the value "NA", which creates an additional group for missing values. Note that as rai is run
using the output of model.matrix, it is not guaranteed that all categories from a factor are included
in the regression. Column names may also be modified to be syntactically valid. The model object
can be used to generate predictions on test data. Note that if default conversions were used when
running rai, then they must be used again with prepareData for the test data prior to producing
predictions.

Value

A list which includes the following components:

y response.

X model matrix from final model.

formula final model formula.

features list of interactions included in formula.

summary if save=TRUE, contains information on each test made by the algorithm.

time run time.

options options given to RAI: alg, searchType, poly, r, startDeg, alpha, omega, m.

subData subset of columns from theData that are used in the final model.

model linear model object using selected model

Summary and predict methods are provided in order to generate further output and graphics.



RAI 9

Examples

data("CO2")
theResponse = CO2$uptake
theData = CO2[ ,-5]
rai_out = rai(theData, theResponse)
summary(rai_out) # summary information including graphs



Index

Auction, 2

Bidders, 3

Experts, 4

Feature-Constructors, 5

gWealthStep (Bidders), 3

is.rai (RAI), 7

makeExpert (Experts), 4
makeLocalScavenger

(Feature-Constructors), 5
makeRawSource (Feature-Constructors), 5
makeScavengerExpert (Experts), 4
makeStepwiseBidder (Bidders), 3
makeStepwiseExpert (Experts), 4

plot_ntest_rS (ProcessRAI), 5
plot_ntest_wealth (ProcessRAI), 5
predict.rai (ProcessRAI), 5
prepareData (RAI), 7
ProcessRAI, 5

RAI, 7
rai, 2–6
rai (RAI), 7
runAuction, 3–5, 7
runAuction (Auction), 2

summary.rai (ProcessRAI), 5

vif (Auction), 2

10


	Auction
	Bidders
	Experts
	Feature-Constructors
	ProcessRAI
	RAI
	Index

