You can install the development version of randomMachines from GitHub with:
# install.packages("devtools")
::install_github("MateusMaiaDS/randomMachines") devtools
This is a basic example which shows you how to solve a common binary classification problem:
library(randomMachines)
## Simple classification example
<- randomMachines::sim_class(n=100)
sim_train <- randomMachines::sim_class(n=100)
sim_test <- randomMachines::randomMachines(y~.,train = sim_train, B = 25,prob_model = F)
rm_mod <- predict(rm_mod,sim_test) rm_mod_pred
For a regression task we would have similarly
library(randomMachines)
## Simple regression example
<- randomMachines::sim_reg1(n=100)
sim_train <- randomMachines::sim_reg1(n=100)
sim_test <- randomMachines::randomMachines(y~.,train = sim_train,B = 25)
rm_mod <- predict(rm_mod,sim_test) rm_mod_pred