Package 'rciplot'

July 23, 2025

Type Package

Title Plot Jacobson-Truax Reliable Change Indices

Version 0.1.1

Description The concept of reliable and clinically significant change
(Jacobson & Truax, 1991) helps you answer the following questions for a
sample with two measurements at different points in time (pre & post):
Which proportion of my sample has a (considering the reliability of the
instrument) probably not-just-by-chance difference in pre- vs. post-scores?
Which proportion of my sample does not only change in a statistically
significant way (see question one), but also in a clinically significant way
(e.g. change from a test score regarded ``dysfunctional" to a score regarded
``functional")?

This package allows you to very easily create a scatterplot of your sample in which the x-axis maps to the pre-scores, the y-axis maps to the post-scores and several graphical elements (lines, colors) allow you to gain a quick overview about reliable changes in these scores.

An example of this kind of plot is Figure 2 of Jacobson & Truax (1991). Referenced article:

Jacobson, N. S., & Truax, P. (1991) < doi:10.1037/0022-006X.59.1.12>.

License MIT + file LICENSE

URL https://gitlab.com/REDS1736/rciplot

Encoding UTF-8 LazyData true

Imports dplyr, ggplot2, stats, tibble

RoxygenNote 7.2.2 Depends R (>= 2.10) NeedsCompilation no

Author Maximilian Hagspiel [aut, cre, cph]

Maintainer Maximilian Hagspiel <maxhag@mailbox.org>

Repository CRAN

Date/Publication 2023-03-15 09:10:02 UTC

2 rciplot

Contents

	rciplot sample_data .														
Index															6

rciplot rciplot

Description

Create a scatterplot of your sample in which the x-axis maps to the pre-scores, the y-axis maps to the post-scores and several graphical elements (lines, colors) allow you to gain a quick overview about reliable changes in these scores. An example of this kind of plot is Figure 2 of Jacobson & Truax (1991). Jacobson-Truax classification (represented in point colors) is always based on 'recovery_cutoff', not on any other plotted horizontal line (e.g. mid of means).

Usage

```
rciplot(
  data,
  pre = NULL,
 post = NULL,
  group = NULL,
  reliability = NULL,
  reliable_change_alpha = 0.05,
  recovery_cutoff = NULL,
  classification_method = "recovery cutoff",
  show_classification_counts = TRUE,
  show_classification_percentages = TRUE,
  higher_is_better = TRUE,
  pre_jitter = 0,
  post_jitter = 0,
  opacity = 0.5,
  size_points = 1,
  size\_lines = 0.3,
  draw_meanmid_line = FALSE,
  draw_2sd_functional_line = FALSE,
  draw_2sd_dysfunctional_line = FALSE,
 mean_functional = NULL,
 mean_dysfunctional = NULL,
  sd_functional = 1,
  sd_dysfunctional = 1
)
```

rciplot 3

Arguments

data Dataframe containing all relevant data

pre Name of the column in 'data' containing pre values
post Name of the column in 'data' containing post values

group Name of column by which cases are to be grouped (controls shape of scatter plot

points)

reliability Reliability of the used test / instrument

reliable_change_alpha

Probability of alpha error for the calculation of the critical distance which is the minimum pre-post difference to be regarded statistically significant

recovery_cutoff

Test score below which individuals are considered healthy / recovered

classification_method

What cutoff value is to be used to classify individuals into healthy / unhealthy individuals? Possible values: "recovery cutoff" = the so-named function parameter, "mid of means" = the exact numeric mid between the two function parameters mean_functional and mean_dysfunctional, "2 sd dysfunctional" = everybody with a score higher than 2 SD above the dysfunctional group mean is healthy "2 sd functional" = everybody with a score higher than 2 SD below the functional group mean is healthy

show_classification_counts

If TRUE, show number of cases for each classification (e.g. reliable improvement, no reliable change, ...) in legend

show_classification_percentages

Expanding on 'show_classification_counts'.If TRUE, show the respective percentage of the whole sample each classification makes up.

higher_is_better

TRUE if higher values indicate a remission / healthy individual. FALSE if higher values indicate worse health

values indicate worse health.

pre_jitter Jitter factor to apply to pre values
post_jitter Jitter factor to apply to post values
opacity Alpha value of scatter plot points

size_points Size of scatter plot points.

size_lines Size (thickness) of lines in plot.

draw_meanmid_line

Draw a horizontal line indicating the middle between the population means for a functional (healthy) population and a dysfunctional (diseased) population, described as criterion *c* in Jacobson & Truax (1991).

draw_2sd_functional_line

Draw a horizontal line indicating a cutoff at a 2 SD distance from 'mean_functional', described as criterion *b* in Jacobson & Truax (1991).

draw_2sd_dysfunctional_line

Draw a horizontal line indicating a cutoff at a 2 SD distance from 'mean_dysfunctional', described as criterion *a* in Jacobson & Truax (1991).

4 sample_data

```
mean_functional
```

Required if 'draw_meanmid_line = T' or 'draw_2sd_[dys]functional_line = T'. Mean test score of the functional population.

mean_dysfunctional

Required if 'draw_meanmid_line = T' or 'draw_2sd_[dys]functional_line'. Mean test score of the dysfunctional population.

sd_functional

Optional for 'draw_meanmid_line = T'. Standard deviation of the functional population.

sd_dysfunctional

Optional for 'draw_meanmid_line = T'. Standard deviation of the dysfunctional population.

Value

A list containing:

plot ggplot2 scatter plot analogous to Figure 2 of Jacobson & Truax (1991)

categorization List containing categorization of all samples given in data. Thus, has as many items as data has rows.

Examples

```
# Using example data from `sample_data.rda` to recreate Figure 2 of
# Jacobson & Truax (1991):
rciplot(
   data = sample_data,
   pre = 'pre_data',
   post = 'post_data',
   reliability = 0.88,
   recovery_cutoff = 104,
   opacity = 1
)
```

sample_data

Sample Data from Jacobson & Truax (1991)

Description

This data set is an excerpt from Table 2 of Jacobson & Truax (1991).

Usage

sample_data

sample_data 5

Format

A CSV table containing the columns 'ppid', 'pre' and 'post' where 'ppid' is a continuously incrementing list of unique integers, 'pre' contains pretest values (floating-point) and 'post' contains posttest values (floating-point too)

Source

Table 2 in Jacobson & Truax (1991)

References

Jacobson, N. S., & Truax, P. (1991). Clinical Significance: A Statistical Approach to Defining Meaningful Change in Psychotherapy Research. Journal of Consulting and Clinical Psychology, 59, 12-19. doi:10.1037/0022-006X.59.1.12

Index

```
* datasets
    sample_data, 4

rciplot, 2

sample_data, 4
```