
Package ‘rnnmf’
July 23, 2025

Maintainer Steven E. Pav <shabbychef@gmail.com>

Version 0.3.0

Date 2024-10-30

License LGPL-3

Title Regularized Non-Negative Matrix Factorization

BugReports https://github.com/shabbychef/rnnmf/issues

Description
A proof of concept implementation of regularized non-negative matrix factorization optimization.
A non-negative matrix factorization factors non-
negative matrix Y approximately as L R, for non-negative
matrices L and R of reduced rank. This package supports such factorizations with weighted ob-
jective and
regularization penalties. Allowable regularization penalties include L1 and L2 penal-
ties on L and R,
as well as non-
orthogonality penalties. This package provides multiplicative update algorithms, which are
a modification of the algorithm of Lee and Seung (2001)
<http://papers.nips.cc/paper/
1861-algorithms-for-non-negative-matrix-factorization.pdf>, as well
as an additive update derived from that multiplicative up-
date. See also Pav (2004) <doi:10.48550/arXiv.2410.22698>.

Depends R (>= 3.0.2)

Imports Matrix

Suggests testthat, dplyr, ggplot2, scales, viridis, knitr

URL https://github.com/shabbychef/rnnmf

VignetteBuilder knitr

Collate 'aurnmf.r' 'gaurnmf.r' 'giqpm.r' 'murnmf.r' 'rnnmf-package.r'

RoxygenNote 7.3.2

NeedsCompilation no

Author Steven E. Pav [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4197-6195>)

1

https://github.com/shabbychef/rnnmf/issues
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
https://doi.org/10.48550/arXiv.2410.22698
https://github.com/shabbychef/rnnmf
https://orcid.org/0000-0002-4197-6195

2 aurnmf

Repository CRAN

Date/Publication 2024-11-04 10:40:02 UTC

Contents

aurnmf . 2
gaurnmf . 5
giqpm . 9
murnmf . 12
rnnmf-NEWS . 15

Index 16

aurnmf nmf .

Description

Additive update Non-negative matrix factorization with regularization.

Usage

aurnmf(
Y,
L,
R,
W_0R = NULL,
W_0C = NULL,
lambda_1L = 0,
lambda_1R = 0,
lambda_2L = 0,
lambda_2R = 0,
gamma_2L = 0,
gamma_2R = 0,
tau = 0.1,
annealing_rate = 0.01,
check_optimal_step = TRUE,
zero_tolerance = 1e-12,
max_iterations = 1000L,
min_xstep = 1e-09,
on_iteration_end = NULL,
verbosity = 0

)

aurnmf 3

Arguments

Y an r× c matrix to be decomposed. Should have non-negative elements; an error
is thrown otherwise.

L an r × d matrix of the initial estimate of L. Should have non-negative elements;
an error is thrown otherwise.

R an d× c matrix of the initial estimate of R. Should have non-negative elements;
an error is thrown otherwise.

W_0R the row space weighting matrix. This should be a positive definite non-negative
symmetric r × r matrix. If omitted, it defaults to the properly sized identity
matrix.

W_0C the column space weighting matrix. This should be a positive definite non-
negative symmetric c × c matrix. If omitted, it defaults to the properly sized
identity matrix.

lambda_1L the scalar ℓ1 penalty for the matrix L. Defaults to zero.
lambda_1R the scalar ℓ1 penalty for the matrix R. Defaults to zero.
lambda_2L the scalar ℓ2 penalty for the matrix L. Defaults to zero.
lambda_2R the scalar ℓ2 penalty for the matrix R. Defaults to zero.
gamma_2L the scalar ℓ2 penalty for non-orthogonality of the matrix L. Defaults to zero.
gamma_2R the scalar ℓ2 penalty for non-orthogonality of the matrix R. Defaults to zero.
tau the starting shrinkage factor applied to the step length. Should be a value in

(0, 1).
annealing_rate the rate at which we scale the shrinkage factor towards 1. Should be a value in

[0, 1).
check_optimal_step

if TRUE, we attempt to take the optimal step length in the given direction. If
not, we merely take the longest feasible step in the step direction.

zero_tolerance values of x less than this will be ‘snapped’ to zero. This happens at the end of
the iteration and does not affect the measurement of convergence.

max_iterations the maximum number of iterations to perform.
min_xstep the minimum L-infinity norm of the step taken. Once the step falls under this

value, we terminate.
on_iteration_end

an optional function that is called at the end of each iteration. The function is
called as on_iteration_end(iteration=iteration, Y=Y, L=L, R=R, Lstep=Lstep,
Rstep=Rstep, ...)

verbosity controls whether we print information to the console.

Details

Attempts to factor given non-negative matrix Y as the product LR of two non-negative matrices.
The objective function is Frobenius norm with ℓ1 and ℓ2 regularization terms. We seek to minimize
the objective

1

2
tr((Y−LR)′W0R(Y−LR)W0C)+λ1L|L|+λ1R|R|+λ2L

2
tr(L′L)+

λ2R

2
tr(R′R)+

γ2L
2

tr((L′L)(11′−I))+
γ2R
2

tr((R′R)(11′−I)),

4 aurnmf

subject to L ≥ 0 and R ≥ 0 elementwise, where |A| is the sum of the elements of A and tr(A) is
the trace of A.

The code starts from initial estimates and iteratively improves them, maintaining non-negativity.
This implementation uses the Lee and Seung step direction, with a correction to avoid divide-by-
zero. The iterative step is optionally re-scaled to take the steepest descent in the step direction.

Value

a list with the elements

L The final estimate of L.

R The final estimate of R.

Lstep The infinity norm of the final step in L.

Rstep The infinity norm of the final step in R.

iterations The number of iterations taken.

converged Whether convergence was detected.

Note

This package provides proof of concept code which is unlikely to be fast or robust, and may not
solve the optimization problem at hand. User assumes all risk.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Merritt, Michael, and Zhang, Yin. "Interior-point Gradient Method for Large-Scale Totally Nonneg-
ative Least Squares Problems." Journal of Optimization Theory and Applications 126, no 1 (2005):
191–202. https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf

Pav, S. E. "An Iterative Algorithm for Regularized Non-negative Matrix Factorizations." Forthcom-
ing. (2024)

Lee, Daniel D. and Seung, H. Sebastian. "Algorithms for Non-negative Matrix Factorization."
Advances in Neural Information Processing Systems 13 (2001): 556–562. http://papers.nips.
cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

See Also

gaurnmf, murnmf.

Examples

nr <- 100
nc <- 20
dm <- 4

randmat <- function(nr,nc,...) { matrix(pmax(0,runif(nr*nc,...)),nrow=nr) }

https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

gaurnmf 5

set.seed(1234)
real_L <- randmat(nr,dm)
real_R <- randmat(dm,nc)
Y <- real_L %*% real_R

without regularization
objective <- function(Y, L, R) { sum((Y - L %*% R)^2) }
objective(Y,real_L,real_R)

L_0 <- randmat(nr,dm)
R_0 <- randmat(dm,nc)
objective(Y,L_0,R_0)
out1 <- aurnmf(Y, L_0, R_0, max_iterations=5e3L,check_optimal_step=FALSE)
objective(Y,out1$L,out1$R)

with L1 regularization on one side
out2 <- aurnmf(Y, L_0, R_0, lambda_1L=0.1, max_iterations=5e3L,check_optimal_step=FALSE)
objective does not suffer because all mass is shifted to R
objective(Y,out2$L,out2$R)

list(L1=sum(out1$L),R1=sum(out1$R),L2=sum(out2$L),R2=sum(out2$R))
sum(out2$L)
with L1 regularization on both sides
out3 <- aurnmf(Y, L_0, R_0, lambda_1L=0.1,lambda_1R=0.1,

max_iterations=5e3L,check_optimal_step=FALSE)
with L1 regularization on both sides, raw objective suffers
objective(Y,out3$L,out3$R)

list(L1=sum(out1$L),R1=sum(out1$R),L3=sum(out3$L),R3=sum(out3$R))

example showing how to use the on_iteration_end callback to save iterates.
max_iterations <- 5e3L
it_history <<- rep(NA_real_, max_iterations)
quadratic_objective <- function(Y, L, R) { sum((Y - L %*% R)^2) }
on_iteration_end <- function(iteration, Y, L, R, ...) {

it_history[iteration] <<- quadratic_objective(Y,L,R)
}
out1b <- aurnmf(Y, L_0, R_0, max_iterations=max_iterations, on_iteration_end=on_iteration_end)

should work on sparse matrices too.
if (require(Matrix)) {
real_L <- randmat(nr,dm,min=-1)
real_R <- randmat(dm,nc,min=-1)
Y <- as(real_L %*% real_R, "sparseMatrix")
L_0 <- as(randmat(nr,dm,min=-0.5), "sparseMatrix")
R_0 <- as(randmat(dm,nc,min=-0.5), "sparseMatrix")
out1 <- aurnmf(Y, L_0, R_0, max_iterations=1e2L,check_optimal_step=TRUE)

}

gaurnmf gaurnmf .

6 gaurnmf

Description

Additive update Non-negative matrix factorization with regularization, general form.

Usage

gaurnmf(
Y,
L,
R,
W_0R = NULL,
W_0C = NULL,
W_1L = 0,
W_1R = 0,
W_2RL = 0,
W_2CL = 0,
W_2RR = 0,
W_2CR = 0,
tau = 0.1,
annealing_rate = 0.01,
check_optimal_step = TRUE,
zero_tolerance = 1e-12,
max_iterations = 1000L,
min_xstep = 1e-09,
on_iteration_end = NULL,
verbosity = 0

)

Arguments

Y an r× c matrix to be decomposed. Should have non-negative elements; an error
is thrown otherwise.

L an r × d matrix of the initial estimate of L. Should have non-negative elements;
an error is thrown otherwise.

R an d× c matrix of the initial estimate of R. Should have non-negative elements;
an error is thrown otherwise.

W_0R the row space weighting matrix. This should be a positive definite non-negative
symmetric r × r matrix. If omitted, it defaults to the properly sized identity
matrix.

W_0C the column space weighting matrix. This should be a positive definite non-
negative symmetric c × c matrix. If omitted, it defaults to the properly sized
identity matrix.

W_1L the ℓ1 penalty matrix for the matrix R. If a scalar, corresponds to that scalar
times the all-ones matrix. Defaults to all-zeroes matrix, which is no penalty
term.

W_1R the ℓ1 penalty matrix for the matrix L. If a scalar, corresponds to that scalar
times the all-ones matrix. Defaults to all-zeroes matrix, which is no penalty
term.

gaurnmf 7

W_2RL the ℓ2 row penalty matrix for the matrix L. If a scalar, corresponds to that scalar
times the identity matrix. Can also be a list, in which case W_2CL must be a list
of the same length. The list should consist of ℓ2 row penalty matrices. Defaults
to all-zeroes matrix, which is no penalty term.

W_2CL the ℓ2 column penalty matrix for the matrix L. If a scalar, corresponds to that
scalar times the identity matrix. Can also be a list, in which case W_2RL must be
a list of the same length. The list should consist of ℓ2 column penalty matrices.
Defaults to all-zeroes matrix, which is no penalty term.

W_2RR the ℓ2 row penalty matrix for the matrix R. If a scalar, corresponds to that scalar
times the identity matrix. Can also be a list, in which case W_2CR must be a list
of the same length. The list should consist of ℓ2 row penalty matrices. Defaults
to all-zeroes matrix, which is no penalty term.

W_2CR the ℓ2 column penalty matrix for the matrix R. If a scalar, corresponds to that
scalar times the identity matrix. Can also be a list, in which case W_2RR must be
a list of the same length. The list should consist of ℓ2 column penalty matrices.
Defaults to all-zeroes matrix, which is no penalty term.

tau the starting shrinkage factor applied to the step length. Should be a value in
(0, 1).

annealing_rate the rate at which we scale the shrinkage factor towards 1. Should be a value in
[0, 1).

check_optimal_step

if TRUE, we attempt to take the optimal step length in the given direction. If
not, we merely take the longest feasible step in the step direction.

zero_tolerance values of x less than this will be ‘snapped’ to zero. This happens at the end of
the iteration and does not affect the measurement of convergence.

max_iterations the maximum number of iterations to perform.
min_xstep the minimum L-infinity norm of the step taken. Once the step falls under this

value, we terminate.
on_iteration_end

an optional function that is called at the end of each iteration. The function is
called as on_iteration_end(iteration=iteration, Y=Y, L=L, R=R, Lstep=Lstep,
Rstep=Rstep, ...)

verbosity controls whether we print information to the console.

Details

Attempts to factor given non-negative matrix Y as the product LR of two non-negative matrices.
The objective function is Frobenius norm with ℓ1 and ℓ2 regularization terms. We seek to minimize
the objective

1

2
tr((Y−LR)′W0R(Y−LR)W0C)+tr(W ′

1LL)+tr(W ′
1RR)+

1

2

∑
j

tr(L′W2RLjLW2CLj)+tr(R′W2RRjRW2CRj),

subject to L ≥ 0 and R ≥ 0 elementwise, where tr(A) is the trace of A.

The code starts from initial estimates and iteratively improves them, maintaining non-negativity.
This implementation uses the Lee and Seung step direction, with a correction to avoid divide-by-
zero. The iterative step is optionally re-scaled to take the steepest descent in the step direction.

8 gaurnmf

Value

a list with the elements

L The final estimate of L.

R The final estimate of R.

Lstep The infinity norm of the final step in L.

Rstep The infinity norm of the final step in R.

iterations The number of iterations taken.

converged Whether convergence was detected.

Note

This package provides proof of concept code which is unlikely to be fast or robust, and may not
solve the optimization problem at hand. User assumes all risk.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Merritt, Michael, and Zhang, Yin. "Interior-point Gradient Method for Large-Scale Totally Nonneg-
ative Least Squares Problems." Journal of Optimization Theory and Applications 126, no 1 (2005):
191–202. https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf

Pav, S. E. "An Iterative Algorithm for Regularized Non-negative Matrix Factorizations." Forthcom-
ing. (2024)

Lee, Daniel D. and Seung, H. Sebastian. "Algorithms for Non-negative Matrix Factorization."
Advances in Neural Information Processing Systems 13 (2001): 556–562. http://papers.nips.
cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

See Also

aurnmf

Examples

nr <- 20
nc <- 5
dm <- 2

randmat <- function(nr,nc,...) { matrix(pmax(0,runif(nr*nc,...)),nrow=nr) }
set.seed(1234)
real_L <- randmat(nr,dm+2)
real_R <- randmat(ncol(real_L),nc)
Y <- real_L %*% real_R
gram_it <- function(G) { t(G) %*% G }
W_0R <- gram_it(randmat(nr+5,nr))
W_0C <- gram_it(randmat(nc+5,nc))

https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

giqpm 9

wt_objective <- function(Y, L, R, W_0R, W_0C) {
err <- Y - L %*% R
0.5 * sum((err %*% W_0C) * (t(W_0R) %*% err))

}
matrix_trace <- function(G) {

sum(diag(G))
}
wt_objective(Y,real_L,real_R,W_0R,W_0C)

L_0 <- randmat(nr,dm)
R_0 <- randmat(dm,nc)
wt_objective(Y,L_0,R_0,W_0R,W_0C)
out1 <- gaurnmf(Y, L_0, R_0, W_0R=W_0R, W_0C=W_0C,

max_iterations=1e4L,check_optimal_step=FALSE)
wt_objective(Y,out1$L,out1$R,W_0R,W_0C)

W_1L <- randmat(nr,dm)
out2 <- gaurnmf(Y, out1$L, out1$R, W_0R=W_0R, W_0C=W_0C, W_1L=W_1L,

max_iterations=1e4L,check_optimal_step=FALSE)
wt_objective(Y,out2$L,out2$R,W_0R,W_0C)

W_1R <- randmat(dm,nc)
out3 <- gaurnmf(Y, out2$L, out2$R, W_0R=W_0R, W_0C=W_0C, W_1R=W_1R,

max_iterations=1e4L,check_optimal_step=FALSE)
wt_objective(Y,out3$L,out3$R,W_0R,W_0C)

example showing how to use the on_iteration_end callback to save iterates.
max_iterations <- 1e3L
it_history <<- rep(NA_real_, max_iterations)
on_iteration_end <- function(iteration, Y, L, R, ...) {

it_history[iteration] <<- wt_objective(Y,L,R,W_0R,W_0C)
}
out1b <- gaurnmf(Y, L_0, R_0, W_0R=W_0R, W_0C=W_0C,
max_iterations=max_iterations, on_iteration_end=on_iteration_end, check_optimal_step=FALSE)

should work on sparse matrices too.
if (require(Matrix)) {
real_L <- randmat(nr,dm,min=-1)
real_R <- randmat(dm,nc,min=-1)
Y <- as(real_L %*% real_R, "sparseMatrix")
L_0 <- as(randmat(nr,dm,min=-0.5), "sparseMatrix")
R_0 <- as(randmat(dm,nc,min=-0.5), "sparseMatrix")
out1 <- gaurnmf(Y, L_0, R_0, max_iterations=1e2L,check_optimal_step=TRUE)

}

giqpm giqpm .

10 giqpm

Description

Generalized Iterative Quadratic Programming Method for non-negative quadratic optimization.

Usage

giqpm(
Gmat,
dvec,
x0 = NULL,
tau = 0.5,
annealing_rate = 0.25,
check_optimal_step = TRUE,
mult_func = NULL,
grad_func = NULL,
step_func = NULL,
zero_tolerance = 1e-09,
max_iterations = 1000L,
min_xstep = 1e-09,
verbosity = 0

)

Arguments

Gmat a representation of the matrix G.

dvec a representation of the vector d.

x0 the initial iterate. If none given, we spawn one of the same size as dvec.

tau the starting shrinkage factor applied to the step length. Should be a value in
(0, 1).

annealing_rate the rate at which we scale the shrinkage factor towards 1. Should be a value in
[0, 1).

check_optimal_step

if TRUE, we attempt to take the optimal step length in the given direction. If
not, we merely take the longest feasible step in the step direction.

mult_func a function which takes matrix and vector and performs matrix multiplication.
The default does this on matrix and vector input, but the user can implement this
for some implicit versions of the problem.

grad_func a function which takes matrix G, vector d, the current iterate x and the product
Gx and is supposed to compute Gx + d. The default does this on matrix and
vector input, but the user can implement this for some implicit versions of the
problem.

step_func a function which takes the vector gradient, the product Gx, the matrix G, vector
d, vector x and the mult_func and produces a step vector. By default this step
vector is the Lee-Seung step vector, namely −(Gx + d) ∗ x/d, with Hadamard
product and division.

zero_tolerance values of x less than this will be ‘snapped’ to zero. This happens at the end of
the iteration and does not affect the measurement of convergence.

giqpm 11

max_iterations the maximum number of iterations to perform.

min_xstep the minimum L-infinity norm of the step taken. Once the step falls under this
value, we terminate.

verbosity controls whether we print information to the console.

Details

Iteratively solves the problem

min
x

1

2
x⊤Gx+ d⊤x

subject to the elementwise constraint x ≥ 0.

This implementation allows the user to specify methods to perform matrix by vector multiplication,
computation of the gradient (which should be Gx + d), and computation of the step direction. By
default we compute the optimal step in the given step direction.

Value

a list with the elements

x The final iterate.

iterations The number of iterations taken.

converged Whether convergence was detected.

Note

This package provides proof of concept code which is unlikely to be fast or robust, and may not
solve the optimization problem at hand. User assumes all risk.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Pav, S. E. "An Iterative Algorithm for Regularized Non-negative Matrix Factorizations." Forthcom-
ing. (2024)

Merritt, Michael, and Zhang, Yin. "Interior-point Gradient Method for Large-Scale Totally Nonneg-
ative Least Squares Problems." Journal of Optimization Theory and Applications 126, no 1 (2005):
191–202. https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf

Examples

set.seed(1234)
ssiz <- 100
preG <- matrix(runif(ssiz*(ssiz+20)),nrow=ssiz)
G <- preG %*% t(preG)
d <- - runif(ssiz)
y1 <- giqpm(G, d)
objective <- function(G, d, x) { as.numeric(0.5 * t(x) %*% (G %*% x) + t(x) %*% d) }

https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf

12 murnmf

this does not converge to an actual solution!
steepest_step_func <- function(gradf, ...) { return(-gradf) }
y2 <- giqpm(G, d, step_func = steepest_step_func)

scaled_step_func <- function(gradf, Gx, Gmat, dvec, x0, ...) { return(-gradf * abs(x0)) }
y3 <- giqpm(G, d, step_func = scaled_step_func)

sqrt_step_func <- function(gradf, Gx, Gmat, dvec, x0, ...) { return(-gradf * abs(sqrt(x0))) }
y4 <- giqpm(G, d, step_func = sqrt_step_func)

complementarity_stepfunc <- function(gradf, Gx, Gmat, dvec, x0, ...) { return(-gradf * x0) }
y5 <- giqpm(G, d, step_func = complementarity_stepfunc)

objective(G, d, y1$x)
objective(G, d, y2$x)
objective(G, d, y3$x)
objective(G, d, y4$x)
objective(G, d, y5$x)

murnmf murnmf .

Description

Multiplicative update Non-negative matrix factorization with regularization.

Usage

murnmf(
Y,
L,
R,
W_0R = NULL,
W_0C = NULL,
lambda_1L = 0,
lambda_1R = 0,
lambda_2L = 0,
lambda_2R = 0,
gamma_2L = 0,
gamma_2R = 0,
epsilon = 1e-07,
max_iterations = 1000L,
min_xstep = 1e-09,
on_iteration_end = NULL,
verbosity = 0

)

murnmf 13

Arguments

Y an r× c matrix to be decomposed. Should have non-negative elements; an error
is thrown otherwise.

L an r × d matrix of the initial estimate of L. Should have non-negative elements;
an error is thrown otherwise.

R an d× c matrix of the initial estimate of R. Should have non-negative elements;
an error is thrown otherwise.

W_0R the row space weighting matrix. This should be a positive definite non-negative
symmetric r × r matrix. If omitted, it defaults to the properly sized identity
matrix.

W_0C the column space weighting matrix. This should be a positive definite non-
negative symmetric c × c matrix. If omitted, it defaults to the properly sized
identity matrix.

lambda_1L the scalar ℓ1 penalty for the matrix L. Defaults to zero.
lambda_1R the scalar ℓ1 penalty for the matrix R. Defaults to zero.
lambda_2L the scalar ℓ2 penalty for the matrix L. Defaults to zero.
lambda_2R the scalar ℓ2 penalty for the matrix R. Defaults to zero.
gamma_2L the scalar ℓ2 penalty for non-orthogonality of the matrix L. Defaults to zero.
gamma_2R the scalar ℓ2 penalty for non-orthogonality of the matrix R. Defaults to zero.
epsilon the numerator clipping value.
max_iterations the maximum number of iterations to perform.
min_xstep the minimum L-infinity norm of the step taken. Once the step falls under this

value, we terminate.
on_iteration_end

an optional function that is called at the end of each iteration. The function is
called as on_iteration_end(iteration=iteration, Y=Y, L=L, R=R, Lstep=Lstep,
Rstep=Rstep, ...)

verbosity controls whether we print information to the console.

Details

This function uses multiplicative updates only, and may not optimize the nominal objective. It is
also unlikely to achieve optimality. This code is for reference purposes and is not suited for usage
other than research and experimentation.

Value

a list with the elements

L The final estimate of L.
R The final estimate of R.
Lstep The infinity norm of the final step in L.
Rstep The infinity norm of the final step in R.
iterations The number of iterations taken.
converged Whether convergence was detected.

14 murnmf

Note

This package provides proof of concept code which is unlikely to be fast or robust, and may not
solve the optimization problem at hand. User assumes all risk.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Merritt, Michael, and Zhang, Yin. "Interior-point Gradient Method for Large-Scale Totally Nonneg-
ative Least Squares Problems." Journal of Optimization Theory and Applications 126, no 1 (2005):
191–202. https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf

Pav, S. E. "An Iterative Algorithm for Regularized Non-negative Matrix Factorizations." Forthcom-
ing. (2024)

Lee, Daniel D. and Seung, H. Sebastian. "Algorithms for Non-negative Matrix Factorization."
Advances in Neural Information Processing Systems 13 (2001): 556–562. http://papers.nips.
cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

See Also

aurnmf, gaurnmf

Examples

nr <- 100
nc <- 20
dm <- 4

randmat <- function(nr,nc,...) { matrix(pmax(0,runif(nr*nc,...)),nrow=nr) }
set.seed(1234)
real_L <- randmat(nr,dm)
real_R <- randmat(dm,nc)
Y <- real_L %*% real_R

without regularization
objective <- function(Y, L, R) { sum((Y - L %*% R)^2) }
objective(Y,real_L,real_R)

L_0 <- randmat(nr,dm)
R_0 <- randmat(dm,nc)
objective(Y,L_0,R_0)
out1 <- murnmf(Y, L_0, R_0, max_iterations=5e3L)
objective(Y,out1$L,out1$R)

with L1 regularization on one side
out2 <- murnmf(Y, L_0, R_0, max_iterations=5e3L,lambda_1L=0.1)

objective does not suffer because all mass is shifted to R
objective(Y,out2$L,out2$R)

list(L1=sum(out1$L),R1=sum(out1$R),L2=sum(out2$L),R2=sum(out2$R))
sum(out2$L)
with L1 regularization on both sides

https://scholarship.rice.edu/bitstream/handle/1911/102020/TR04-08.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

rnnmf-NEWS 15

out3 <- murnmf(Y, L_0, R_0, max_iterations=5e3L,lambda_1L=0.1,lambda_1R=0.1)
with L1 regularization on both sides, raw objective suffers
objective(Y,out3$L,out3$R)

list(L1=sum(out1$L),R1=sum(out1$R),L3=sum(out3$L),R3=sum(out3$R))

example showing how to use the on_iteration_end callback to save iterates.
max_iterations <- 1e3L
it_history <<- rep(NA_real_, max_iterations)
quadratic_objective <- function(Y, L, R) { sum((Y - L %*% R)^2) }
on_iteration_end <- function(iteration, Y, L, R, ...) {

it_history[iteration] <<- quadratic_objective(Y,L,R)
}
out1b <- murnmf(Y, L_0, R_0, max_iterations=max_iterations, on_iteration_end=on_iteration_end)

should work on sparse matrices too, but beware zeros in the initial estimates
if (require(Matrix)) {
real_L <- randmat(nr,dm,min=-1)
real_R <- randmat(dm,nc,min=-1)
Y <- as(real_L %*% real_R, "sparseMatrix")
L_0 <- randmat(nr,dm)
R_0 <- randmat(dm,nc)
out1 <- murnmf(Y, L_0, R_0, max_iterations=1e2L)

}

rnnmf-NEWS News for package ’rnnmf’:

Description

News for package ‘rnnmf’

rnnmf Initial Version 0.3.0 (2024-10-30)

• first CRAN release.

• changed name from rnmf to rnnmf.

https://cran.r-project.org/package=rnnmf

Index

∗ optimization
aurnmf, 2
gaurnmf, 5
giqpm, 9
murnmf, 12

aurnmf, 2, 8, 14

gaurnmf, 4, 5, 14
giqpm, 9

murnmf, 4, 12

rnnmf-NEWS, 15

16

	aurnmf
	gaurnmf
	giqpm
	murnmf
	rnnmf-NEWS
	Index

