
Package ‘samc’
July 23, 2025

Type Package

Title Spatial Absorbing Markov Chains

Version 4.0.0

Description Implements functions for working with absorbing Markov chains. The
implementation is based on the framework described in ``Toward a unified
framework for connectivity that disentangles movement and mortality in space
and time'' by Fletcher et al. (2019) <doi:10.1111/ele.13333>, which applies
them to spatial ecology. This framework incorporates both resistance and
absorption with spatial absorbing Markov chains (SAMC) to provide several
short-term and long-term predictions for metrics related to connectivity in
landscapes. Despite the ecological context of the framework, this package
can be used in any application of absorbing Markov chains.

License AGPL (>= 3)

URL https://andrewmarx.github.io/samc/

BugReports https://github.com/andrewmarx/samc/issues/

Encoding UTF-8

LazyData true

Depends R (>= 3.6.0)

Imports methods, Matrix (>= 1.5-3), raster, terra (>= 1.7-3), circular

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat, gdistance, viridisLite

VignetteBuilder knitr

Collate 'RcppExports.R' 'location-class.R' 'internal-classes.R'
'samc-class.R' 'absorption.R' 'check.R' 'cond_passage.R'
'data.R' 'visitation.R' 'dispersal.R' 'distribution.R'
'generics.R' 'internal-data.R' 'internal-functions.R'
'internal-utils.R' 'internal-validation.R' 'locate.R' 'map.R'
'mortality.R' 'pairwise.R' 'rasterize.R' 'samc.R' 'survival.R'
'zzz.R'

LinkingTo Rcpp (>= 1.0.10), RcppEigen (>= 0.3.3.9.3), RcppThread (>=
2.1.3)

1

https://doi.org/10.1111/ele.13333
https://andrewmarx.github.io/samc/
https://github.com/andrewmarx/samc/issues/

2 absorption

NeedsCompilation yes

Author Andrew Marx [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-7456-1631>),

Robert Fletcher [ctb] (ORCID: <https://orcid.org/0000-0003-1717-5707>),
Miguel Acevedo [ctb] (ORCID: <https://orcid.org/0000-0002-8289-1497>),
Jorge Sefair [ctb] (ORCID: <https://orcid.org/0000-0002-5887-8938>),
Chao Wang [ctb] (ORCID: <https://orcid.org/0000-0003-2706-5122>),
Hughes Josie [ctb] (ORCID: <https://orcid.org/0000-0001-7875-9015>),
Barrett Griffin [ctb]

Maintainer Andrew Marx <ajm.rpackages@gmail.com>

Repository CRAN

Date/Publication 2024-10-30 22:40:02 UTC

Contents
absorption . 2
check . 4
cond_passage . 7
dispersal . 9
distribution . 13
example_maze . 15
example_split_corridor . 16
example_toy_res . 17
locate . 17
location-class . 19
map . 19
mortality . 21
pairwise . 25
rasterize . 26
samc . 28
samc-class . 32
survival . 34
visitation . 36
visitation_net . 39

Index 42

absorption Calculate absorption metrics

Description

Calculates the probability of absorption for absorbing states rather than individual transient states.
This is distint from, yet very closely linked to, the mortality() metric, which calculates the proba-
bility of absorption at individual transient states. If the results of the mortality() metric are decom-
posed into individual results for each absorbing state, then the sums of the individual results for
every transient state are equivalent to the results of the absorption() metric.

https://orcid.org/0000-0002-7456-1631
https://orcid.org/0000-0003-1717-5707
https://orcid.org/0000-0002-8289-1497
https://orcid.org/0000-0002-5887-8938
https://orcid.org/0000-0003-2706-5122
https://orcid.org/0000-0001-7875-9015

absorption 3

Usage

absorption(samc, init, origin)

S4 method for signature 'samc,missing,missing'
absorption(samc)

S4 method for signature 'samc,missing,location'
absorption(samc, origin)

S4 method for signature 'samc,ANY,missing'
absorption(samc, init)

Arguments

samc A samc-class object created using the samc function.

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

Details

A = FR

• absorption(samc)
The result is a matrix M where Mi,k is the probability of absorption due to absorbing state k
if starting at transient state i .

• absorption(samc, origin)
The result is a vector v where vk is the probability of absorption due to absorbing state k if
starting at transient state i .

ψTA

• absorption(samc, init)
The result is a vector v where vk is the probability of absorption due to absorbing state k
given an initial state ψ.

Value

See Details

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

../doc/performance.html

4 check

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

check Check landscape data

check 5

Description

Check that landscape inputs have valid values and matching properties.

Usage

check(a, b)

S4 method for signature 'Raster,missing'
check(a)

S4 method for signature 'SpatRaster,missing'
check(a)

S4 method for signature 'matrix,missing'
check(a)

S4 method for signature 'SpatRaster,SpatRaster'
check(a, b)

S4 method for signature 'Raster,Raster'
check(a, b)

S4 method for signature 'matrix,matrix'
check(a, b)

S4 method for signature 'samc,Raster'
check(a, b)

S4 method for signature 'samc,SpatRaster'
check(a, b)

S4 method for signature 'samc,matrix'
check(a, b)

S4 method for signature 'samc,numeric'
check(a, b)

Arguments

a A samc-class, matrix, or RasterLayer-class object

b A matrix or RasterLayer-class object

Details

This function is used to ensure that inputs (resistance, absorption, fidelity, and occupancy) have
valid values and the same properties. This includes checking the CRS (if using raster inputs),
dimensions, and locations of cells with NA data. It can be used to directly compare two matrices or
two rasters, or it can be used to check a samc-class object against a matrix or raster.

6 check

It can also be used to check a numeric vector against a samc-class object created from a P matrix.
In this case, the length of the vector must be equal to the number of transient states. If the transient
states are named, the vector must contain the same names.

The function returns TRUE if the inputs have matching properties. Otherwise, it will stop execution
and print an error message with details about the difference between the two inputs.

Note that the package assumes the different landscape inputs will be the same type, either matrices
or RasterLayers. Mixing RasterLayer data and matrix data is not supported.

Value

See Details section.

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

cond_passage 7

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

cond_passage Conditional Mean First Passage Time

Description

Calculate the mean number of steps to first passage

Usage

cond_passage(samc, init, origin, dest)

S4 method for signature 'samc,missing,missing,location'
cond_passage(samc, dest)

S4 method for signature 'samc,missing,location,location'
cond_passage(samc, origin, dest)

S4 method for signature 'samc,ANY,missing,location'
cond_passage(samc, init, dest)

Arguments

samc A samc-class object created using the samc function.

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

dest A positive integer or character name representing transient state j . Corresponds
to column j of matrix P in the samc-class object. When paired with the
origin parameter, multiple values may be provided as a vector.

Details

t̃ = B̃−1
j F̃ B̃j ·1

8 cond_passage

• cond_passage(samc, dest)
The result is a vector where each element corresponds to a cell in the landscape, and can be
mapped back to the landscape using the map function. Element i is the mean number of steps
before absorption starting from location i conditional on absorption into j
Note that mathematically, the formula actually does not return a value for when i is equal to j.
This leads to a situation where the resultant vector is actually one element short and the index
for some of the elements may be shifted. The cond_passage() function fills inserts a 0 value
for vector indices corresponding to i == j. This corrects the final result so that vector indices
work as expected, and allows the vector to be properly used in the map function.

• cond_passage(samc, origin, dest)
The result is a numeric value representing the mean number of steps before absorption starting
from a given origin conditional on absorption into j.
As described above, mathematically the formula does not return a result for when the origin
and dest inputs are equal, so the function simply returns a 0 in this case.

WARNING: This function is not compatible when used with data where there are states with total
absorption present. When present, states representing total absorption leads to unsolvable linear
equations. The only exception to this is when there is a single total absorption state that corresponds
to input to the dest parameter. In this case, the total absorption is effectively ignored when the linear
equations are solved.

WARNING: This function will crash when used with data representing a disconnected graph. This
includes, for example, isolated pixels or islands in raster data. This is a result of the transition
matrix for disconnected graphs leading to some equations being unsolvable. Different options are
being explored for how to best identify these situations in data and handle them accordingly.

Value

See Details

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

../doc/performance.html

dispersal 9

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

dispersal Calculate dispersal metrics

Description

Calculates the probability of individuals visiting locations

Usage

dispersal(samc, init, origin, dest, time)

S4 method for signature 'samc,missing,location,location,numeric'
dispersal(samc, origin, dest, time)

S4 method for signature 'samc,missing,missing,location,numeric'
dispersal(samc, dest, time)

10 dispersal

S4 method for signature 'samc,ANY,missing,location,numeric'
dispersal(samc, init, dest, time)

S4 method for signature 'samc,missing,missing,missing,missing'
dispersal(samc)

S4 method for signature 'samc,missing,location,missing,missing'
dispersal(samc, origin)

S4 method for signature 'samc,missing,missing,location,missing'
dispersal(samc, dest)

S4 method for signature 'samc,missing,location,location,missing'
dispersal(samc, origin, dest)

S4 method for signature 'samc,ANY,missing,missing,missing'
dispersal(samc, init)

S4 method for signature 'samc,ANY,missing,location,missing'
dispersal(samc, init, dest)

Arguments

samc A samc-class object created using the samc function.

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

dest A positive integer or character name representing transient state j . Corresponds
to column j of matrix P in the samc-class object. When paired with the
origin parameter, multiple values may be provided as a vector.

time A positive integer or a vector of positive integers representing t time steps. Vec-
tors must be ordered and contain no duplicates. Vectors may not be used for
metrics that return dense matrices. The maximum time step value is capped at
10,000 due to numerical precision issues.

Details

D̃jt = (
∑t−1

n=0 Q̃
n)q̃j

• dispersal(samc, dest, time)
The result is a vector v where vi is the probability of visiting transient state j within t or fewer
time steps if starting at transient state i .
Note: Given the current derivation, when i = j , then vi is unknown and has been set to NA.
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.

dispersal 11

If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

ψT D̃jt

• dispersal(samc, init, dest, time)
The result is a numeric that is the probability of visiting transient state j within t or fewer time
steps given an initial state ψ
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.

D = (F − I)diag(F)−1

• dispersal(samc)
The result is a matrix M where Mi,j is the probability of visiting transient state j if starting at
transient state i .
The returned matrix will always be dense and cannot be optimized. Must enable override to
use (see samc-class).

• dispersal(samc, origin)
The result is a vector v where vj is the probability of visiting transient state j if starting at
transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• dispersal(samc, dest)
The result is a vector v where vi is the probability of visiting transient state j if starting at
transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• dispersal(samc, origin, dest)
The result is a numeric value that is the probability of visiting transient state j if starting at
transient state i .

ψTD

• dispersal(samc, init)
The result is a vector v where vj is the probability of visiting transient state j given an initial
state ψ.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• dispersal(samc, init, dest)
The result is a numeric value that is the probability of visiting transient state j given an initial
state ψ.

Value

See Details

12 dispersal

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

../doc/performance.html

distribution 13

distribution Calculate distribution metrics

Description

Calculate the probability of being at a transient state at a specific time.

Usage

distribution(samc, init, origin, dest, time)

S4 method for signature 'samc,missing,missing,missing,numeric'
distribution(samc, time)

S4 method for signature 'samc,missing,location,missing,numeric'
distribution(samc, origin, time)

S4 method for signature 'samc,missing,missing,location,numeric'
distribution(samc, dest, time)

S4 method for signature 'samc,missing,location,location,numeric'
distribution(samc, origin, dest, time)

S4 method for signature 'samc,ANY,missing,missing,numeric'
distribution(samc, init, time)

S4 method for signature 'samc,ANY,missing,location,numeric'
distribution(samc, init, dest, time)

Arguments

samc A samc-class object created using the samc function.

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

dest A positive integer or character name representing transient state j . Corresponds
to column j of matrix P in the samc-class object. When paired with the
origin parameter, multiple values may be provided as a vector.

time A positive integer or a vector of positive integers representing t time steps. Vec-
tors must be ordered and contain no duplicates. Vectors may not be used for
metrics that return dense matrices. The maximum time step value is capped at
10,000 due to numerical precision issues.

14 distribution

Details

Qt

• distribution(samc, time)
The result is a matrix M where Mi,j is the probability of being at transient state j after t time
steps if starting at transient state i .
The returned matrix will always be dense and cannot be optimized. Must enable override to
use (see samc-class).

• distribution(samc, origin, time)
The result is a vector v where vj is the probability of being at transient state j after t time
steps if starting at transient state i .
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• distribution(samc, dest, time)
The result is a vector v where vi is the probability of being at transient state j after t time
steps if starting at transient state i .
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• distribution(samc, origin, dest, time)
The result is a numeric value that is the probability of being at a transient state j after t time
steps if starting at transient state i .
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.

ψTQt

• distribution(samc, init, time)
The result is a vector v where vj is the probability of being at transient state i after t time
steps given an initial state ψ.
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

Value

See Details

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

../doc/performance.html

example_maze 15

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

example_maze Simple maze example

16 example_split_corridor

Description

A simple maze layout.

Usage

example_maze

Format

A 20x20 matrix.

Source

Generated for Maze Example vignettes

example_split_corridor

Simple split corridor example

Description

A fabricated dataset of a simple split corridor. Contains resistance, absorption, and occupancy data.

Usage

example_split_corridor

Format

A list of three matrices. Matrices have 34 rows and 202 columns.

Source

Fletcher et al (2019) <doi:10.1111/ele.13333>

example_toy_res 17

example_toy_res Toy resistance data

Description

Toy resistance data used in a workshop at IALE 2021

Usage

example_toy_res

Format

A 10x10 matrix.

Source

IALE 2021 workshop

locate Get cell numbers

Description

Get cell numbers from raster data

Usage

locate(samc, xy)

S4 method for signature 'samc,missing'
locate(samc)

S4 method for signature 'samc,ANY'
locate(samc, xy)

Arguments

samc A samc-class object

xy Any valid input to the y argument of the extract function in the raster package.

18 locate

Details

This function is used to get cell numbers from raster data. The numbers used for origin and desti-
nation values in many samc metrics refer to column/row numbers of the P matrix. For a P matrix
derived from raster data, these numbers would normally line up with the cell numbers of the raster,
but this is not always true. This is the case when the raster contains NA data; the cells associ-
ated with this data are excluded from the P matrix. This causes issues trying to determine the cell
numbers that should be used in analyses.

The locate function operates more-or-less like the cellFromXY function in the raster package,
but unlike cellFromXY, locate properly accounts for NA cells in identifying cell numbers from
coordinate data.

This function can also be used if the samc object was created from matrix inputs for the resistance,
absorption, and fidelity parameters. In this case, the values in the xy coordinate parameter can be
column-row values with the caveat that (1,1) is the bottom left corner.

The xy parameter can also be excluded. In this case, the function returns a raster where the values
of the cells contains the cell number.

Internally, this function relies on the extract function from the raster package, and any valid input
for the y argument of that function is valid here.

Value

A SpatRaster, RasterLayer, matrix, or a vector

Examples

library(terra)
library(samc)

Load example data
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs

Create samc-class object
samc_obj <- samc(res_data, abs_data,

model = list(fun = function(x) 1/mean(x), dir = 8, sym = TRUE))

We can use locate() to return an object with the cell numbers encoded as data
in the cells
cell_raster <- locate(samc_obj)
print(cell_raster)

We can use a variety of spatial inputs to get cell numbers using locate()
The simplest is a two-column data.frame
coords <- data.frame(x = c(50, 79, 22),

y = c(25, 11, 19))
print(coords)
locate(samc_obj, coords)

location-class 19

You will get an error if you input a coordinate that does not correspond
to a non-NA cell
coords <- data.frame(x = c(1),

y = c(1))
print(coords)
try(locate(samc_obj, coords))

location-class location class

Description

Union class for location inputs

Details

The location class is a union class of the "numeric" and "character" classes. Users generally do not
need to worry about it except to know that any method parameter with "location" as the type can
have either an integer or a character name provided as input.

map Map vector data

Description

Map vector data to a RasterLayer

Usage

map(samc, vec)

S4 method for signature 'samc,numeric'
map(samc, vec)

S4 method for signature 'samc,list'
map(samc, vec)

Arguments

samc Spatial absorbing Markov chain object. This should be output from the samc()
function.

vec Vector data to fill into the map.

20 map

Details

This is a convenience function to ensure that vector data is properly mapped back to the original
landscape data. The reason this is needed is that the package supports matrices, RasterLayers, and
SpatRasters, which can differ in the order that data is read and written (R matrices are column-major
order, whereas the raster package uses row-major order). Internally, the package uses only a single
order, regardless of the original data. This can cause issues with mapping vector results if care is
not taken, and this function is provided to simplify the process. It also correctly maps results for
landscape data that has NA cells, which are another potential source of error if not careful.

The only requirement of the vec input is that the number of elements in it matches the number of
non-NA cells in the landscape data that was used to create the samc object.

Value

A matrix, RasterLayer, or SpatRaster object. The returned type will match the type used to create
the samc object.

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)

mortality 21

long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

mortality Calculate mortality metrics

Description

Calculates the probability of absorption at individual transient states.

Usage

mortality(samc, init, origin, dest, time)

S4 method for signature 'samc,missing,missing,missing,numeric'
mortality(samc, time)

S4 method for signature 'samc,missing,location,missing,numeric'
mortality(samc, origin, time)

S4 method for signature 'samc,missing,missing,location,numeric'
mortality(samc, dest, time)

S4 method for signature 'samc,missing,location,location,numeric'
mortality(samc, origin, dest, time)

S4 method for signature 'samc,ANY,missing,missing,numeric'
mortality(samc, init, time)

S4 method for signature 'samc,ANY,missing,location,numeric'
mortality(samc, init, dest, time)

S4 method for signature 'samc,missing,missing,missing,missing'
mortality(samc)

S4 method for signature 'samc,missing,location,missing,missing'
mortality(samc, origin)

S4 method for signature 'samc,missing,missing,location,missing'

22 mortality

mortality(samc, dest)

S4 method for signature 'samc,missing,location,location,missing'
mortality(samc, origin, dest)

S4 method for signature 'samc,ANY,missing,missing,missing'
mortality(samc, init)

S4 method for signature 'samc,ANY,missing,location,missing'
mortality(samc, init, dest)

Arguments

samc A samc-class object created using the samc function.

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

dest A positive integer or character name representing transient state j . Corresponds
to column j of matrix P in the samc-class object. When paired with the
origin parameter, multiple values may be provided as a vector.

time A positive integer or a vector of positive integers representing t time steps. Vec-
tors must be ordered and contain no duplicates. Vectors may not be used for
metrics that return dense matrices. The maximum time step value is capped at
10,000 due to numerical precision issues.

Details

B̃t = F̃ R̃

• mortality(samc, time)
The result is a matrix M where Mi,j is the probability of absorption at transient state j within
t or fewer steps if starting at transient state i .
The returned matrix will always be dense and cannot be optimized. Must enable override to
use (see samc-class).

• mortality(samc, origin, time)
The result is a vector v where vj is the probability of absorption at transient state j within t
or fewer steps if starting at transient state i .
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• mortality(samc, dest, time)
The result is a vector v where vi is the probability of absorption at transient state j within t
or fewer steps if starting at transient state i .

mortality 23

If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• mortality(samc, origin, dest, time)
The result is a numeric value that is the probability of absorption at transient state j within t
or fewer time steps if starting at transient state i .
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a numeric value for each time step.

ψT B̃t

• mortality(samc, init, time)
The result is a vector v where vj is the unconditional probability of absorption at transient
state j within t or fewer steps given an initial state ψ.
If multiple time steps were provided as a vector, then the result will be an ordered named list
containing a vector for each time step.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

B = FR̃

• mortality(samc)
The result is a matrix M where Mi,j is the probability of absorption at transient state j if
starting at transient state i .
The returned matrix will always be dense and cannot be optimized. Must enable override to
use (see samc-class).

• mortality(samc, origin)
The result is a vector v where vj is the probability of absorption at transient state j if starting
at transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• mortality(samc, dest)
The result is a vector v where vi is the probability of absorption at transient state j if starting
at transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• mortality(samc, origin, dest)
The result is a numeric value that is the probability of absorption at transient state j if starting
at transient state i .

ψTB

• mortality(samc, init)
The result is a vector v where vj is the unconditional probability of absorption at transient
state j given an initial state ψ.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

24 mortality

Value

See Details

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)

../doc/performance.html

pairwise 25

visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

pairwise Pairwise analyses

Description

Analysis for pairwise combinations locations

Usage

pairwise(fun, samc, origin, dest)

S4 method for signature 'function,samc,location,location'
pairwise(fun, samc, origin, dest)

S4 method for signature 'function,samc,location,missing'
pairwise(fun, samc, origin)

Arguments

fun A samc analytical function with signature fun(samc, origin, dest)

samc A samc-class object

origin A vector of locations

dest A vector of locations. Can be excluded to reuse the origin parameter

Details

When providing vector inputs for the ‘origin‘ and ‘dest‘ parameters to analytical functions, the
package assumes that users are providing pairs of ‘origin‘ and ‘dest‘. That is, ‘origin[1]‘ is paired
with ‘dest[1]‘, ‘origin[2]‘ is paired ‘dest[2]‘, etc. Another way to think about it is that these two
vector inputs can be treated as columns in the same dataframe. The result of the analytical function
then is a vector of the same length as the input. This behavior works for any situation, so it is the
default for the package.

However, some users may wish to run an analytical function for all the pairwise combinations of the
values in the input vectors. That is, ‘origin[1]‘ is paired with ‘dest[1]‘,‘dest[2]‘, ‘dest[3]‘, etc, before
moving on to the next elements in ‘origin‘. This approach has the advantage of potentially reducing
the amount of code needed for an analysis, and the results can be represented as a pairwise matrix,
but it is not suitable for all situations. To enable this second approach more easily, the ‘pairwise()‘
function runs all the combinations of the ‘origin‘ and ‘dest‘ parameters for an analytical function
and returns the results in a ’long’ format data.frame. This data.frame can then be reshaped into a
pairwise matrix or ’wide’ format data.frame using tools like the reshape2 or tidyr packages.

This function is not intended to be used with other inputs such as ‘init‘ or ‘time‘

26 rasterize

Value

A ’long’ format data.frame

Examples

library(samc)

Load example data
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs

Create samc-class object
samc_obj <- samc(res_data, abs_data,

model = list(fun = function(x) 1/mean(x), dir = 8, sym = TRUE))

pairwise() example
pw <- pairwise(cond_passage, samc_obj, origin = 1:4, dest = 5)
print(pw)

pairwise() example without dest
pw <- pairwise(dispersal, samc_obj, origin = c(2, 7))
print(pw)

rasterize Rasterize input

Description

Convert input to a SpatRaster object

Usage

rasterize(x)

S4 method for signature 'matrix'
rasterize(x)

S4 method for signature 'RasterLayer'
rasterize(x)

S4 method for signature 'SpatRaster'
rasterize(x)

Arguments

x A matrix, RasterLayer, or SpatRaster

rasterize 27

Details

This function is primarily used to convert an input matrix or raster to a SpatRaster object. The
main thing it is useful for is setting a standard extent and CRS for converting matrices. It is used
internally by the package to ensure consistent results for the different data types for maps.

When converting matrices, the extents are set to match the number of rows and columns of the
matrix. Pixels in the result are centered on whole number coordinates with (1,1) corresponding to
the bottom left pixel. The CRS is set to "local", which treats it as Euclidean (Cartesian) plane with
the units in meters.

The main benefit will be for users that want an easy way to plot matrix data. If the input type to
the samc function is matrices, then the output of map will also be matrices. Plotting these matrices
can require more work than simply using SpatRaster objects for samc and getting SpatRaster results
back from map.

The raster and terra packages both also have a rasterize function that serves a different purpose. If
either of these packages are used directly, then the order of package loading becomes very important
because it will determine which version of rasterize is used by default.

Value

A SpatRaster object

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

28 samc

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

samc Create an samc object

Description

Create an samc object that contains the absorbing Markov chain data

Usage

samc(data, absorption, fidelity, model, options = NULL)

S4 method for signature 'SpatRaster,SpatRaster,SpatRaster,list'
samc(data, absorption, fidelity, model, options = NULL)

S4 method for signature 'RasterLayer,RasterLayer,RasterLayer,list'
samc(data, absorption, fidelity, model, options = NULL)

S4 method for signature 'SpatRaster,SpatRaster,missing,list'
samc(data, absorption, model, options = NULL)

S4 method for signature 'RasterLayer,RasterLayer,missing,list'
samc(data, absorption, model, options = NULL)

S4 method for signature 'matrix,matrix,matrix,list'
samc(data, absorption, fidelity, model, options = NULL)

S4 method for signature 'matrix,matrix,missing,list'
samc(data, absorption, model, options = NULL)

S4 method for signature 'dgCMatrix,missing,missing,missing'
samc(data, options = NULL)

samc 29

S4 method for signature 'matrix,missing,missing,missing'
samc(data, options = NULL)

Arguments

data A SpatRaster-class or RasterLayer-class or matrix or Matrix package
dgCMatrix sparse matrix.

absorption A SpatRaster-class or RasterLayer-class or matrix

fidelity A SpatRaster-class or RasterLayer-class or matrix

model A list with args for constructing a transition matrix.

options A list of options that changes how the samc behaves computationally.

Details

This function is used to create a samc-class object. There are multiple options for creating this
object.

Option 1: Raster or Matrix Maps
samc(data = matrix, absorption = matrix, fidelity = matrix, model = list())

samc(data = SpatRaster, absorption = SpatRaster, fidelity = SpatRaster, model = list())

samc(data = RasterLayer, absorption = RasterLayer, fidelity = RasterLayer, model = list())

The samc-class object can be created from a combination of resistance (or conductance), absorp-
tion, and fidelity data. These different landscape data inputs must be the same type (a matrix,
SpatRaster, or RasterLayer), and have identical properties, including dimensions, location of NA
cells, and CRS (if using raster inputs).

The data and absorption inputs are always mandatory for this approach. The fidelity input is
optional. If the fidelity input is not provided, then it is assumed that there is no site fidelity (i.e.,
individuals will always move to an adjacent cell each time step).

The model parameter is a mandatory list with the following template: list(fun = `function`,
dir = `numeric`, sym = `logical`). It is used when calculating the values for the transition ma-
trix. fun must be a mathematical function taking a single vector x as input. x[1] contains the value
for node i and x[2] contains the value for node j from the data input to samc(). dir determines
which neighboring nodes are used andmust be either 4 or 8. symmetric is an optimization to reduce
redundant work for when fun is communative. It must be either TRUE or FALSE.

Special cases for fun exist to significantly speed up creation of the samc model. They are selected
using specific strings as the value for fun. Currently, "1/mean(x)" and "x[2]" are implemented.
Other special cases can be implemented on request.

When using raster inputs, SpatRaster objects (from the terra package) are recommended over
RasterLayer objects (from the raster package). Internally, samc is using SpatRaster objects, which
means RasterLayer objects are being converted to SpatRaster objects, which is a source of memory
inefficiency.

Option 2: P Matrix
samc(data = matrix)

samc(data = dgCMatrix)

30 samc

The data parameter can be used alone to create a samc-class object directly from a preconstructed
P matrix. This matrix must be either a base R matrix, or a sparse matrix (dgCMatrix format) from
the Matrix package. It must meet the following requirements:

• The number of rows must equal the number of columns (a square matrix)

• Total absorption must be a single column on the right-hand side of the matrix

• At the bottom of the matrix, there must be a row filled with 0’s except for the last element
(bottom-right of the matrix diagonal), which must be set to 1

• Every disconnected region of the matrix must have at least one non-zero absorbing value

• Each row must sum to 1

• All values must be in the range of 0-1

Additionally, the columns and rows of the P matrix may be named (e.g., using dimnames(), row-
name(), colnames(), etc). When specifying origin or dest inputs to metrics, these names may
be used instead of cell numbers. This has the advantage of making the code for an analysis easier
to read and interpret, which may also help to eliminate unintentional mistakes. There are two re-
quirements for naming the rows/cols of a P matrix. First, since the P matrix represents a pairwise
matrix, the row and column names must be the same. Second, there must be no duplicate names.
The exception to these rules is the very last column and the very last row of the P matrix. Since
these are not part of the pairwise transition matrix, they may have whatever names the user prefers.

Additional Options
Additional options can be passed to samc(..., options) as a list. There are several possible op-
tions: list(method = `character`, threads = `numeric`,override = `logical`, precision
= `character`). The use of options varies depending on other inputs. Some options can be
changed after model creation (see samc-class documentation). It can be omitted for default be-
haviors.

method controls the type of mathematical algorithm used for the model. It can be either "direct"
(the default), "iter", or "conv". See the Computation Methods vignette for details.

threads is a positive integer (default 1) that enables parallelization in certain limited cases. See the
Parallel Computing vignette for details.

override is a logical value (default: FALSE) that enables certain memory intensive calculations. It
only applies to the "direct" and "iter" methods. See the samc-class reference for details.

precision controls the numerical precision of calculations. It can either be "double" (~15 digits
precision; the default) or "double" (~7 digits of precision). Choosing the lower precision level can
lead to significant speed improvements, and reduces the memory requirements by approximately
half. It currently only applies to the "conv" method.

Additional Information
Depending on the data used to construct the samc-class object, some metrics may cause crashes.
This is a result of the underlying P matrix having specific properties that make some equations
unsolvable. One known case is a P matrix that represents a disconnected graph, which can lead
to the cond_passage() function crashing. In terms of raster/matrix inputs, a disconnected graph
occurs when one or more pixels/cells are unreachable from other pixels/cells due to the presence
of a full barrier made up of NA values. In a raster, these may be obvious as islands but can be as
inconspicuous as a rogue isolated pixel. There may be other currently unknown situations that lead
to unsolvable metrics.

samc 31

Future work is planned towards identifying these issues during the creation of the samc-class object
and handling them appropriately to prevent inadvertent crashes.

Version 3 Changes
Support for creating samc-class objects from TransitionLayer objects was removed so that the pack-
age is not dependent on gdistance.

Version 2 Changes
Version 1.5.0 officially removed support for the deprecated resistance, tr_fun, directions,
p_mat, latlon, and override arguments. Old code will have to be updated to the new samc()
function structure in order to work.

Value

A samc-class object

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)

32 samc-class

surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

samc-class samc class

Description

S4 class to manage SAMC data.

Details

The samc class is used to help ensure that the package is used correctly and to minimize the possi-
bility for users to accidentally produce nonsensical results that may not be obviously incorrect. This
class contains the p matrix necessary for all the calculations in the package, and enforces its type so
that users are less likely to inadvertently alter it in a way that will cause issues in calculations.

The samc() function is used to create samc-class objects.

The samc-class slots are subject to change, so users should not be using the @ operator to access or
change them. Doing so leads to the risk of broken code in the future. Instead, where relevant, the $
operator can be used to get and set components of the class safely. This is a current list of what can
be accessed and modified in the class:

• override
Some analyses are memory intensive and have the potential to make a user’s system non-
responsive or crash. By default, a samc-class object cannot be used in these analyses to prevent
unintentional loss of work. In some cases, users may wish to use these particular analyses,
in which case this behavior can be overridden. To get the current state of the override, use
samc_obj$override. To enable the use of the analyses, the override can be set to TRUE
using samc_obj$override <- TRUE. Before enabling the override, users should familiarize
themselves with the Performance vignette.

• q_matrix
Advanced users may wish to have direct access to the Q matrix for developing custom calcu-
lations/analyses. Assumptions should not be made about the internal storage and management
of the P and Q matrices in the samc-class; these things are subject to change in the future. To
safely access the Q matrix, use samc_obj$q_matrix. The Q matrix inside of the samc-class
cannot be modified.

• p_matrix
samc_obj$p_matrix can be used to get a copy of the P matrix.

samc-class 33

• abs_states
Used to attach additional absorbing states to an samc object. This does not cause P/Q matrices
to be updated. Instead, it is intended to provide decomposed results from the mortality()
and absorption() metrics for different sources of absorption that might be contributing to
the total absorption values that were used to create the samc object.

The input must be in the same form as the absorption inputs used in samc(). Matrices are
passed in as a list, and rasters are passed in as a RasterStack. Using NA as the input will
reset it.

• solver
samc_obj$solver can be used to change the default linear algebra solver used in some of the
metrics. The default value of "direct" means a direct solver is used, and is what was used in
previous versions of the package. The alternative value of "iter" switches the package to an
iterative solver, which is significantly more memory efficient for larger datasets, but in general
will be noticeably slower depending on patterns in the data.

• threads
samc_obj$threads can be used to get or set the number of threads used for parallel compu-
tations. Details can be found in the Parallel Computing vignette.

Slots

data Data associated with different components of the P matrix

conv_cache Convolution cache

model List containing model info used to build the samc object

source Information about the data source for the P matrix

nodes The number of nodes in the graph

map Used to verify landscape inputs and mapping of vector data

crw_map Matrix used to map location and direction to edges description

prob_mat Matric for CRW probabilities

names Names of the transient states

clumps Number of discontinuous regions in data

override Used to prevent accidental use of memory intensive functions

solver Controls the linear solver used for relevant metrics

threads Used for multi-threading

precision "single" or "double". Only applies to convolution currently.

.cache Cached data for performance boosts

34 survival

survival Calculate survival metrics

Description

Calculates the expected time to absorption

Usage

survival(samc, init, origin)

S4 method for signature 'samc,missing,missing'
survival(samc)

S4 method for signature 'samc,missing,location'
survival(samc, origin)

S4 method for signature 'samc,ANY,missing'
survival(samc, init)

Arguments

samc A samc-class object created using the samc function.

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

Details

z = (I −Q)−1·1 = F ·1

• survival(samc)
The result is a vector v where vi is the expected time to absorption if starting at transient state
i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

ψT z

• survival(samc, init)
The result is a numeric that is the expected time to absorption given an initial state ψ.

Value

See Details

survival 35

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

../doc/performance.html

36 visitation

visitation Calculate visitation metrics

Description

Calculates the number of times that transient states are visited before absorption.

Usage

visitation(samc, init, origin, dest, time)

S4 method for signature 'samc,missing,missing,missing,numeric'
visitation(samc, time)

S4 method for signature 'samc,missing,location,missing,numeric'
visitation(samc, origin, time)

S4 method for signature 'samc,missing,missing,location,numeric'
visitation(samc, dest, time)

S4 method for signature 'samc,missing,location,location,numeric'
visitation(samc, origin, dest, time)

S4 method for signature 'samc,ANY,missing,missing,numeric'
visitation(samc, init, time)

S4 method for signature 'samc,missing,missing,missing,missing'
visitation(samc)

S4 method for signature 'samc,missing,location,missing,missing'
visitation(samc, origin)

S4 method for signature 'samc,missing,missing,location,missing'
visitation(samc, dest)

S4 method for signature 'samc,missing,location,location,missing'
visitation(samc, origin, dest)

S4 method for signature 'samc,ANY,missing,missing,missing'
visitation(samc, init)

S4 method for signature 'samc,ANY,missing,location,missing'
visitation(samc, init, dest)

Arguments

samc A samc-class object created using the samc function.

visitation 37

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

dest A positive integer or character name representing transient state j . Corresponds
to column j of matrix P in the samc-class object. When paired with the
origin parameter, multiple values may be provided as a vector.

time A positive integer or a vector of positive integers representing t time steps. Vec-
tors must be ordered and contain no duplicates. Vectors may not be used for
metrics that return dense matrices. The maximum time step value is capped at
10,000 due to numerical precision issues.

Details

F̃t = (
∑t−1

n=0Q
n)

• visitation(samc, time)
The result is a matrix M where Mi,j is the number of times that transient state j is visited
after t time steps if starting at transient state i .
The returned matrix will always be dense and cannot be optimized. Must enable override to
use (see samc-class).

• visitation(samc, origin, time)
The result is a vector v where vj is the number of times that transient state j is visited after t
time steps if starting at transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• visitation(samc, dest, time)
The result is a vector v where vi is the number of times that transient state j is visited after t
time steps if starting at transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• visitation(samc, origin, dest, time)
The result is a numeric value that is the number of times transient state j is visited after t time
steps if starting at transient state i .

ψT F̃t

• visitation(samc, init, time)
The result is a vector v where vj is the number of times that transient state j is visited after t
time steps before absorption given an initial state ψ.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• visitation(samc, init, dest, time)
The result is a numeric value that is the number of times transient state j is visited after t time
steps given an initial state ψ.

38 visitation

F = (I −Q)−1

• visitation(samc)
The result is a matrix M where Mi,j is the number of times that transient state j is visited
before absorption if starting at transient state i .
The returned matrix will always be dense and cannot be optimized. Must enable override to
use (see samc-class).

• visitation(samc, origin)
The result is a vector v where vj is the number of times that transient state j is visited before
absorption if starting at transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• visitation(samc, dest)
The result is a vector v where vi is the number of times that transient state j is visited before
absorption if starting at transient state i .
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• visitation(samc, origin, dest)
The result is a numeric value that is the number of times transient state j is visited before
absorption if starting at transient state i .

ψTF

• visitation(samc, init)
The result is a vector v where vj is the number of times that transient state j is visited before
absorption given an initial state ψ.
If the samc-class object was created using matrix or RasterLayer maps, then vector v can be
mapped to a RasterLayer using the map function.

• visitation(samc, init, dest)
The result is a numeric value that is the number of times transient state j is visited before
absorption given an initial state ψ.

Value

See Details

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs

../doc/performance.html

visitation_net 39

init_data <- samc::example_split_corridor$init

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

visitation_net Calculate net visitation

Description

Calculates the net number of times that transient states are visited before absorption.

Usage

visitation_net(samc, init, origin, dest)

40 visitation_net

S4 method for signature 'samc,missing,location,missing'
visitation_net(samc, origin)

S4 method for signature 'samc,missing,location,location'
visitation_net(samc, origin, dest)

S4 method for signature 'samc,ANY,missing,missing'
visitation_net(samc, init)

S4 method for signature 'samc,ANY,missing,location'
visitation_net(samc, init, dest)

Arguments

samc A samc-class object created using the samc function.

init Sets the initial state ψ of the transients states. Input must be able to pass the
check function when compared against the samc-class object. Can only con-
tain positive finite values.

origin A positive integer or character name representing transient state i . Corresponds
to row i of matrix P in the samc-class object. When paired with the dest
parameter, multiple values may be provided as a vector.

dest A positive integer or character name representing transient state j . Corresponds
to column j of matrix P in the samc-class object. When paired with the
origin parameter, multiple values may be provided as a vector.

Details

Add details here

Value

See Details

Performance

Any relevant performance information about this function can be found in the performance vignette:
vignette("performance", package = "samc")

Examples

"Load" the data. In this case we are using data built into the package.
In practice, users will likely load raster data using the raster() function
from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init

../doc/performance.html

visitation_net 41

Make sure our data meets the basic input requirements of the package using
the check() function.
check(res_data, abs_data)
check(res_data, init_data)

Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities

dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?

Create a `samc-class` object with the resistance and absorption data using
the samc() function. We use the recipricol of the arithmetic mean for
calculating the transition matrix. Note, the input data here are matrices,
not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)

Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)

Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)

Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)

Index

∗ datasets
example_maze, 15
example_split_corridor, 16
example_toy_res, 17

absorption, 2, 33
absorption,samc,ANY,missing-method

(absorption), 2
absorption,samc,missing,location-method

(absorption), 2
absorption,samc,missing,missing-method

(absorption), 2

cellFromXY, 18
check, 3, 4, 7, 10, 13, 22, 34, 37, 40
check,matrix,matrix-method (check), 4
check,matrix,missing-method (check), 4
check,Raster,missing-method (check), 4
check,Raster,Raster-method (check), 4
check,samc,matrix-method (check), 4
check,samc,numeric-method (check), 4
check,samc,Raster-method (check), 4
check,samc,SpatRaster-method (check), 4
check,SpatRaster,missing-method

(check), 4
check,SpatRaster,SpatRaster-method

(check), 4
cond_passage, 7
cond_passage,samc,ANY,missing,location-method

(cond_passage), 7
cond_passage,samc,missing,location,location-method

(cond_passage), 7
cond_passage,samc,missing,missing,location-method

(cond_passage), 7

dispersal, 9
dispersal,samc,ANY,missing,location,missing-method

(dispersal), 9
dispersal,samc,ANY,missing,location,numeric-method

(dispersal), 9

dispersal,samc,ANY,missing,missing,missing-method
(dispersal), 9

dispersal,samc,missing,location,location,missing-method
(dispersal), 9

dispersal,samc,missing,location,location,numeric-method
(dispersal), 9

dispersal,samc,missing,location,missing,missing-method
(dispersal), 9

dispersal,samc,missing,missing,location,missing-method
(dispersal), 9

dispersal,samc,missing,missing,location,numeric-method
(dispersal), 9

dispersal,samc,missing,missing,missing,missing-method
(dispersal), 9

distribution, 13
distribution,samc,ANY,missing,location,numeric-method

(distribution), 13
distribution,samc,ANY,missing,missing,numeric-method

(distribution), 13
distribution,samc,missing,location,location,numeric-method

(distribution), 13
distribution,samc,missing,location,missing,numeric-method

(distribution), 13
distribution,samc,missing,missing,location,numeric-method

(distribution), 13
distribution,samc,missing,missing,missing,numeric-method

(distribution), 13

example_maze, 15
example_split_corridor, 16
example_toy_res, 17
extract, 17, 18

locate, 17, 18
locate,samc,ANY-method (locate), 17
locate,samc,missing-method (locate), 17
location-class, 19

map, 8, 11, 14, 19, 22, 23, 27, 34, 37, 38
map,samc,list-method (map), 19

42

INDEX 43

map,samc,numeric-method (map), 19
matrix, 5, 29
mortality, 21, 33
mortality,samc,ANY,missing,location,missing-method

(mortality), 21
mortality,samc,ANY,missing,location,numeric-method

(mortality), 21
mortality,samc,ANY,missing,missing,missing-method

(mortality), 21
mortality,samc,ANY,missing,missing,numeric-method

(mortality), 21
mortality,samc,missing,location,location,missing-method

(mortality), 21
mortality,samc,missing,location,location,numeric-method

(mortality), 21
mortality,samc,missing,location,missing,missing-method

(mortality), 21
mortality,samc,missing,location,missing,numeric-method

(mortality), 21
mortality,samc,missing,missing,location,missing-method

(mortality), 21
mortality,samc,missing,missing,location,numeric-method

(mortality), 21
mortality,samc,missing,missing,missing,missing-method

(mortality), 21
mortality,samc,missing,missing,missing,numeric-method

(mortality), 21

pairwise, 25
pairwise,function,samc,location,location-method

(pairwise), 25
pairwise,function,samc,location,missing-method

(pairwise), 25

rasterize, 26
rasterize,matrix-method (rasterize), 26
rasterize,RasterLayer-method

(rasterize), 26
rasterize,SpatRaster-method

(rasterize), 26

samc, 3, 7, 10, 13, 22, 27, 28, 32–34, 36, 40
samc,dgCMatrix,missing,missing,missing-method

(samc), 28
samc,matrix,matrix,matrix,list-method

(samc), 28
samc,matrix,matrix,missing,list-method

(samc), 28

samc,matrix,missing,missing,missing-method
(samc), 28

samc,RasterLayer,RasterLayer,missing,list-method
(samc), 28

samc,RasterLayer,RasterLayer,RasterLayer,list-method
(samc), 28

samc,SpatRaster,SpatRaster,missing,list-method
(samc), 28

samc,SpatRaster,SpatRaster,SpatRaster,list-method
(samc), 28

samc-class, 32
survival, 34
survival,samc,ANY,missing-method

(survival), 34
survival,samc,missing,location-method

(survival), 34
survival,samc,missing,missing-method

(survival), 34

visitation, 36
visitation,samc,ANY,missing,location,missing-method

(visitation), 36
visitation,samc,ANY,missing,missing,missing-method

(visitation), 36
visitation,samc,ANY,missing,missing,numeric-method

(visitation), 36
visitation,samc,missing,location,location,missing-method

(visitation), 36
visitation,samc,missing,location,location,numeric-method

(visitation), 36
visitation,samc,missing,location,missing,missing-method

(visitation), 36
visitation,samc,missing,location,missing,numeric-method

(visitation), 36
visitation,samc,missing,missing,location,missing-method

(visitation), 36
visitation,samc,missing,missing,location,numeric-method

(visitation), 36
visitation,samc,missing,missing,missing,missing-method

(visitation), 36
visitation,samc,missing,missing,missing,numeric-method

(visitation), 36
visitation_net, 39
visitation_net,samc,ANY,missing,location-method

(visitation_net), 39
visitation_net,samc,ANY,missing,missing-method

(visitation_net), 39
visitation_net,samc,missing,location,location-method

(visitation_net), 39

44 INDEX

visitation_net,samc,missing,location,missing-method
(visitation_net), 39

	absorption
	check
	cond_passage
	dispersal
	distribution
	example_maze
	example_split_corridor
	example_toy_res
	locate
	location-class
	map
	mortality
	pairwise
	rasterize
	samc
	samc-class
	survival
	visitation
	visitation_net
	Index

