
Package ‘scorematchingad’
July 23, 2025

Title Score Matching Estimation by Automatic Differentiation

Version 0.1.1

Description Hyvärinen's score matching (Hyväri-
nen, 2005) <https://jmlr.org/papers/v6/hyvarinen05a.html> is a useful estimation tech-
nique when the normalising constant for a probability distribution is difficult to com-
pute. This package implements score matching estimators using automatic differentia-
tion in the 'CppAD' library <https://github.com/coin-or/CppAD> and is de-
signed for quickly implementing score matching estimators for new models. Also available is gen-
eral robustification (Windham, 1995) <https://www.jstor.org/stable/2346159>. Al-
ready in the package are estimators for directional distributions (Mar-
dia, Kent and Laha, 2016) <doi:10.48550/arXiv.1604.08470> and the flexible Polynomially-
Tilted Pairwise Interaction model for compositional data. The latter estimators per-
form well when there are zeros in the composi-
tions (Scealy and Wood, 2023) <doi:10.1080/01621459.2021.2016422>, even many ze-
ros (Scealy, Hingee, Kent, and Wood, 2024) <doi:10.1007/s11222-024-10412-w>. A partial in-
terface to CppAD's ADFun objects is also available.

License GPL (>= 3)

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.3.2

Suggests testthat, ks, movMF, cubature, simdd, numDeriv

Depends R (>= 3.5.0)

Imports RcppEigen (>= 0.3.3.7), MCMCpack, optimx, FixedPoint, Rdpack,
Rcpp (>= 1.0.9), methods, stats, utils, rlang (>= 1.1.0)

RdMacros Rdpack

LinkingTo Rcpp (>= 1.0.9), RcppEigen (>= 0.3.3.7)

Config/testthat/edition 3

URL https://github.com/kasselhingee/scorematchingad

BugReports https://github.com/kasselhingee/scorematchingad/issues

1

https://jmlr.org/papers/v6/hyvarinen05a.html
https://github.com/coin-or/CppAD
https://www.jstor.org/stable/2346159
https://doi.org/10.48550/arXiv.1604.08470
https://doi.org/10.1080/01621459.2021.2016422
https://doi.org/10.1007/s11222-024-10412-w
https://github.com/kasselhingee/scorematchingad
https://github.com/kasselhingee/scorematchingad/issues

2 Contents

NeedsCompilation yes

Author Kassel Liam Hingee [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9894-2407>),

Janice Scealy [aut] (ORCID: <https://orcid.org/0000-0002-9718-869X>),
Bradley M. Bell [cph]

Maintainer Kassel Liam Hingee <kassel.hingee@anu.edu.au>

Repository CRAN

Date/Publication 2025-01-08 07:40:06 UTC

Contents
scorematchingad-package . 3
Bingham . 5
cppad_closed . 7
cppad_search . 8
dppi . 10
evaltape . 11
FB . 13
microbiome . 14
ppi . 16
ppi_cW . 20
ppi_mmmm . 21
ppi_param_tools . 22
ppi_robust . 24
print,Rcpp_ADFun . 26
quadratictape_parts . 26
Rcpp_ADFun-class . 28
rppi . 31
rsymmetricmatrix . 33
scorematchingtheory . 34
smvalues . 36
tape_gradoffset . 38
tape_Hessian . 39
tape_Jacobian . 40
tape_logJacdet . 40
tape_smd . 41
tape_swap . 44
tape_uld . 45
testquadratic . 47
vMF . 48
vMF_robust . 50
Windham . 50
Windham_populationinverse . 52

Index 54

https://orcid.org/0000-0001-9894-2407
https://orcid.org/0000-0002-9718-869X

scorematchingad-package 3

scorematchingad-package

scorematchingad: Score Matching Estimation by Automatic Differen-
tiation

Description

Hyvärinen’s score matching (Hyvärinen, 2005) https://jmlr.org/papers/v6/hyvarinen05a.
html is a useful estimation technique when the normalising constant for a probability distribution is
difficult to compute. This package implements score matching estimators using automatic differen-
tiation in the ’CppAD’ library https://github.com/coin-or/CppAD and is designed for quickly
implementing score matching estimators for new models. Also available is general robustification
(Windham, 1995) https://www.jstor.org/stable/2346159. Already in the package are esti-
mators for directional distributions (Mardia, Kent and Laha, 2016) doi:10.48550/arXiv.1604.08470
and the flexible Polynomially-Tilted Pairwise Interaction model for compositional data. The lat-
ter estimators perform well when there are zeros in the compositions (Scealy and Wood, 2023)
doi:10.1080/01621459.2021.2016422, even many zeros (Scealy, Hingee, Kent, and Wood, 2024)
doi:10.1007/s1122202410412w. A partial interface to CppAD’s ADFun objects is also available.

Details

This package’s main features are

• A general capacity to implement score matching estimators that use algorithmic differentiation
to avoid tedious manual algebra. The package uses CppAD and Eigen to differentiate model
densities and compute the score matching discrepancy function (see scorematchingtheory).
The score matching discrepancy is usually minimised by solving a quadratic equation, but a
method for solving numerically (through optimx::Rcgmin()) is also included. New models
can be fitted with the help of tape_uld() in a similar fashion to models in the TMB package.
New manifolds or new transforms require small alterations to the source code of this package.

• Score matching estimators for the Polynomially-Tilted Pairwise Interaction (PPI) model (Scealy
and Wood 2023; Scealy et al. 2024). See function ppi().

• Score matching and hybrid score matching estimators for von Mises Fisher, Bingham and
Fisher-Bingham directional distributions (Mardia et al. 2016). See vMF(), Bingham() and
FB().

• Implementation of a modification of Windham’s robustifying method (Windham 1995) for
many exponential family distributions. See Windham(). For some models the density ap-
proaches infinity at some locations, creating difficulties for the weights in Windham’s original
method (Scealy et al. 2024).

• An interface of CppAD’s ADFun tape objects. See Rcpp_ADFun.

For an introduction to score matching estimation, see scorematchingtheory.

https://jmlr.org/papers/v6/hyvarinen05a.html
https://jmlr.org/papers/v6/hyvarinen05a.html
https://github.com/coin-or/CppAD
https://www.jstor.org/stable/2346159
https://doi.org/10.48550/arXiv.1604.08470
https://doi.org/10.1080/01621459.2021.2016422
https://doi.org/10.1007/s11222-024-10412-w

4 scorematchingad-package

Acknowledgements

Colleagues Andrew T. A. Wood and John T. Kent played important roles in developing the statistical
ideas and theory for score matching estimation for the PPI model (Scealy et al. 2024).

We developed this package on Ngunnawal and Ngambri Country. We thank the Country for its
influence.

Author(s)

Maintainer: Kassel Liam Hingee <kassel.hingee@anu.edu.au> (ORCID)

Authors:

• Janice Scealy (ORCID)

Other contributors:

• Bradley M. Bell [copyright holder]

References

Amaral GJA, Dryden IL, Wood ATA (2007). “Pivotal Bootstrap Methods for k-Sample Problems
in Directional Statistics and Shape Analysis.” Journal of the American Statistical Association,
102(478), 695–707. 27639898, http://www.jstor.org/stable/27639898.

Bell B (2023). “CppAD: A Package for Differentiation of C++ Algorithms.” https://github.
com/coin-or/CppAD.

Hyvärinen A (2005). “Estimation of Non-Normalized Statistical Models by Score Matching.” Jour-
nal of Machine Learning Research, 6(24), 695–709. https://jmlr.org/papers/v6/hyvarinen05a.
html.

Hyvärinen A (2007). “Some extensions of score matching.” Computational Statistics & Data
Analysis, 51(5), 2499–2512. doi:10.1016/j.csda.2006.09.003.

Liu S, Kanamori T, Williams DJ (2019). “Estimating Density Models with Truncation Bound-
aries using Score Matching.” doi:10.48550/arXiv.1910.03834.

Mardia K (2018). “A New Estimation Methodology for Standard Directional Distributions.” In
2018 21st International Conference on Information Fusion (FUSION), 724–729. doi:10.23919/
ICIF.2018.8455640.

Mardia KV, Jupp PE (2000). Directional Statistics, Probability and Statistics. Wiley, Great Britain.
ISBN 0-471-95333-4.

Mardia KV, Kent JT, Laha AK (2016). “Score matching estimators for directional distributions.”
doi:10.48550/arXiv.1604.08470.

Martin I, Uh H, Supali T, Mitreva M, Houwing-Duistermaat JJ (2019). “The mixed model for
the analysis of a repeated-measurement multivariate count data.” Statistics in Medicine, 38(12),
2248–2268. doi:10.1002/sim.8101.

https://orcid.org/0000-0001-9894-2407
https://orcid.org/0000-0002-9718-869X
http://www.jstor.org/stable/27639898
https://github.com/coin-or/CppAD
https://github.com/coin-or/CppAD
https://jmlr.org/papers/v6/hyvarinen05a.html
https://jmlr.org/papers/v6/hyvarinen05a.html
https://doi.org/10.1016/j.csda.2006.09.003
https://doi.org/10.48550/arXiv.1910.03834
https://doi.org/10.23919/ICIF.2018.8455640
https://doi.org/10.23919/ICIF.2018.8455640
https://doi.org/10.48550/arXiv.1604.08470
https://doi.org/10.1002/sim.8101

Bingham 5

Scealy JL, Hingee KL, Kent JT, Wood ATA (2024). “Robust score matching for compositional
data.” Statistics and Computing, 34, 93. doi:10.1007/s1122202410412w.

Scealy JL, Wood ATA (2023). “Score matching for compositional distributions.” Journal of the
American Statistical Association, 118(543), 1811–1823. doi:10.1080/01621459.2021.2016422.

Windham MP (1995). “Robustifying Model Fitting.” Journal of the Royal Statistical Society. Series
B (Methodological), 57(3), 599–609. 2346159, http://www.jstor.org/stable/2346159.

Wiria AE, Prasetyani MA, Hamid F, Wammes LJ, Lell B, Ariawan I, Uh HW, Wibowo H, Djuardi
Y, Wahyuni S, Sutanto I, May L, Luty AJ, Verweij JJ, Sartono E, Yazdanbakhsh M, Supali T (2010).
“Does treatment of intestinal helminth infections influence malaria?” BMC Infectious Diseases, 10,
77. doi:10.1186/147123341077.

Yu S, Drton M, Shojaie A (2019). “Generalized Score Matching for Non-Negative Data.” Journal
of Machine Learning Research, 20(76), 1–70. https://jmlr.org/papers/v20/18-278.html.

Yu S, Drton M, Shojaie A (2020). “Generalized Score Matching for General Domains.” doi:10.48550/
arXiv.2009.11428.

See Also

Useful links:

• https://github.com/kasselhingee/scorematchingad

• Report bugs at https://github.com/kasselhingee/scorematchingad/issues

Bingham Score Matching Estimators for the Bingham Distribution

Description

Score matching estimators for the Bingham distribution’s parameter matrix. Two methods are avail-
able: a full score matching method that estimates the parameter matrix directly and a hybrid method
by Mardia et al. (2016) that uses score matching to estimate just the eigenvalues of the parameter
matrix.

Usage

Bingham(Y, A = NULL, w = rep(1, nrow(Y)), method = "Mardia")

Arguments

Y A matrix of multivariate observations in Cartesian coordinates. Each row is a
multivariate measurement (i.e. each row corresponds to an individual).

https://doi.org/10.1007/s11222-024-10412-w
https://doi.org/10.1080/01621459.2021.2016422
http://www.jstor.org/stable/2346159
https://doi.org/10.1186/1471-2334-10-77
https://jmlr.org/papers/v20/18-278.html
https://doi.org/10.48550/arXiv.2009.11428
https://doi.org/10.48550/arXiv.2009.11428
https://github.com/kasselhingee/scorematchingad
https://github.com/kasselhingee/scorematchingad/issues

6 Bingham

A For full score matching only: if supplied, then NA elements of A are estimated
and the other elements are fixed. For identifiability the final element of diag(A)
must be NA.

w An optional vector of weights for each measurement in Y

method Either "Mardia" or "hybrid" for the hybrid score matching estimator from Mar-
dia et al. (2016) or "smfull" for the full score matching estimator.

Details

The Bingham distribution has a density proportional to

exp(zTAz),

where A is a symmetric matrix and the trace (sum of the diagonals) of A is zero for identifiability
(p181, Mardia and Jupp 2000).

The full score matching method estimates all elements of A directly except the final element of the
diagonal, which is calculated from the sum of the other diagonal elements to ensure that the trace
of A is zero.

The method by Mardia et al. (2016) first calculates the maximum-likelihood estimate of the eigen-
vectors G of A. The observations Y are then standardised to YG. This standardisation corresponds
to diagonalising A where the eigenvalues of A become the diagonal elements of the new A. The
diagonal elements of the new A are then estimated using score matching, with the final diagonal
element calculated from the sum of the other elements. See Mardia et al. (2016) for details.

Value

A list of est, SE and info.

• est contains the estimated matrix A and a vector form, paramvec, of A (ordered according to
c(diag(A)[1:(p-1)], A[upper.tri(A)])). For the Mardia method, the estimated eigen-
values of A (named evals) and eigenvectors of A (named G) are also returned.

• SE contains estimates of the standard errors if computed. See cppad_closed().

• info contains a variety of information about the model fitting procedure and results.

References

Mardia KV, Jupp PE (2000). Directional Statistics, Probability and Statistics. Wiley, Great Britain.
ISBN 0-471-95333-4.

Mardia KV, Kent JT, Laha AK (2016). “Score matching estimators for directional distributions.”
doi:10.48550/arXiv.1604.08470.

See Also

Other directional model estimators: FB(), vMF(), vMF_robust()

https://doi.org/10.48550/arXiv.1604.08470

cppad_closed 7

Examples

p <- 4
A <- rsymmetricmatrix(p)
A[p,p] <- -sum(diag(A)[1:(p-1)]) #to satisfy the trace = 0 constraint
if (requireNamespace("simdd")){

Y <- simdd::rBingham(100, A)
Bingham(Y, method = "Mardia")

}

cppad_closed Score Matching Estimator for Quadratic-Form Score Matching Dis-
crepancies

Description

For a tape of a quadratic-form score matching discrepancy function, calculates the vector of pa-
rameters such that the gradient of the score matching discrepancy is zero. Also estimates standard
errors and covariance. Many score matching discrepancy functions have a quadratic form (see
scorematchingtheory).

Usage

cppad_closed(
smdtape,
Y,
Yapproxcentres = NA * Y,
w = rep(1, nrow(Y)),
approxorder = 10

)

Arguments

smdtape A tape (Rcpp_ADFun object) of a score matching discrepancy function that has
quadratic form. Test for quadratic form using testquadratic(). The smdtape’s
independent variables are assumed to be the model parameters to fit and the
smdtape’s dynamic parameter is a (multivariate) measurement.

Y A matrix of multivariate observations. Each row is an observation. The number
of columns of Y must be smdtape$size_dyn_ind.

Yapproxcentres A matrix of Taylor approximation centres for rows of Y that require approxima-
tion. NA for rows that do not require approximation.

w Weights for each observation.

approxorder The order of Taylor approximation to use.

8 cppad_search

Details

When the score matching discrepancy function is of quadratic form, then the gradient of the score
matching discrepancy is zero atH−1b, where H is the average of the Hessian of the score matching
discrepancy function evaluated at each measurement and b is the average of the gradient offset (see
quadratictape_parts()) evaluated at each measurement. Both the Hessian and the gradient offset
are constant with respect to the model parameters for quadratic-form score matching discrepancy
functions.

Standard errors are estimated using the Godambe information matrix (aka sandwich method) and
are only computed when the weights are constant. The estimate of the negative of the sensitivity
matrix −G is the average of the Hessian of smdtape evaluated at each observation in Y. The estimate
of the variability matrix J is the sample covariance (denominator of n − 1) of the gradient of
smdtape evaluated at each of the observations in Y for the estimated θ. The estimated variance of
the estimator is then as G−1JG−1/n, where n is the number of observations.

Taylor approximation is available because boundary weight functions and transformations of the
measure in Hyvärinen divergence can remove singularities in the model log-likelihood, however
evaluation at these singularities may still involve computing intermediate values that are unbounded.
If the singularity is ultimately removed, then Taylor approximation from a nearby location will give
a very accurate evaluation at the removed singularity.

See Also

Other generic score matching tools: Windham(), cppad_search(), tape_smd()

Examples

smdtape <- tape_smd("sim", "sqrt", "sph", "ppi",
ytape = rep(1/3, 3),
usertheta = ppi_paramvec(p = 3),
bdryw = "minsq", acut = 0.01,
verbose = FALSE
)$smdtape

Y <- rppi_egmodel(100)
cppad_closed(smdtape, Y$sample)

cppad_search Iterative Score Matching Estimator Using Conjugate-Gradient De-
scent

Description

Uses conjugate gradient descent to search for a vector of parameters such that gradient of the score
matching discrepancy is within tolerance of zero. Also estimates standard errors and covariance.

cppad_search 9

Usage

cppad_search(
smdtape,
theta,
Y,
Yapproxcentres = NA * Y,
w = rep(1, nrow(Y)),
approxorder = 10,
control = list(tol = 1e-15, checkgrad = TRUE)

)

Arguments

smdtape A tape (Rcpp_ADFun object) of a score matching discrepancy function. The
smdtape’s independent variables are assumed to be the model parameters to fit
and the smdtape’s dynamic parameter is a (multivariate) measurement.

theta The starting parameter set
Y A matrix of multivariate observations. Each row is an observation. The number

of columns of Y must be smdtape$size_dyn_ind.
Yapproxcentres A matrix of Taylor approximation centres for rows of Y that require approxima-

tion. NA for rows that do not require approximation.
w Weights for each observation.
approxorder The order of Taylor approximation to use.
control Control parameters passed to optimx::Rcgmin()

Details

The score matching discrepancy function and gradient of the score matching function are passed to
optimx::Rcgmin(). The call to optimx::Rcgmin() uses the sum of observations (as opposed to
the mean) to reduce floating point inaccuracies. This has implications for the meaning of the control
parameters passed to Rcgmin() (e.g. tol). The results are converted into averages so the use of
sums can be ignored when not setting control parameters, or studying the behaviour of Rcgmin.

Standard errors use the Godambe information matrix (aka sandwich method) and are only computed
when the weights are constant. The estimate of the sensitivity matrixG is the negative of the average
over the Hessian of smdtape evaluated at each observation in Y. The estimate of the variability
matrix J is then the sample covariance (denominator of n−1) of the gradient of smdtape evaluated
at each of the observations in Y for the estimated θ. The variance of the estimator is then estimated
as G−1JG−1/n, where n is the number of observations.

Taylor approximation is available because boundary weight functions and transformations of the
measure in Hyvärinen divergence can remove singularities in the model log-likelihood, however
evaluation at these singularities may still involve computing intermediate values that are unbounded.
If the singularity is ultimately removed, then Taylor approximation from a nearby location will give
a very accurate evaluation at the removed singularity.

See Also

Other generic score matching tools: Windham(), cppad_closed(), tape_smd()

10 dppi

Examples

smdtape <- tape_smd("sim", "sqrt", "sph", "ppi",
ytape = rep(1/3, 3),
usertheta = ppi_paramvec(p = 3),
bdryw = "minsq", acut = 0.01,
verbose = FALSE
)$smdtape

Y <- rppi_egmodel(100)
cppad_search(smdtape, 0.9 * Y$theta, Y$sample)
sum((smvalues_wsum(smdtape, Y$sample, Y$theta)$grad/nrow(Y$sample))^2)

dppi Improper Log-Density of the PPI Model

Description

Compute the natural logarithm of the improper density for the PPI model for the given matrix of
measurements Y. Rows with negative values or with a sum that differs from 1 by more than 1E-15
are assigned a value of -Inf.

Usage

dppi(Y, ..., paramvec = NULL)

Arguments

Y A matrix of measurements in the simplex. Each row is a multivariate measure-
ment.

... Arguments passed on to ppi_paramvec

AL Either NULL, a p-1 x p-1 symmetric matrix, a number, or "diag". If NULL
then all AL elements will be set to NA. If a single number, then AL will
be fixed as a matrix of the given value. If "diag" then the non-diagonal
elements of AL will be fixed to 0, and the diagonal will be NA.

bL Either NULL, a number, or a vector of length p-1. If NULL, then all elements of
bL will be set to NA. If a single number, then bL will be fixed at the supplied
value.

beta Either NULL, a number, or a vector of length p. If NULL then all elements
of β will be set to NA. If a single number then the β elements will be fixed
at the given number.

betaL Either NULL, a number, or a vector of length p-1. If NULL then the 1...(p-
1)th β elements will be set to NA. If a single number then the 1...(p-1)th β
elements will be fixed at the given number.

betap Either NULL or a number. If NULL then the pth element of β will be set to
NA, and ppi() will estimate it. If a number, then the pth element of β will
be fixed at the given value.

p The number of components. If NULL then p will be inferred from other inputs.

evaltape 11

Astar The A∗ matrix (a p by p symmetric matrix)

paramvec The PPI parameter vector, created easily using ppi_paramvec() and also re-
turned by ppi(). Use paramvec instead of

Details

The value calculated by dppi is

zTLALzL + bTLzL + βT log(z),

where z is the multivariate observation (i.e. a row of Y), and zL omits the final element of z.

See Also

Other PPI model tools: ppi(), ppi_param_tools, ppi_robust(), rppi()

Examples

m <- rppi_egmodel(10)
dppi(m$sample, paramvec = m$theta)

evaltape Evaluate a CppAD Tape Many Times

Description

Evaluates a tape exactly or approximately for an array of provided variable values and dynamic
parameter values. The function evaltape_wsum() computes the weighted sum of each column of
the evaltape() result.

Usage

evaltape(tape, xmat, pmat, xcentres = NA * xmat, approxorder = 10)

evaltape_wsum(
tape,
xmat,
pmat,
w = NULL,
xcentres = NA * xmat,
approxorder = 10

)

12 evaltape

Arguments

tape An Rcpp_ADFun object (i.e. a tape of a function).

xmat A matrix of (multivariate) independent variables where each represents a single
independent variable vector. Or a single independent variable vector that is used
for all rows of pmat.

pmat A matrix of dynamic parameters where each row specifies a new set of values
for the dynamic parameters of tape. Or a single vector of dynamic parameters
to use for all rows of xmat.

xcentres A matrix of approximation for Taylor approximation centres for xmat. Use val-
ues of NA for rows that do not require Taylor approximation.

approxorder Order of Taylor approximation

w Weights to apply to each row of xmat for computing the weighted sum. If NULL
then each row is given a weight of 1.

Details

Approximation is via Taylor approximation of the independent variable around the approximation
centre provided in xcentres.

Value

A matrix, each row corresponding to the evaluation of the same row in xmat, pmat and xcentres.

See Also

Other tape evaluators: quadratictape_parts(), smvalues(), testquadratic()

Examples

u <- rep(1/3, 3)
tapes <- tape_smd("sim", "sqrt", "sph", "ppi",

ytape = u,
usertheta = ppi_paramvec(p = 3),
bdryw = "minsq", acut = 0.01,
verbose = FALSE
)

evaltape(tapes$lltape, u, rppi_egmodel(1)$theta)
evaltape(tapes$smdtape, rppi_egmodel(1)$theta, u)
evaltape(tapes$lltape, rbind(c(0, 0, 1), c(0,0,1)),

rppi_egmodel(1)$theta,
xcentres = rbind(c(0.0005, 0.0005, 0.999), NA))

FB 13

FB Estimate the Fisher-Bingham Distribution

Description

Estimates parameters for the Fisher-Bingham distribution using score-matching.

Usage

FB(Y, km = NULL, A = NULL)

Arguments

Y A matrix of multivariate observations in Cartesian coordinates. Each row is a
multivariate measurement (i.e. each row corresponds to an individual).

km Optional. A vector of the same length as the dimension, representing the pa-
rameter vector for the von Mises-Fisher component (i.e. the κµ see vMF()). If
supplied, the non-NA elements are fixed.

A Optional. The Bingham matrix. If supplied the non-NA elements of the Bing-
ham matrix are fixed. The final element of the diagonal of A must be NA as the
software calculates this value to ensure the trace of the Bingham matrix is zero.

Details

The density of the Fisher-Bingham distribution is proportional to

exp(zTAz + κµT z),

where A is a matrix as in the Bingham distribution, and κ and µ are the concentration and mean
direction, respectively, as in the von Mises-Fisher distribution.

Warning: Slow Convergence with Sample Size

Score matching estimates of all elements of A and κµ converge slowly with sample size. Even
with a million simulated measurements, the gradient of the score matching discrepancy at the true
parameters can have size (L2 Euclidean norm) more than 0.001, which is substantially non-zero.

See Also

Other directional model estimators: Bingham(), vMF(), vMF_robust()

Examples

p <- 3
A <- rsymmetricmatrix(p, -10, 10)
A[p,p] <- -sum(diag(A)[1:(p-1)]) #to satisfy the trace = 0 constraint
m <- runif(p, -10, 10)
m <- m / sqrt(sum(m^2))

14 microbiome

if (requireNamespace("simdd")){
Y <- simdd::rFisherBingham(1000, 2 * m, A)
FB(Y)

}

microbiome 16s Microbiome Data for Soil-Transmitted Helminths

Description

The microbiome data contains paired DNA samples from before treatment and 21 months after
treatment for helminth infections (Martin et al. 2019). This data was analysed by Martin et al.
(2019) and a further subset was studied by Scealy and Wood (2023). The data are from a study into
the effect of helminth infections on the course of malaria infections (ImmunoSPIN-Malaria) in the
Nangapanda subdistrict, Indonesia (Wiria et al. 2010). As part of the study, some participants were
given 400mg of albendazole every three months for 1.5 years, remaining participants were given a
placebo (Wiria et al. 2010).

Usage

microbiome

Format

A dataframe with 300 rows (two rows per individual) and 31 columns:

IndividualID An integer uniquely specifying the individual.

Year The collection year for the sample. 2008 for before treatment. 2010 for after treatment.

Sex 1 if female, 0 otherwise.

Treatment TRUE if individual given 400mg of albendazole every three months for 1.5 years, FALSE
otherwise.

Age Age at first sample.

ct_Al A Helminth measurement: The qPCR cycle threshold (CT) for Ascaris lumbricoides (large
roundworm). Ascaris lumbricoides can be considered present if the value is 30 or less.

ct_Na A Helminth measurement: The qPCR cycle threshold (CT) for Necator americanus (a hook-
worm). Necator americanus can be considered present if the value is 30 or less.

ct_Ad A Helminth measurement: The qPCR cycle threshold (CT) for Ancylostoma duodenale (a
hookworm). Ancylostoma duodenale can be considered present if the value is 30 or less.

micr_Tt A Helminth measurement: The presence of Trichuris trichiura as determined by mi-
croscopy. A value of TRUE means Trichuris trichiura was detected.

Helminth A Helminth measurement: If any of the above helminths were detected then TRUE, oth-
erwise FALSE.

Remaining columns Count prevalence of 18 bacterial phyla and 2 unclassified columns.

microbiome 15

Details

The measurements in the data come from stool samples before and after treatment. Gut microbiome
prevalence was measured using 16s rRNA 454 sequencing (Martin et al. 2019). Helminth infections
were detected by PCR or microscopy (Martin et al. 2019).

The subset studied by Scealy and Wood (2023) contained only the measurements from before treat-
ment, and only those individuals with a helminth infection. These measurements can be obtained
by running

microbiome[(microbiome$Year == 2008) & microbiome$Helminth,]

Two further individuals (IndividualID of 2079 and 2280) were deemed outliers by Scealy and
Wood (2023).

Modifications from the Source

The microbiome data was created from the file S1_Table.xlsx hosted on Nematode.net at
http://nematode.net/Data/environmental_interaction/S1_Table.xlsx using the below code.

microbiome <- readxl::read_excel("S1_Table.xlsx",
range = "A3:AE303") #avoids the genus data, keeping - only phyla

metacolnames <- readxl::read_excel("S1_Table.xlsx",
range = "A2:J2",
col_names = FALSE)

colnames(microbiome)[1:ncol(metacolnames)] <- metacolnames[1,]
colnames(microbiome)[2] <- "Year"
microbiome[, 11] <- (microbiome$ct_Al <= 30) | (microbiome$ct_Na <= 30) |
(microbiome$ct_Ad <= 30) | (microbiome$ct_St <= 30) |
(microbiome$micr_Tt == 1)

colnames(microbiome)[11] <- "Helminth"
microbiome <- microbiome |>
dplyr::mutate(across(c(1,2,3,12:31), as.integer)) |>
dplyr::mutate(micr_Tt = as.logical(micr_Tt),

Treatment = as.logical(Treatment)) |>
dplyr::rename(IndividualID = `Individual ID`)

microbiome <- as.data.frame(microbiome)

Source
http://nematode.net/Data/environmental_interaction/S1_Table.xlsx from http://nematode.net.
S1_Table.xlsx was created by Dr. Bruce A Rosa for Martin et al. (2019). Permission to share this
data was obtained from Dr. Bruce Rosa and Dr. Ivonne Martin.

References

Martin I, Uh H, Supali T, Mitreva M, Houwing-Duistermaat JJ (2019). “The mixed model for the
analysis of a repeated-measurement multivariate count data.” Statistics in Medicine, 38(12), 2248–
2268. doi:10.1002/sim.8101.

https://doi.org/10.1002/sim.8101

16 ppi

Scealy JL, Wood ATA (2023). “Score matching for compositional distributions.” Journal of the
American Statistical Association, 118(543), 1811–1823. doi:10.1080/01621459.2021.2016422.

Wiria AE, Prasetyani MA, Hamid F, Wammes LJ, Lell B, Ariawan I, Uh HW, Wibowo H, Djuardi
Y, Wahyuni S, Sutanto I, May L, Luty AJ, Verweij JJ, Sartono E, Yazdanbakhsh M, Supali T (2010).
“Does treatment of intestinal helminth infections influence malaria?” BMC Infectious Diseases, 10,
77. doi:10.1186/147123341077.

ppi Estimation of Polynomially-Tilted Pairwise Interaction (PPI) Model

Description

Estimates the parameters of the Polynomially-Tilted Pairwise Interaction (PPI) model (Scealy and
Wood 2023) for compositional data. By default ppi() uses cppad_closed() to find estimate. For
many situations a hard-coded implementation of the score matching estimator is also available.

For a given parameter vector evalparam, ppi_smvalues() computes the score matching discrep-
ancy, the gradient and the Hessian of the score matching discrepancy (see smvalues()) and the gra-
dient offset of the score matching discrepancy (see quadratictape_parts() and tape_gradoffset()).

Usage

ppi(
Y,
paramvec = NULL,
trans,
method = "closed",
w = rep(1, nrow(Y)),
constrainbeta = FALSE,
bdryw = "ones",
acut = NULL,
bdrythreshold = 1e-10,
shiftsize = bdrythreshold,
approxorder = 10,
control = list(tol = 1e-15, checkgrad = TRUE),
paramvec_start = NULL

)

ppi_smvalues(
Y,
paramvec = NULL,
evalparam,
trans,
method = "closed",
w = rep(1, nrow(Y)),
bdryw = "ones",
acut = NULL,

https://doi.org/10.1080/01621459.2021.2016422
https://doi.org/10.1186/1471-2334-10-77

ppi 17

bdrythreshold = 1e-10,
shiftsize = bdrythreshold,
approxorder = 10,
average = TRUE

)

Arguments

Y A matrix of measurements. Each row is a compositional measurement (i.e. each
row sums to 1 and has non-negative elements).

paramvec Optionally a vector of the PPI models parameters. NA-valued elements of this
vector are estimated and non-NA values are fixed. Generate paramvec easily
using ppi_paramvec(). If NULL then all elements ofAL, bL and β are estimated.

trans The name of the transformation of the manifold in Hyvärinen divergence (See
scorematchingtheory): "clr" (centred log ratio), "alr" (additive log ratio),
"sqrt" or "none".

method "closed" uses CppAD to solve in closed form the a quadratic score matching dis-
crepancy using cppad_closed(). "hardcoded" uses hardcoded implementa-
tions. "iterative" uses cppad_search() (which uses CppAD and optimx::Rcgmin())
to iteratively find the minimum of the weighted Hyvärinen divergence.

w Weights for each observation, if different observations have different impor-
tance. Used by Windham() and ppi_robust() for robust estimation.

constrainbeta If TRUE, elements of β that are less than -1 are converted to -1 + 1E-7.

bdryw The boundary weight function for down weighting measurements as they ap-
proach the manifold boundary. Either "ones", "minsq" or "prodsq". See details.

acut The threshold ac in bdryw to avoid over-weighting measurements interior to the
simplex

bdrythreshold iterative or closed methods only. For measurements within bdrythreshold
of the simplex boundary a Taylor approximation is applied by shifting the mea-
surement shiftsize towards the center of the simplex.

shiftsize iterative or closed methods only. For measurements within bdrythreshold
of the simplex boundary a Taylor approximation is applied by shifting the mea-
surement shiftsize towards the center of the simplex.

approxorder iterative or closed methods only. Order of the Taylor approximation for
measurements on the boundary of the simplex.

control iterative only. Passed to optimx::Rcgmin() to control the iterative solver.

paramvec_start iterative method only. The starting guess for Rcgmin. Generate paramvec_start
easily using ppi_paramvec().

evalparam The parameter set to evaluate the score matching values. This is different to
paramvec, which specifies which parameters to estimate. All elements of evalparam
must be non-NA, and any parameters fixed by paramvec must have the same
value in evalparam.

average If TRUE return the (weighted average) of the measurements, otherwise return
the values for each measurement.

18 ppi

Details

Estimation may be performed via transformation of the measure in Hyvärinen divergence from
Euclidean space to the simplex (inverse of the additive log ratio transform), from a hyperplane to
the simplex (inverse of the centred log ratio transform), from the positive quadrant of the sphere to
the simplex (inverse of the square root transform), or without any transformation. In the latter two
situations there is a boundary and weighted Hyvärinen divergence (Equation 7, Scealy and Wood
2023) is used. Properties of the estimator using the square root transform were studied by Scealy
and Wood (2023). Properties of the estimator using the additive log ratio transform were studied by
Scealy et al. (2024).

There are three boundary weight functions available:

• The function "ones" applies no weights and should be used whenever the manifold does not
have a boundary.

• The function "minsq" is the minima-based boundary weight function for the PPI model (Equa-
tion 12, Scealy and Wood 2023)

h̃(z)2 = min(z21 , z
2
2 , ..., z

2
p, a

2
c).

where z is a point in the positive orthant of the p-dimensional unit sphere and zj is the jth
component of z.

• The function "prodsq" is the product-based (Equation 9, Scealy and Wood 2023)

h̃(z)2 = min(

p∏
j=1

z2j , a
2
c).

where z is a point in the positive orthant of the p-dimensional unit sphere and zj is the jth
component of z.

Scealy and Wood (Theorem 1, Scealy and Wood 2023) prove that minimising the weighted Hyväri-
nen Divergence is equivalent to minimising ψ(f, f0) (See scorematchingtheory) when the bound-
ary weight function is smooth or for the functions "minsq" and "prodsq" above when the manifold
is the simplex or positive orthant of a sphere.

Hard-coded estimators are available for the following situations:

• Square root transformation ("sqrt") with the "minsq" boundary weight function:

– full parameter vector (paramvec not provided)
– paramvec fixes only the final element of β
– paramvec fixes all elements of β
– paramvec fixes bL = 0 and provides fixed values of β
– paramvec fixes AL = 0 and bL = 0, leaving β to be fitted.

• Square root transformation ("sqrt") with the "prodsq" boundary weight function:

– paramvec fixes all elements of β
– paramvec fixes bL = 0 and provides fixed values of β
– paramvec fixes AL = 0 and bL = 0, leaving β to be fitted.

• The additive log ratio transformation ("alr") using the final component on the denominator,
with bL = 0 and fixed final component of β.

ppi 19

Value

ppi() returns: A list of est, SE and info.

• est contains the estimates in vector form, paramvec, and as AL, bL and β.

• SE contains estimates of the standard errors if computed. See cppad_closed().

• info contains a variety of information about the model fitting procedure and results.

ppi_smvalues() returns a list of

• obj the score matching discrepancy value

• grad the gradient of the score matching discrepancy

• hess the Hessian of the score matching discrepancy

• offset gradient offset (see quadratictape_parts())

PPI Model

The PPI model density is proportional to

exp(zTLALzL + bTLzL)

p∏
i=1

zβi

i ,

where p is the dimension of a compositional measurement z, and zL is z without the final (pth)
component. AL is a p−1×p−1 symmetric matrix that controls the covariance between components.
bL is a p−1 vector that controls the location within the simplex. The ith component βi of β controls
the concentration of density when zi is close to zero: when βi ≥ 0 there is no concentration and βi is
hard to identify; when βi < 0 then the probability density of the PPI model increases unboundedly
as zi approaches zero, with the increasing occurring more rapidly and sharply the closer βi is to −1.

References

Scealy JL, Hingee KL, Kent JT, Wood ATA (2024). “Robust score matching for compositional
data.” Statistics and Computing, 34, 93. doi:10.1007/s1122202410412w.

Scealy JL, Wood ATA (2023). “Score matching for compositional distributions.” Journal of the
American Statistical Association, 118(543), 1811–1823. doi:10.1080/01621459.2021.2016422.

See Also

Other PPI model tools: dppi(), ppi_param_tools, ppi_robust(), rppi()

Examples

model <- rppi_egmodel(100)
estalr <- ppi(model$sample,

paramvec = ppi_paramvec(betap = -0.5, p = ncol(model$sample)),
trans = "alr")

estsqrt <- ppi(model$sample,
trans = "sqrt",
bdryw = "minsq", acut = 0.1)

https://doi.org/10.1007/s11222-024-10412-w
https://doi.org/10.1080/01621459.2021.2016422

20 ppi_cW

ppi_cW Quickly Generate a Vector of Windham Exponents for the PPI Model

Description

These functions help to quickly generate a set of Windham exponents for use in ppi_robust() or
Windham(). Rows and columns of AL and bL corresponding to components with strong concentra-
tions of probability mass near zero have non-zero constant tuning exponent, and all other elements
have a tuning constant of zero. All elements of β have a tuning exponent of zero.

The function ppi_cW_auto() automatically detects concentrations near zero by fitting a PPI distri-
bution with AL = 0 and bL = 0 (i.e. a Dirichlet distribution) with the centred log-ratio transforma-
tion of the manifold.

Usage

ppi_cW(cW, ...)

ppi_cW_auto(cW, Y)

Arguments

cW The value of the non-zero Windham tuning exponents.

... Values of TRUE or FALSE in the same order of the components specifying that a
component has probability mass concentrated near zero.

Y A matrix of observations

Details

The Windham robustifying method involves weighting observations by a function of the proposed
model density (Windham 1995). Scealy et al. (2024) found that only some of the tuning con-
stants should be non-zero: the tuning exponents corresponding to β should be zero to avoid infinite
weights;and to improve efficiency any rows or columns ofAL corresponding to components without
concentrations of probability mass (i.e. outliers can’t exist) should have exponents of zero. Scealy
et al. (2024) set the remaining tuning exponents to a constant.

Value

A vector of the same length as the parameter vector of the PPI model. Elements of AL will have a
value of cW if both their row and column component has probability mass concentrated near zero.
Similarly, elements of bL will have a value of cW if their row corresponds to a component that has a
probability mass concentrated near zero. All other elements are zero.

ppi_mmmm 21

References

Scealy JL, Hingee KL, Kent JT, Wood ATA (2024). “Robust score matching for compositional
data.” Statistics and Computing, 34, 93. doi:10.1007/s1122202410412w.

Windham MP (1995). “Robustifying Model Fitting.” Journal of the Royal Statistical Society. Series
B (Methodological), 57(3), 599–609. 2346159, http://www.jstor.org/stable/2346159.

Examples

Y <- rppi_egmodel(100)$sample
ppi_cW_auto(0.01, Y)
ppi_cW(0.01, TRUE, TRUE, FALSE)

ppi_mmmm A PPI Score-Matching Marginal Moment Matching Estimator (dimen-
sion=3 only)

Description

Computes a marginal moment matching estimator (Section 6.2, Scealy and Wood 2023), which
assumes β is a known vector with the same value in each element, and bL = 0. Only AL is
estimated.

Usage

ppi_mmmm(Y, ni, beta0, w = rep(1, nrow(Y)))

Arguments

Y Count data, each row is a multivariate observation.

ni The total for each sample (sum across rows)

beta0 β = β0 is the same for each component.

w Weights for each observation. Useful for weighted estimation in Windham().

Details

β = β0 is fixed and not estimated. bL is fixed at zero. See (Section 6.2 and A.8 of Scealy and
Wood 2023). The boundary weight function in the score matching discrepancy is the unthresholded
product weight function

h(z)2 = min

 p∏
j=1

z2j , a
2
c

 .

Value

A vector of estimates for AL entries (diagonal and off diagonal).

https://doi.org/10.1007/s11222-024-10412-w
http://www.jstor.org/stable/2346159

22 ppi_param_tools

References

Scealy JL, Wood ATA (2023). “Score matching for compositional distributions.” Journal of the
American Statistical Association, 118(543), 1811–1823. doi:10.1080/01621459.2021.2016422.

ppi_param_tools PPI Parameter Tools

Description

The default parameterisation of the PPI model is a symmetric covariance-like matrixAL, a location-
like vector bL and a set of Dirichlet exponents β. For p components, AL has p-1 rows, bL is a
vector with p-1 elements and β is a vector with p elements. For score matching estimation this
form of the parameters must be converted into a single parameter vector using ppi_paramvec().
ppi_paramvec() also includes easy methods to set parameters to NA for estimation with ppi()
(in ppi() the NA-valued elements are estimated and all other elements are fixed). The reverse of
ppi_paramvec() is ppi_parammats(). An alternative parametrisation of the PPI model uses a sin-
gle p by p matrix A∗ instead of AL and bL, and for identifiability A∗ is such that 1TA∗1 = 0 where
1 = (1, 1, ..., 1) and 0 = (0, 0, ..., 0) (Scealy and Wood 2023). Convert between parametrisations
using ppi_toAstar() and ppi_fromAstar().

Usage

ppi_paramvec(
p = NULL,
AL = NULL,
bL = NULL,
Astar = NULL,
beta = NULL,
betaL = NULL,
betap = NULL

)

ppi_parammats(paramvec)

ppi_toAstar(AL, bL)

ppi_fromAstar(Astar)

Arguments

p The number of components. If NULL then p will be inferred from other inputs.

AL Either NULL, a p-1 x p-1 symmetric matrix, a number, or "diag". If NULL then
all AL elements will be set to NA. If a single number, then AL will be fixed as
a matrix of the given value. If "diag" then the non-diagonal elements of AL will
be fixed to 0, and the diagonal will be NA.

https://doi.org/10.1080/01621459.2021.2016422

ppi_param_tools 23

bL Either NULL, a number, or a vector of length p-1. If NULL, then all elements of bL
will be set to NA. If a single number, then bL will be fixed at the supplied value.

Astar The A∗ matrix (a p by p symmetric matrix)

beta Either NULL, a number, or a vector of length p. If NULL then all elements of
β will be set to NA. If a single number then the β elements will be fixed at the
given number.

betaL Either NULL, a number, or a vector of length p-1. If NULL then the 1...(p-1)th β
elements will be set to NA. If a single number then the 1...(p-1)th β elements will
be fixed at the given number.

betap Either NULL or a number. If NULL then the pth element of β will be set to NA, and
ppi() will estimate it. If a number, then the pth element of β will be fixed at the
given value.

paramvec A PPI parameter vector, typically created by ppi_paramvec() or as an output
of ppi().

Details

ppi_paramvec() returns a vector starting with the diagonal elements of AL, then the off-diagonal
elements extracted by upper.tri() (which extracts elements of AL along each row, left to right,
then top to bottom), then bL, then β.

The Astar parametrisation rewrites the PPI density as proportional to

exp(zTA∗z)

p∏
i=1

zβi

i ,

where A∗ (Astar) is a p by p matrix. Because z lies in the simplex (in particular
∑
zi = 1), the

density is the same regardless of the value of 1TA∗1=sum(Astar), where 1 is the vector of ones.
Thus AL and bL specify A∗ up to an additive factor. In the conversion ppi_toAstar(), A∗ is
returned such that 1TA∗1 = 0. NULL values or NA elements are not allowed for ppi_toAstar() and
ppi_fromAstar().

Value

ppi_paramvec(): a vector of length p+ (p− 1)(2 + (p− 1)/2).

ppi_parammats(): A named list of AL, bL, and β.

ppi_toAstar(): The matrix A∗.

ppi_fromAstar(): A list of the matrix AL, the vector bL and a discarded constant.

PPI Model

The PPI model density is proportional to

exp(zTLALzL + bTLzL)

p∏
i=1

zβi

i ,

where p is the dimension of a compositional measurement z, and zL is z without the final (pth)
component. AL is a p−1×p−1 symmetric matrix that controls the covariance between components.

24 ppi_robust

bL is a p−1 vector that controls the location within the simplex. The ith component βi of β controls
the concentration of density when zi is close to zero: when βi ≥ 0 there is no concentration and βi is
hard to identify; when βi < 0 then the probability density of the PPI model increases unboundedly
as zi approaches zero, with the increasing occurring more rapidly and sharply the closer βi is to −1.

See Also

Other PPI model tools: dppi(), ppi(), ppi_robust(), rppi()

Examples

ppi_paramvec(AL = "diag", bL = 0, betap = -0.5, p = 3)
vec <- ppi_paramvec(AL = rsymmetricmatrix(2), beta = c(-0.8, -0.7, 0))
ppi_parammats(vec)
Astar <- rWishart(1, 6, diag(3))[,,1]
ppi_fromAstar(Astar)
ppi_toAstar(ppi_fromAstar(Astar)$AL, ppi_fromAstar(Astar)$bL)

ppi_robust Robustly Estimate Parameters of the PPI Distribution

Description

ppi_robust() uses Windham() and ppi() to estimate a PPI distribution robustly. There are many
arguments to the ppi() function and we highly recommend testing your arguments on ppi() first
before running ppi_robust().

ppi_robust_alrgengamma() performs the Windham robustification algorithm exactly as described
in Scealy et al. (2024) for score matching via log-ratio transform of the PPI model with bL = 0.
This function calls the more general Windham() and ppi().

Usage

ppi_robust(Y, cW, ...)

ppi_robust_alrgengamma(
Y,
cW,
...,
fpcontrol = list(Method = "Simple", ConvergenceMetricThreshold = 1e-10)

)

Arguments

Y A matrix of measurements. Each row is a measurement, each component is a
dimension of the measurement.

cW A vector of robustness tuning constants. Easy to build using ppi_cW() and
ppi_cW_auto(). See Windham() for more details on cW.

ppi_robust 25

... Passed to Windham() and on to ppi().

fpcontrol A named list of control arguments to pass to FixedPoint::FixedPoint() for
the fixed point iteration.

Details

ppi_robust_alrgengamma(): must fit a PPI model via additive-log ratio transform of the sim-
plex with bL = 0 fixed and the final element of β fixed. The default convergence metric and
threshold are different to the default for ppi_robust() to match the implementation in (Scealy
et al. 2024): convergence is measured by the change in the first element of β, and convergence
is reached when the change is smaller than 1E-6. Override this behaviour by specifying the el-
ements ConvergenceMetric and ConvergenceMetricThreshold in a list passed as fpcontrol.
Windham() is called with alternative_populationinverse = TRUE.

Value

A list:

• est The estimated parameters in vector form (paramvec) and as AL, bL and beta.

• SE "Not calculated." Returned for consistency with other estimators.

• info Information returned in the optim slot of Windham(). Includes the final weights in
finalweights.

References

Scealy JL, Hingee KL, Kent JT, Wood ATA (2024). “Robust score matching for compositional
data.” Statistics and Computing, 34, 93. doi:10.1007/s1122202410412w.

See Also

Other PPI model tools: dppi(), ppi(), ppi_param_tools, rppi()

Other Windham robustness functions: Windham(), vMF_robust()

Examples

set.seed(7)
model <- rppi_egmodel(100)
estsqrt <- ppi_robust(model$sample,

cW = ppi_cW_auto(0.01, model$sample),
paramvec_start = model$theta,
trans = "sqrt", bdryw = "minsq", acut = 0.1)

set.seed(14)
model <- rppi_egmodel(100)
ppi_robust_alrgengamma(model$sample,

cW = ppi_cW_auto(0.01, model$sample),
paramvec = ppi_paramvec(betap = -0.5, p = ncol(model$sample)))

https://doi.org/10.1007/s11222-024-10412-w

26 quadratictape_parts

print,Rcpp_ADFun Print or show a summary of an Rcpp_ADFun

Description

Both print() and show() will display a summary of a Rcpp_ADFun object.

Usage

S4 method for signature 'Rcpp_ADFun'
print(x, ...)

S4 method for signature 'Rcpp_ADFun'
show(object)

Arguments

x An object of class Rcpp_ADFun.

... Passed to format().

object An object of class Rcpp_ADFun.

Details

The show() method overrides the default show() method for Rcpp::C++Object objects from the
Rcpp package.

quadratictape_parts Evaluate the Hessian and Gradient Offset of a Taped Quadratic Func-
tion

Description

When the score matching discrepancy function is quadratic then the gradient of the score matching
discrepancy function can be written using the Hessian and an offset term. This can be useful for
solving for the situation when the gradient is zero. The Hessian and offset term are computed using
CppAD tapes. Taylor approximation can be used for locations at removed singularities (i.e. where
intermediate values are unbounded). quadratictape_parts() will error if testquadratic(tape)
returns FALSE.

Usage

quadratictape_parts(tape, tmat, tcentres = NA * tmat, approxorder = 10)

quadratictape_parts 27

Arguments

tape A tape of a quadratic function where the independent and dynamic parame-
ters correspond to the x and t in the details section, respectively. For score
matching tape should be a tape of the score matching discrepancy function
A(z)+B(z)+C(z) in scorematchingtheory with z the dynamic parameters
and the model parameters the independent variable (which is the usual for the
return of tape_smd()).

tmat A matrix of vectors corresponding to values of t (see details). Each row corre-
sponds to a vector. For score matching, these vectors are measurements.

tcentres A matrix of Taylor approximation centres for rows of tmat that require approx-
imation. NA for rows that do not require approximation.

approxorder The order of the Taylor approximation to use.

Details

A quadratic function can be written

f(x; t) =
1

2
xTW (t)x+ b(t)Tx+ c,

where t is considered a vector that is constant with respect to the differentiation. The Hessian of the
function is with respect to x is

Hf(x; t) =
1

2
(W (t) +W (t)T).

The gradient of the function with respect to x can then be written

∆f(x; t) = Hf(x; t)x+ b(t)Tx,

where the Hessian and offset b(t) depend only on t.

The functions here evaluate the Hessian and offset b(t) for many values of t. Tapes of the Hes-
sian and gradient offset are created using tape_Hessian() and tape_gradoffset() respectively.
These tapes are then evaluated for every row of tmat. When the corresponding tcentres row is not
NA, then approximate (but very accurate) results are calculated using Taylor approximation around
the location given by the row of tcentres.

For score matching x is the set of model parameters and the vector t is a (multivariate) measurement.

Value

A list of

• offset Array of offsets b(t), each row corresponding to a row in tmat

• Hessian Array of vectorised Hf(x; t) (see tape_Hessian()), each row corresponding to a
row in tmat. For each row, obtain the Hessian in matrix format by using matrix(ncol =
length(tape$xtape)).

See Also

Other tape evaluators: evaltape(), smvalues(), testquadratic()

28 Rcpp_ADFun-class

Examples

u <- rep(1/3, 3)
smdtape <- tape_smd("sim", "sqrt", "sph", "ppi",

ytape = u,
usertheta = ppi_paramvec(p = 3),
bdryw = "minsq", acut = 0.01,
verbose = FALSE
)$smdtape

quadratictape_parts(smdtape,
tmat = rbind(u, c(1/4, 1/4, 1/2)))

Rcpp_ADFun-class A Class for CppAD Tapes

Description

Objects of type Rcpp_ADFun contain a tape of a C++ function (which has class ADFun in CppAD).
These tapes are a record of operations performed by a function. Tapes can be evaluated and dif-
ferentiated, and have properties (such as domain and range dimensions). Tapes also have dynamic
parameters that can be updated. This class, Rcpp_ADFun uses reference semantics, so that copies
all point to the same object and changes modify in place (i.e. changes modify the same object).
Properties and methods of an Rcpp_ADFun object are accessed via $.

Details

An object of class Rcpp_ADFun wraps an ADFun object from CppAD. Many of the properties and
behaviour of an Rcpp_ADFun object come directly from ADFun objects so more details and context
can be found by looking at the ADFun object help in the CppAD help. The methods eval(), Jac()
and Hes() have been added by scorematchingad as there were many cases where this seemed like
an easier way to evaluate a tape.

Default printing of an Rcpp_ADFun object gives a short summary of the object, see print,Rcpp_ADFun.

Tapes cannot be saved from session to session.

Methods - Tape Properties:

• $size_order Number of Taylor coefficient orders, per variable and direction, currently cal-
culated and stored in the object.

• $domain Dimension of the domain space (i.e., length of the independent variables vector x).
• $range Dimension of the range space (i.e., length of the vector returned by $eval()).
• $size_dyn_ind Number of independent dynamic parameters (i.e., length of the vector of

dynamic parameters dyn).
• $name A name for the tape (may be empty). This is yet to incorporate the CppAD function_name

property.
• $xtape The values of the independent variables used for the initial taping.
• $dyntape The values of the dynamic parameters used for the initial taping.

https://cppad.readthedocs.io

Rcpp_ADFun-class 29

• $get_check_for_nan() Debugging: Return whether the tape is configured to check for NaN
values during computation. The check for NaN only occurs if the C++ compilation enables
debugging.

• $set_check_for_nan(bool) Set whether the tape should check for NaN values during com-
putation (only effective if C++ debugging is enabled).

• $parameter(i) Check if the ith component of the range corresponds to a constant parameter.
Indexing is by the C++ default, that is the first component has index 0, the last component has
index $range - 1.

• $new_dynamic(dyn) Specify new values for the dynamic parameters.

Methods - Tape Evaluation:

• $eval(x, dyn) Evaluate the function at new values of the variables and dynamic parameters.
Returns a vector of length $range.

• $Jac(x, dyn) Compute the Jacobian at new values of the variables and dynamic parameters.
Returns a vector of length $range * $domain arranged so that the first $domain elements
correspond to the gradient of the first element of the range. The next $domain elements cor-
respond to the gradient of the second element of the range, and so on.

• $Hes(x, dyn) Compute the Hessian of the first element of the range at new values of the
variables and dynamic parameters. Returns a vector of length $domain * $domain where the
j*n + l element corresponds to differentiating with respect to the lth element of the domain,
then with respect to the jth element of the domain, with n the size of the domain.

• $Jacobian(x) Evaluate the Jacobian of the function at the current set of dynamic parameters.
• $Hessiani(x, i) Evaluate the Hessian for the i-th element of the range (where i = 0, 1,
...). Returns a vector arranged the same as $Hes().

• $Hessian0(x) Evaluate the Hessian for the first element of the range (like $Hes() but uses
the current values of the dynamic parameters). Returns a vector arranged the same as $Hes().

• $Hessianw(x, w) Evaluate the Hessian for a weighted sum of the range. Returns a vector
arranged the same as $Hes().

• $forward(q, x) Perform forward mode evaluation for the specified Taylor coefficient order
q. See the CppAD help for more.

Method Arguments

• x A vector of independent variables.

• dyn A vector of dynamic parameters.

• q Taylor coefficient order for evaluating derivatives with $forward().

• i Index of range result. i = 0, 1, ..., $range - 1.

• bool Either TRUE or FALSE to set check_for_nan behaviour using $set_check_for_nan().

• w Weights assigned to each element of the range, for use with $Hessianw().

Extends

Extends class C++Object from the Rcpp package (Rcpp::C++Object), which is a reference class.
For those familiar with C++, an object of class Rcpp_ADFun contains a pointer to a CppAD ADFun ob-
ject.

https://cppad.readthedocs.io

30 Rcpp_ADFun-class

Introduction to CppAD Tapes

This package uses version 2024000.5 of the algorithmic differentiation library CppAD (Bell 2023) to
build score matching estimators. Full help for CppAD can be found at https://cppad.readthedocs.
io/.

When using CppAD one first creates a tape of the basic (atomic) operations of a function. The
atomic operations include multiplication, division, addition, sine, cosine, exponential and many
more. These tapes can then be used for evaluating the function and its derivatives, and gener-
ating further tapes through argument swapping, differentiation and composition (see for example
tape_swap() and tape_Jacobian()). Tapes can have both independent variables and dynamic
parameters, and the differentiation occurs with respect to the independent variables. The atomic
operations within a function are taped by following the function evaluation on example values for
the variables and parameters, so care must be taken with any conditional (e.g. if-then) operations,
and CppAD has a special tool for this called CondExp (short for conditional expressions).

The result of taping, called a tape, is exposed as an object of class Rcpp_ADFun, which contains
a CppAD ADFun object. Although the algorithmic differentiation is with respect to the independent
variables, a new tape (see tape_swap()) can be created where the dynamic parameters become
independent variables. For the purposes of score matching, there are also fixed parameters, which
are the elements of the model’s parameter vector that are given and not estimated.

The example values used for taping are saved in the $xtape and $dyntape properties of Rcpp_ADFun
objects.

Warning: multiple CPU

Each time a tape is evaluated the corresponding C++ object is altered. Parallel use of the same ADFun
object thus requires care and is not tested. For now I recommend creating a new ADFun object for
each CPU.

Improvements

A few methods for CppAD ADFun objects are not yet available through Rcpp_ADFun objects. These
ones would be nice to include:

• optimize()

• function_name_set() and function_name_get() working with $name

• Reverse()

Examples

tape <- tape_uld_inbuilt("dirichlet", c(0.1, 0.4, 0.5), c(-0.5, -0.4, -0.2))
Convenient evaluation
tape$eval(x = c(0.2, 0.3, 0.5), dyn = c(-0.1, -0.1, -0.5))
tape$Jac(x = c(0.2, 0.3, 0.5), dyn = c(-0.1, -0.1, -0.5))
matrix(tape$Hes(x = c(0.2, 0.3, 0.5), dyn = c(-0.1, -0.1, -0.5)), nrow = tape$domain)

Properties
tape$domain
tape$range
tape$size_dyn_ind

https://cppad.readthedocs.io/
https://cppad.readthedocs.io/
https://cppad.readthedocs.io/

rppi 31

tape$name
tape$xtape
tape$dyntape
tape$size_order
tape$new_dynamic(dyn = c(-0.1, -0.1, -0.5))
tape$parameter(0)
tape$set_check_for_nan(FALSE)
tape$get_check_for_nan()

Further methods
tape$forward(order = 0, x = c(0.2, 0.3, 0.5))
tape$Jacobian(x = c(0.2, 0.3, 0.5))
tape$Hessiani(x = c(0.2, 0.3, 0.5), i = 0)
tape$Hessian0(x = c(0.2, 0.3, 0.5))
tape$Hessianw(x = c(0.2, 0.3, 0.5), w = c(2))

rppi Simulate from a PPI Model

Description

Given parameters of the PPI model, generates independent samples.

Usage

rppi(n, ..., paramvec = NULL, maxden = 4, maxmemorysize = 1e+05)

rppi_egmodel(n, maxden = 4)

Arguments

n Number of samples to generate

... Arguments passed on to ppi_paramvec

AL Either NULL, a p-1 x p-1 symmetric matrix, a number, or "diag". If NULL
then all AL elements will be set to NA. If a single number, then AL will
be fixed as a matrix of the given value. If "diag" then the non-diagonal
elements of AL will be fixed to 0, and the diagonal will be NA.

bL Either NULL, a number, or a vector of length p-1. If NULL, then all elements of
bL will be set to NA. If a single number, then bL will be fixed at the supplied
value.

beta Either NULL, a number, or a vector of length p. If NULL then all elements
of β will be set to NA. If a single number then the β elements will be fixed
at the given number.

betaL Either NULL, a number, or a vector of length p-1. If NULL then the 1...(p-
1)th β elements will be set to NA. If a single number then the 1...(p-1)th β
elements will be fixed at the given number.

32 rppi

betap Either NULL or a number. If NULL then the pth element of β will be set to
NA, and ppi() will estimate it. If a number, then the pth element of β will
be fixed at the given value.

p The number of components. If NULL then p will be inferred from other inputs.
Astar The A∗ matrix (a p by p symmetric matrix)

paramvec The PPI parameter vector, created easily using ppi_paramvec() and also re-
turned by ppi(). Use paramvec instead of

maxden This is the constant log(C) in (Appendix A.1.3 Scealy and Wood 2023).

maxmemorysize Advanced use. The maximum size, in bytes, for matrices containing simulated
Dirichlet samples. The default of 1E5 corresponds to 100 mega bytes.

Details

We recommend running rppi() a number of times to ensure the choice of maxden is good. rppi()
will error when maxden is too low.

The simulation uses a rejection-sampling algorithm with Dirichlet proposal (Appendix A.1.3 Scealy
and Wood 2023). Initially n Dirichlet proposals are generated. After rejection there are fewer
samples remaining, say n∗. The ratio n∗/n is used to guess the number of new Dirichlet proposals
to generate until n samples of the PPI model are reached.

Advanced use: The number of Dirichlet proposals created at a time is limited such that the matrices
storing the Dirchlet proposals are always smaller than maxmemorysize bytes (give or take a few
bytes for wrapping). Larger maxmemorysize leads to faster simulation so long as maxmemorysize
bytes are reliably contiguously available in RAM.

Value

A matrix with n rows and p columns. Each row is an independent draw from the specified PPI
distribution.

rppi_egmodel returns a list:

• sample A matrix of the simulated samples (n rows)

• p The number of components of the model

• theta The PPI parameter vector

• AL The AL parameter matrix

• bL The bL parameter vector

• beta The β parameter vector

Functions

• rppi_egmodel(): Simulates the 3-component PPI model from (Section 2.3, Scealy and Wood
2023) and returns both simulations and model parameters.

References

Scealy JL, Wood ATA (2023). “Score matching for compositional distributions.” Journal of the
American Statistical Association, 118(543), 1811–1823. doi:10.1080/01621459.2021.2016422.

https://doi.org/10.1080/01621459.2021.2016422

rsymmetricmatrix 33

See Also

Other PPI model tools: dppi(), ppi(), ppi_param_tools, ppi_robust()

Examples

beta0=c(-0.8, -0.8, -0.5)
AL = diag(nrow = 2)
bL = c(2, 3)
samp <- rppi(100,beta=beta0,AL=AL,bL=bL)
rppi_egmodel(1000)

rsymmetricmatrix Quickly Generate a Symmetric Matrix for Testing and Examples

Description

A simple function for generating a symmetric matrix for use in examples. The diagonal, and upper-
triangular elements of the matrix are simulated independently from a uniform distribution. The
lower-triangle of the output matrix is copied from the upper-triangle. These matrices do not repre-
sent the full range of possible symmetric matrices.

Usage

rsymmetricmatrix(p, min = 0, max = 1)

Arguments

p The desired dimension of the matrix

min The minimum of the uniform distribution.

max The maximum of the uniform distribution

Value

A p x p symmetric matrix.

Examples

rsymmetricmatrix(5)

34 scorematchingtheory

scorematchingtheory Introduction to Score Matching

Description

This package includes score matching estimators for particular distributions and a general capacity
to implement additional score matching estimators. Score matching is a popular estimation tech-
nique when normalising constants for the proposed model are difficult to calculate or compute.
Score matching was first developed by Hyvärinen (2005) and was further developed for subsets of
Euclidean space (Hyvärinen 2007; Yu et al. 2019; Yu et al. 2020; Liu et al. 2019), Riemannian
manifolds (Mardia et al. 2016; Mardia 2018), and Riemannian manifolds with boundary (Scealy
and Wood 2023). In this help entry we briefly describe score matching estimation.

Score Matching in General

In the most general form (Riemannian manifolds with boundary) score matching minimises the
weighted Hyvärinen divergence (Equation 7, Scealy and Wood 2023)

ϕ(f, f0) =
1

2

∫
M

f0(z)h(z)
2
∥∥∥P (z)(∇z log(f)−∇z log(f0)

)∥∥∥2 dM(z),

where

• M is the manifold, isometrically embedded in Euclidean space, and dM(z) is the unnor-
malised uniform measure on M .

• P (z) is the matrix that projects points onto the tangent space of the manifold at z, which is
closely related to to Riemannian metric of M .

• f0 is the density of the data-generating process, defined with respect to dM(z).

• f is the density of a posited model, again defined with respect to dM(z).

• h(z) is a function, termed the boundary weight function, that is zero on the boundary of M
and smooth (Section 3.2, Scealy and Wood 2023) or potentially piecewise smooth.

• ∇z is the Euclidean gradient operator that differentiates with respect to z.

• ∥·∥ is the Euclidean norm.

Note that, because P (z) is the projection matrix,
∥∥∥P (z)(∇z log(f)−∇z log(f0)

)∥∥∥2 is the natural
inner product of the gradient of the log ratio of f and f0.

When the density functions f and f0 are smooth and positive inside M , and the boundary weight
function is smooth or of particular forms for specific manifolds (Section 3.2, Scealy and Wood
2023), then minimising the weighted Hyvärinen divergence ϕ(f, f0) is equivalent to minimising
the score matching discrepancy (Theorem 1, Scealy and Wood 2023)

ψ(f, f0) =

∫
f0(z)

(
A(z) +B(z) + C(z)

)
dM(z),

where
A(z) =

1

2
h(z)2 (∇z log(f))

T
P (z) (∇z log(f)) ,

scorematchingtheory 35

B(z) = h(z)2∆z log(f),

C(z) =
(
∇zh(z)

2)
)T
P (z) (∇z log(f)) ,

and ∆ is the Laplacian operator. We term

A(z) +B(z) + C(z)

the score matching discrepancy function.

We suspect that (Theorem 1, Scealy and Wood 2023) holds more generally for nearly all realis-
tic continuous and piecewise-smooth boundary weight functions, although no proof exists to our
knowledge.

When n independent observations from f0 are available, the integration in ψ(f, f0) can be approx-
imated by an average over the observations,

ψ(f, f0) ≈ ψ̂(f, f0) =
1

n

n∑
i=1

A(zi) +B(zi) + C(zi).

If we parameterise a family of models fθ according to a vector of parameters θ, then the score
matching estimate is the θ that minimises ψ̂(fθ, f0). In general, the score matching estimate must be
found via numerical optimisation techniques, such as in the function cppad_search(). However,
when the family of models is a canonical exponential family then often ψ̂(fθ, f0) and the score
matching discrepancy function is a quadratic function of θ (Mardia 2018) and the minimum has a
closed-form solution found by cppad_closed().

Note that when M has a few or more dimensions, the calculations of A(z), B(z) and C(z) can
become cumbersome. This package uses CppAD to automatically compute A(z), B(z) and C(z),
and the quadratic simplification if it exists.

Transformations

Hyvärinen divergence ϕ(f, f0) is sensitive to transformations of the measure dM(z), including
transforming the manifold. That is, transforming the manifold M changes the divergence between
distributions and changes the minimum of ψ̂(fθ, f0). The transformation changes measure dM(z),
the divergence and the estimator but does not transform the data.

For example, many different transformations of the simplex (i.e. compositional data) are possible
(Appendix A.3, Scealy et al. 2024). Hyvärinen divergences that use the sphere, obtained from the
simplex by a square root, have different behaviour to Hyvärinen divergence using Euclidean space
obtained from the simplex using logarithms (Scealy et al. 2024). The estimator for the latter does
not apply logarithms to the observations, in fact the estimator involves only polynomials of the
observed compositions (Scealy et al. 2024).

The variety of estimator behaviour available through different transformations was a major motiva-
tor for this package as each transformation has different A(z), B(z) and C(z), and without auto-
matic differentiation, implementation of the score matching estimator in each case would require a
huge programming effort.

36 smvalues

References

Hyvärinen A (2005). “Estimation of Non-Normalized Statistical Models by Score Matching.” Jour-
nal of Machine Learning Research, 6(24), 695–709. https://jmlr.org/papers/v6/hyvarinen05a.
html.

Hyvärinen A (2007). “Some extensions of score matching.” Computational Statistics & Data
Analysis, 51(5), 2499–2512. doi:10.1016/j.csda.2006.09.003.

Liu S, Kanamori T, Williams DJ (2019). “Estimating Density Models with Truncation Bound-
aries using Score Matching.” doi:10.48550/arXiv.1910.03834.

Mardia K (2018). “A New Estimation Methodology for Standard Directional Distributions.” In
2018 21st International Conference on Information Fusion (FUSION), 724–729. doi:10.23919/
ICIF.2018.8455640.

Mardia KV, Kent JT, Laha AK (2016). “Score matching estimators for directional distributions.”
doi:10.48550/arXiv.1604.08470.

Scealy JL, Hingee KL, Kent JT, Wood ATA (2024). “Robust score matching for compositional
data.” Statistics and Computing, 34, 93. doi:10.1007/s1122202410412w.

Scealy JL, Wood ATA (2023). “Score matching for compositional distributions.” Journal of the
American Statistical Association, 118(543), 1811–1823. doi:10.1080/01621459.2021.2016422.

Yu S, Drton M, Shojaie A (2019). “Generalized Score Matching for Non-Negative Data.” Journal
of Machine Learning Research, 20(76), 1–70. https://jmlr.org/papers/v20/18-278.html.

Yu S, Drton M, Shojaie A (2020). “Generalized Score Matching for General Domains.” doi:10.48550/
arXiv.2009.11428.

smvalues Compute Score Matching Discrepancy Value, Gradient, and Hessian

Description

Computes a range of relevant information for investigating score matching estimators.

Usage

smvalues(smdtape, xmat, pmat, xcentres = NA * xmat, approxorder = 10)

smvalues_wsum(
tape,
xmat,
pmat,
w = NULL,

https://jmlr.org/papers/v6/hyvarinen05a.html
https://jmlr.org/papers/v6/hyvarinen05a.html
https://doi.org/10.1016/j.csda.2006.09.003
https://doi.org/10.48550/arXiv.1910.03834
https://doi.org/10.23919/ICIF.2018.8455640
https://doi.org/10.23919/ICIF.2018.8455640
https://doi.org/10.48550/arXiv.1604.08470
https://doi.org/10.1007/s11222-024-10412-w
https://doi.org/10.1080/01621459.2021.2016422
https://jmlr.org/papers/v20/18-278.html
https://doi.org/10.48550/arXiv.2009.11428
https://doi.org/10.48550/arXiv.2009.11428

smvalues 37

xcentres = NA * xmat,
approxorder = 10

)

Arguments

smdtape A taped score matching discrepancy. Most easily created by tape_smd().

xmat A matrix of (multivariate) independent variables where each represents a single
independent variable vector. Or a single independent variable vector that is used
for all rows of pmat.

pmat A matrix of dynamic parameters where each row specifies a new set of values
for the dynamic parameters of tape. Or a single vector of dynamic parameters
to use for all rows of xmat.

xcentres A matrix of approximation for Taylor approximation centres for xmat. Use val-
ues of NA for rows that do not require Taylor approximation.

approxorder Order of Taylor approximation

tape An Rcpp_ADFun object (i.e. a tape of a function).

w Weights to apply to each row of xmat for computing the weighted sum. If NULL
then each row is given a weight of 1.

Details

Computes the score matching discrepancy function from scorematchingtheory or weighted sum
of the score matching discrepancy function. The gradient and Hessian are returned as arrays of
row-vectors with each row corresponding to a row in xmat and pmat. Convert a Hessian row-vector
to a matrix using matrix(ncol = length(smdtape$xtape)).

Value

A list of

• obj the score matching discrepancy values

• grad the gradient of the score matching discrepancy

• hess the Hessian of the score matching discrepancy

See Also

Other tape evaluators: evaltape(), quadratictape_parts(), testquadratic()

Examples

m <- rppi_egmodel(100)
smdtape <- tape_smd("sim", "sqrt", "sph", "ppi",

ytape = rep(1/mp, mp),
usertheta = ppi_paramvec(beta = m$beta),
bdryw = "minsq", acut = 0.01)$smdtape

smvalues(smdtape, xmat = m$sample, pmat = m$theta[1:5])
smvalues_wsum(smdtape, m$sample, m$theta[1:5])$grad/nrow(m$sample)

38 tape_gradoffset

tape_gradoffset Tape the Gradient Offset of a Quadratic CppAD Tape

Description

Tape the Gradient Offset of a Quadratic CppAD Tape

Usage

tape_gradoffset(pfun)

Arguments

pfun An Rcpp_ADFun object.

Details

A quadratic function can be written as

f(x; θ) =
1

2
xTW (θ)x+ b(θ)Tx+ c.

The gradient of f(x; θ) with respect to x is

∆f(x; θ) =
1

2
(W (θ) +W (θ)T)x+ b(θ).

The Hessian is
Hf(x; θ) =

1

2
(W (θ) +W (θ)T),

which does not depend on x, so the gradient of the function can be rewritten as

∆f(x; θ) = Hf(x; θ)x+ b(θ)T .

The tape calculates b(θ) as
b(θ) = ∆f(x; θ)−Hf(x; θ)x,

which does not depend on x.

For creating this tape, the values of pfun$xtape and pfun$dyntape are used.

Value

An Rcpp_ADFun object. The independent argument to the function are the dynamic parameters of
pfun.

See Also

Other tape builders: tape_Hessian(), tape_Jacobian(), tape_logJacdet(), tape_smd(), tape_swap(),
tape_uld()

tape_Hessian 39

tape_Hessian Tape the Hessian of a CppAD Tape

Description

Creates a tape of the Hessian of a function taped by CppAD. The taped function represented by pfun
must be scalar-valued (i.e. a vector of length 1). The x vector and dynparam are used as the values
to conduct the taping.

Usage

tape_Hessian(pfun)

Arguments

pfun An Rcpp_ADFun object.

Details

When the returned tape is evaluated (via say eval()), the resultant vector contains the Hessian in
long format (see https://cppad.readthedocs.io/latest/Hessian.html): suppose the func-
tion represented by pfun maps from n-dimensional space to 1-dimensional space, then the first n
elements of the vector is the gradient of the partial derivative with respect to the first dimension of
the function’s domain; the next n elements of the vector is the gradient of the partial derivative of
the second dimension of the function’s domain. The Hessian as a matrix, can be obtained by using
as.matrix() with ncol = n.

For creating this tape, the values of pfun$xtape and pfun$dyntape are used.

Value

An Rcpp_ADFun object.

See Also

Other tape builders: tape_Jacobian(), tape_gradoffset(), tape_logJacdet(), tape_smd(),
tape_swap(), tape_uld()

https://cppad.readthedocs.io/latest/Hessian.html

40 tape_logJacdet

tape_Jacobian Tape the Jacobian of CppAD Tape

Description

Creates a tape of the Jacobian of a function taped by CppAD. When the function returns a real value
(as is the case for densities and the score matching objective) the Jacobian is equivalent to the
gradient. The x vector is used as the value to conduct the taping.

Usage

tape_Jacobian(pfun)

Arguments

pfun An Rcpp_ADFun object.

Details

When the returned tape is evaluated (via say $eval(), the resultant vector contains the Jacobian in
long format (see https://cppad.readthedocs.io/latest/Jacobian.html). Suppose the func-
tion represented by pfun maps from n-dimensional space to m-dimensional space, then the first n
elements of vector is the gradient of the first component of function output. The next n elements of
the vector is the gradient of the second component of the function output. The Jacobian as a matrix,
could then be obtained by as.matrix() with byrow = TRUE and ncol = n.

For creating this tape, the values of pfun$xtape and pfun$dyntape are used.

Value

An Rcpp_ADFun object.

See Also

Other tape builders: tape_Hessian(), tape_gradoffset(), tape_logJacdet(), tape_smd(),
tape_swap(), tape_uld()

tape_logJacdet Tape the log of Jacobian determinant of a CppAD Tape

Description

Creates a tape of the log of the Jacobian determinant of a function taped by CppAD. The x vector
is used as the value to conduct the taping.

For creating this tape, the values of pfun$xtape and pfun$dyntape are used.

https://cppad.readthedocs.io/latest/Jacobian.html

tape_smd 41

Usage

tape_logJacdet(pfun)

Arguments

pfun An Rcpp_ADFun object.

Value

An Rcpp_ADFun object.

See Also

Other tape builders: tape_Hessian(), tape_Jacobian(), tape_gradoffset(), tape_smd(), tape_swap(),
tape_uld()

tape_smd Build CppAD Tapes for Score Matching

Description

For a parametric model family, the function tape_smd() generates CppAD tapes for the unnor-
malised log-density of the model family and of the score matching discrepancy function A(z) +
B(z) +C(z) (defined in scorematchingtheory). Three steps are performed by tape_smd(): first
an object that specifies the manifold and any transformation to another manifold is created; then a
tape of the unnormalised log-density is created; finally a tape of A(z) +B(z) + C(z) is created.

Usage

tape_smd(
start,
tran = "identity",
end = start,
ll,
ytape,
usertheta,
bdryw = "ones",
acut = 1,
thetatape_creator = function(n) {

seq(length.out = n)
},
verbose = FALSE

)

42 tape_smd

Arguments

start The starting manifold. Used for checking that tran and man match.

tran The name of a transformation. Available transformations are

• “sqrt”
• “alr”
• “clr”
• “none” or ‘identity’

end The name of the manifold that tran maps start to. Available manifolds are:

• “sph” unit sphere
• “Hn111” hyperplane normal to the vector 1, 1, 1, 1, ...
• “sim” simplex
• “Euc” Euclidean space

ll An unnormalised log-density with respect to the metric of the starting manifold.
ll must be either an Rcpp_ADFun object created by tape_uld() for a custom
unnormalised log-density function or the name of an inbuilt function.

ytape An example measurement value to use for creating the tapes. In the natural (i.e.
start) manifold of the density function. Please ensure that ytape is the interior
of the manifold and non-zero.

usertheta A vector of parameter elements for the likelihood function. NA elements will
become dynamic parameters. Other elements will be fixed at the provided value.
The length of usertheta must be the correct length for the log-density - no
checking is conducted.

bdryw The name of the boundary weight function. "ones" for manifolds without bound-
ary. For the simplex and positive orthant of the sphere, "prodsq" and "minsq"
are possible - see ppi() for more information on these.

acut A parameter passed to the boundary weight function bdryw. Ignored for bdryw
= "ones".

thetatape_creator

A function that accepts an integer n, and returns a vector of n length. The func-
tion is used to fill in the NA elements of usertheta when building the tapes.
Please ensure that the values filled by thetatape_creator lead to plausible
parameter vectors for the chosen log-density.

verbose If TRUE more details are printed when taping. These details are for debugging
and will likely be comprehensible only to users familiar with the source code of
this package.

Details

Only some combinations of start, tran and end are available because tran must map between
start and end. These combinations of start-tran-end are currently available:

• sim-sqrt-sph

• sim-identity-sim

• sim-alr-Euc

tape_smd 43

• sim-clr-Hn111

• sph-identity-sph

• Euc-identity-Euc

To build a tape for the score matching discrepancy function, the scorematchingad first tapes the
map from a point z on the end manifold to the value of the unnormalised log-density, where the
independent variable is the z, the dynamic parameter is a vector of the parameters to estimate, and
the remaining model parameters are fixed and not estimated. This tape is then used to generate a tape
for the score matching discrepancy function where the parameters to estimate are the independent
variable.

The transforms of the manifold must be implemented in C++ and selected by name.

Currently available unnormalised log-density functions are:

• dirichlet

• ppi

• vMF

• Bingham

• FB

Value

A list of:

• an Rcpp_ADFun object containing a tape of the unnormalised log-density using the metric of
the "end" manifold (that is the independent variable is on the end manifold).

• an Rcpp_ADFun object containing a tape of the score matching discrepancy function with the
non-fixed parameters of the model as the independent variable, and the measurements on the
end manifold as the dynamic parameter.

• some information about the tapes

Warning

There is no checking of the inputs ytape and usertheta.

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

Other tape builders: tape_Hessian(), tape_Jacobian(), tape_gradoffset(), tape_logJacdet(),
tape_swap(), tape_uld()

Other generic score matching tools: Windham(), cppad_closed(), cppad_search()

44 tape_swap

Examples

p <- 3
u <- rep(1/sqrt(p), p)
ltheta <- p #length of vMF parameter vector
intheta <- rep(NA, length.out = ltheta)
tapes <- tape_smd("sph", "identity", "sph", "vMF",

ytape = u,
usertheta = intheta,
"ones", verbose = FALSE
)

evaltape(tapes$lltape, u, runif(n = ltheta))
evaltape(tapes$smdtape, runif(n = ltheta), u)

u <- rep(1/3, 3)
tapes <- tape_smd("sim", "sqrt", "sph", "ppi",

ytape = u,
usertheta = ppi_paramvec(p = 3),
bdryw = "minsq", acut = 0.01,
verbose = FALSE
)

evaltape(tapes$lltape, u, rppi_egmodel(1)$theta)
evaltape(tapes$smdtape, rppi_egmodel(1)$theta, u)

tape_swap Switch Dynamic and Independent Values of a Tape

Description

Convert an Rcpp_ADFun object so that the independent values become dynamic parameters and the
dynamic parameters become independent values

Usage

tape_swap(pfun)

Arguments

pfun An Rcpp_ADFun object.

Details

For creating this tape, the values of pfun$xtape and pfun$dyntape are used.

Value

An Rcpp_ADFun object.

tape_uld 45

See Also

Other tape builders: tape_Hessian(), tape_Jacobian(), tape_gradoffset(), tape_logJacdet(),
tape_smd(), tape_uld()

tape_uld Generate a tape of a custom unnormalised log-density

Description

Generate tapes of unnormalised log-densities. Use tape_ult() to specify a custom unnormalised
log-density using C++ code much like TMB::compile(). Use tape_uld_inbuilt() for tapes of
inbuilt unnormalised log-densities implemented in this package.

Usage

tape_uld_inbuilt(name, x, theta)

tape_uld(fileORcode = "", x, theta, Cppopt = NULL)

Arguments

name Name of an inbuilt function. See details.

x Value of independent variables for taping.

theta Value of the dynamic parameter vector for taping.

fileORcode A character string giving the path name of a file containing the unnormalised
log-density definition OR code. fileORcode will be treated as a file name if
fileORcode contains no new line characters (’\n’ or ’\r\n’) and has a file exten-
sion detected by tools::file_ext().

Cppopt List of named options passed to Rcpp::sourceCpp()

Details

For tape_uld_inbuilt(), currently available unnormalised log-density functions are:

• dirichlet

• ppi

• vMF

• Bingham

• FB

The function tape_uld() uses Rcpp::sourceCpp() to generate a tape of a function defined in
C++. (An alternative design, where the function is compiled interactively and then taped using a
function internal to scorematchingad, was not compatible with Windows OS).

The result result is NOT safe to save or pass to other CPUs in a parallel operation.

46 tape_uld

Value

A list of three objects

• fun a function that evaluates the function directly

• tape a tape of the function

• file the temporary file storing the final source code passed to Rcpp::sourceCpp()

Writing the fileORcode Argument

The code (possibly in the file pointed to by fileORcode) must be C++ that uses only CppAD and
Eigen, which makes it very similar to the requirements of the input to TMB::compile() (which
also uses CppAD and Eigen).

The start of code should always be "a1type fname(const veca1 &x, const veca1 &theta){"
where fname is your chosen name of the log-density function, x represents a point in the data space
and theta is a vector of parameters for the log-density. This specifies that the function will have
two vector arguments (of type veca1) and will return a single numeric value (a1type).

The type a1type is a double with special ability for being taped by CppAD. The veca1 type is a
vector of a1type elements, with the vector wrapping supplied by the Eigen C++ package (that is
an Eigen matrix with 1 column and dynamic number of rows).

The body of the function must use operations from Eigen and/or CppAD, prefixed by Eigen:: and
CppAD:: respectively. There are no easy instructions for writing these as it is genuine C++ code,
which can be very opaque to those unfamiliar with C++. However, recently ChatGPT and claude.ai
have been able to very quickly translating R functions to C++ functions (KLH has been telling these
A.I. to use Eigen and CppAD, and giving the definitions of a1type and veca1). I’ve found the
quick reference pages for for Eigen useful. Limited unary and binary operations are available
directly from CppAD without Eigen. For the purposes of score matching the operations should all
be smooth to create a smooth log-density and the normalising constant may be omitted.

See Also

Other tape builders: tape_Hessian(), tape_Jacobian(), tape_gradoffset(), tape_logJacdet(),
tape_smd(), tape_swap()

Examples

Not run:
out <- tape_uld(system.file("demo_custom_uld.cpp", package = "scorematchingad"),

rep(0.2, 5), rep(-0.1, 5))
out$fun(c(0.1, 0.2, 0.2, 0.2, 0.2), c(-0.5, -0.5, -0.1, -0.1, 0))
out$tape$eval(c(0.1, 0.2, 0.2, 0.2, 0.2), c(-0.5, -0.5, -0.1, -0.1, 0))
out$tape$Jac(c(0.1, 0.2, 0.2, 0.2, 0.2), c(-0.5, -0.5, -0.1, -0.1, 0))
out$tape$name

End(Not run)

https://eigen.tuxfamily.org/dox/
https://cppad.readthedocs.io

testquadratic 47

testquadratic Test Whether a CppAD Tape is a Quadratic Function

Description

Uses the CppAD parameter property and derivatives (via tape_Jacobian()) to test whether the tape
is quadratic.

Uses the CppAD parameter property and derivatives (via tape_Jacobian()) to test whether the tape
is quadratic.

Usage

testquadratic(
tape,
xmat = matrix(tape$xtape, nrow = 1),
dynmat = matrix(tape$dyntape, nrow = 1),
verbose = FALSE

)

Arguments

tape An ADFun object.

xmat The third-order derivatives at independent variable values of the rows of xmat
and dynamic parameters from the rows of dynmat are tested.

dynmat The third-order derivatives at independent variable values of the rows of xmat
and dynamic parameters from the rows of dynmat are tested.

verbose If TRUE information about the failed tests is printed.

Details

Uses the xtape and dyntape values stored in tape to create new tapes. A tape of the Hessian is
obtained by applying tape_Jacobian() twice, and then uses the CppAD parameter property to test
whether the Hessian is constant. A function of quadratic form should have constant Hessian.

If xmat and dynmat are non-NULL then testquadratic() also checks the Jacobian of the Hessian
at xmat and dynmat values. For quadratic form functions the Jacobian of the Hessian should be
zero.

Value

TRUE or FALSE

See Also

Other tape evaluators: evaltape(), quadratictape_parts(), smvalues()

Other tape evaluators: evaltape(), quadratictape_parts(), smvalues()

https://cppad.readthedocs.io/latest/fun_property.html#parameter
https://cppad.readthedocs.io/latest/fun_property.html#parameter
https://cppad.readthedocs.io/latest/fun_property.html#parameter

48 vMF

Examples

tapes <- tape_smd(
"sim", "sqrt", "sph",
ll = "ppi",
ytape = c(0.2, 0.3, 0.5),
usertheta = ppi_paramvec(p = 3),
bdryw = "minsq",
acut = 0.1,
verbose = FALSE)

testquadratic(tapes$smdtape)

vMF Score Matching Estimator for the von-Mises Fisher Distribution

Description

In general the normalising constant in von Mises Fisher distributions is hard to compute, so Mar-
dia et al. (2016) suggested a hybrid method that uses maximum likelihood to estimate the mean
direction and score matching for the concentration. We can also estimate all parameters using score
matching (smfull method), although this estimator is likely to be less efficient than the hybrid
estimator. On the circle the hybrid estimators were often nearly as efficient as maximum likeli-
hood estimators (Mardia et al. 2016). For maximum likelihood estimators of the von Mises Fisher
distribution, which all use approximations of the normalising constant, consider movMF::movMF().

Usage

vMF(Y, paramvec = NULL, method = "Mardia", w = rep(1, nrow(Y)))

Arguments

Y A matrix of multivariate observations in Cartesian coordinates. Each row is a
multivariate measurement (i.e. each row corresponds to an individual).

paramvec smfull method only: Optional. A vector of same length as the dimension,
representing the elements of the κµ vector.

method Either "Mardia" or "hybrid" for the hybrid score matching estimator from Mar-
dia et al. (2016) or "smfull" for the full score matching estimator.

w An optional vector of weights for each measurement in Y

Details

The full score matching estimator (method = "smfull") estimates κµ. The hybrid estimator (method
= "Mardia") estimates κ and µ separately. Both use cppad_closed() for score matching estima-
tion.

vMF 49

Value

A list of est, SE and info.

• est contains the estimates in vector form, paramvec, and with user friendly names k and m.

• SE contains estimates of the standard errors if computed. See cppad_closed().

• info contains a variety of information about the model fitting procedure and results.

von Mises Fisher Model

The von Mises Fisher density is proportional to

exp(κµT z),

where z is on a unit sphere, κ is termed the concentration, and µ is the mean direction unit vector.
The effect of the µ and κ can be decoupled in a sense (p169, Mardia and Jupp 2000), allowing for
estimating µ and κ separately.

References

Mardia KV, Jupp PE (2000). Directional Statistics, Probability and Statistics. Wiley, Great Britain.
ISBN 0-471-95333-4.

Mardia KV, Kent JT, Laha AK (2016). “Score matching estimators for directional distributions.”
doi:10.48550/arXiv.1604.08470.

See Also

Other directional model estimators: Bingham(), FB(), vMF_robust()

Examples

if (requireNamespace("movMF")){
Y <- movMF::rmovMF(1000, 100 * c(1, 1) / sqrt(2))
movMF::movMF(Y, 1) #maximum likelihood estimate

} else {
Y <- matrix(rnorm(1000 * 2, sd = 0.01), ncol = 2)
Y <- Y / sqrt(rowSums(Y^2))

}
vMF(Y, method = "smfull")
vMF(Y, method = "Mardia")
vMF(Y, method = "hybrid")

https://doi.org/10.48550/arXiv.1604.08470

50 Windham

vMF_robust Robust Fitting of von Mises Fisher

Description

Robust estimation for von Mises Fisher distribution using Windham().

Usage

vMF_robust(Y, cW, ...)

Arguments

Y A matrix of observations in Cartesian coordinates.
cW Tuning constants for each parameter in the vMF parameter vector. If a single

number then the constant is the same for each element of the parameter vector.
... Passed to Windham() and then passed onto vMF().

See Also

Other directional model estimators: Bingham(), FB(), vMF()

Other Windham robustness functions: Windham(), ppi_robust()

Examples

if (requireNamespace("movMF")){
Y <- movMF::rmovMF(1000, 100 * c(1, 1) / sqrt(2))

} else {
Y <- matrix(rnorm(1000 * 2, sd = 0.01), ncol = 2)
Y <- Y / sqrt(rowSums(Y^2))

}
vMF_robust(Y, cW = c(0.01, 0.01), method = "smfull")
vMF_robust(Y, cW = c(0.01, 0.01), method = "Mardia")

Windham Windham Robustification of Point Estimators for Exponential Family
Distributions

Description

Performs a generalisation of Windham’s robustifying method (Windham 1995) for exponential
models with natural parameters that are a linear function of the parameters for estimation. Esti-
mators must solve estimating equations of the form

n∑
i=1

U(zi; θ) = 0.

The estimate is found iteratively through a fixed point method as suggested by Windham (1995).

Windham 51

Usage

Windham(
Y,
estimator,
ldenfun,
cW,
...,
fpcontrol = list(Method = "Simple", ConvergenceMetricThreshold = 1e-10),
paramvec_start = NULL,
alternative_populationinverse = FALSE

)

Arguments

Y A matrix of measurements. Each row is a measurement, each component is a
dimension of the measurement.

estimator A function that estimates parameters from weighted observations. It must have
arguments Y that is a matrix of measurements and w that are weights associated
with each row of Y. If it accepts arguments paramvec or paramvec_start then
these will be used to specify fixed elements of the parameter vector and the
starting guess of the parameter vector, respectively. The estimated parameter
vector, including any fixed elements, must be the returned object, or the first
element of a returned list, or as the paramvec slot within the est slot of the
returned object.

ldenfun A function that returns a vector of values proportional to the log-density for a
matrix of observations Y and parameter vector theta.

cW A vector of robustness tuning constants. When computing the weight for an
observation the parameter vector is multiplied element-wise with cW. For the
PPI model, generate cW easily using ppi_cW() and ppi_cW_auto().

... Arguments passed to estimator.

fpcontrol A named list of control arguments to pass to FixedPoint::FixedPoint() for
the fixed point iteration.

paramvec_start Initially used to check the function estimator. If estimator accepts a paramvec_start,
then the current estimate of the parameter vector is passed as paramvec_start
to estimator in each iteration.

alternative_populationinverse

The default is to use Windham_populationinverse(). If TRUE an alternative
implementation in Windham_populationinverse_alternative() is used. So
far we have not seen any difference between the results.

Details

For any family of models with density f(z; θ), Windham’s method finds the parameter set θ̂ such
that the estimator applied to observations weighted by f(z; θ̂)c returns an estimate that matches
the theoretical effect of weighting the full population of the model. When f is proportional to
exp(η(θ) · T (z)) and η(θ) is linear, these weights are equivalent to f(z; cθ̂) and the theoretical
effect of the weighting on the full population is to scale the parameter vector θ by 1 + c.

52 Windham_populationinverse

The function Windham() assumes that f is proportional to exp(η(θ) · T (z)) and η(θ) is linear. It
allows a generalisation where c is a vector so the weight for an observation z is

f(z; c ◦ θ),

where θ is the parameter vector, c is a vector of tuning constants, and ◦ is the element-wise product
(Hadamard product).

The solution is found iteratively (Windham 1995). Given a parameter set θn, Windham() first com-
putes weights f(z; c ◦ θn) for each observation z. Then, a new parameter set θ̃n+1 is estimated by
estimator with the computed weights. This new parameter set is element-wise-multiplied by the
(element-wise) reciprocal of 1 + c to obtain an adjusted parameter set θn+1. The estimate returned
by Windham() is the parameter set θ̂ such that θn ≈ θn+1.

Value

A list:

• paramvec the estimated parameter vector

• optim information about the fixed point iterations and optimisation process. Including a slot
finalweights for the weights in the final iteration.

See Also

Other generic score matching tools: cppad_closed(), cppad_search(), tape_smd()

Other Windham robustness functions: ppi_robust(), vMF_robust()

Examples

if (requireNamespace("movMF")){
Y <- movMF::rmovMF(1000, 100 * c(1, 1) / sqrt(2))

} else {
Y <- matrix(rnorm(1000 * 2, sd = 0.01), ncol = 2)
Y <- Y / sqrt(rowSums(Y^2))

}
Windham(Y = Y,

estimator = vMF,
ldenfun = function(Y, theta){ #here theta is km

return(drop(Y %*% theta))
},
cW = c(0.01, 0.01),
method = "Mardia")

Windham_populationinverse

Inverse Transform for the Population Parameters Under Windham
Weights

Windham_populationinverse 53

Description

Returns the matrix which reverses the effect of weights on a population for certain models.

Usage

Windham_populationinverse(cW)

Windham_populationinverse_alternative(newtheta, previoustheta, cW, cWav)

Arguments

cW A vector of tuning constants for the Windham robustification method performed
by Windham().

newtheta The parameter vector most recently estimated

previoustheta The parameter vector estimated in the previous step

cWav The value of the non-zero elements of cW. That is cW have elements that are zero
or equal to cWav.

Details

In the Windham robustification method (Windham()) the effect of weighting a population plays a
central role. When the the model density is proportional to exp(η(θ) ·T (u)), where T (u) is a vector
of sufficient statistics for a measurement u, and η is a linear function, Then weights proportional to
exp(η(c ◦ θ) · t(u)), where c is a vector of tuning constants and ◦ is the Hadamard (element-wise)
product, have a very simple effect on the population parameter vector θ: the weighted population
follows a density of the same form, but with a parameter vector of (1 + c) ◦ θ. The inverse of this
change to the parameter vector is then a matrix multiplication by a diagonal matrix with elements
1/(1 + ci), with ci denoting the elements of c.

Value

A diagonal matrix with the same number of columns as cW.

Functions

• Windham_populationinverse(): The matrix with diagonal elements 1/(1 + ci)

• Windham_populationinverse_alternative(): The transform implemented as described
by Scealy et al. (2024). It is mathematically equivalent to multiplication by the result of
Windham_populationinverse() in the situation in Scealy et al. (2024).

Index

∗ PPI model tools
dppi, 10
ppi, 16
ppi_param_tools, 22
ppi_robust, 24
rppi, 31

∗ Windham robustness functions
ppi_robust, 24
vMF_robust, 50
Windham, 50

∗ datasets
microbiome, 14

∗ directional model estimators
Bingham, 5
FB, 13
vMF, 48
vMF_robust, 50

∗ generic score matching tools
cppad_closed, 7
cppad_search, 8
tape_smd, 41
Windham, 50

∗ tape builders
tape_gradoffset, 38
tape_Hessian, 39
tape_Jacobian, 40
tape_logJacdet, 40
tape_smd, 41
tape_swap, 44
tape_uld, 45

∗ tape evaluators
evaltape, 11
quadratictape_parts, 26
smvalues, 36
testquadratic, 47

ADFun (Rcpp_ADFun-class), 28
as.matrix(), 39, 40

Bingham, 5, 13, 49, 50

Bingham(), 3

cppad_closed, 7, 9, 43, 52
cppad_closed(), 6, 16, 17, 19, 48, 49
cppad_search, 8, 8, 43, 52
cppad_search(), 17

dppi, 10, 19, 24, 25, 33

eval(), 39
evaltape, 11, 27, 37, 47
evaltape_wsum (evaltape), 11

FB, 6, 13, 49, 50
FB(), 3
FixedPoint::FixedPoint(), 25, 51
format(), 26

microbiome, 14
movMF::movMF(), 48

optimx::Rcgmin(), 3, 9, 17

ppi, 11, 16, 24, 25, 33
ppi(), 3, 10, 11, 22–25, 32, 42
ppi_cW, 20
ppi_cW(), 24, 51
ppi_cW_auto (ppi_cW), 20
ppi_cW_auto(), 24, 51
ppi_fromAstar (ppi_param_tools), 22
ppi_mmmm, 21
ppi_param_tools, 11, 19, 22, 25, 33
ppi_parammats (ppi_param_tools), 22
ppi_paramvec, 10, 31
ppi_paramvec (ppi_param_tools), 22
ppi_paramvec(), 11, 17, 23, 32
ppi_robust, 11, 19, 24, 24, 33, 50, 52
ppi_robust(), 17, 20, 25
ppi_robust_alrgengamma (ppi_robust), 24
ppi_smvalues (ppi), 16
ppi_toAstar (ppi_param_tools), 22

54

INDEX 55

print,Rcpp_ADFun, 26
print,Rcpp_ADFun-method

(print,Rcpp_ADFun), 26

quadratictape_parts, 12, 26, 37, 47
quadratictape_parts(), 8, 16, 19

Rcpp::C++Object, 26, 29
Rcpp::sourceCpp(), 45, 46
Rcpp_ADFun, 3, 7, 9, 12, 26, 30, 37, 42, 43
Rcpp_ADFun (Rcpp_ADFun-class), 28
Rcpp_ADFun-class, 28
rppi, 11, 19, 24, 25, 31
rppi_egmodel (rppi), 31
rsymmetricmatrix, 33

scorematchingad
(scorematchingad-package), 3

scorematchingad-package, 3
scorematchingtheory, 3, 7, 17, 18, 27, 34,

37, 41
show,Rcpp_ADFun-method

(print,Rcpp_ADFun), 26
smvalues, 12, 27, 36, 47
smvalues(), 16
smvalues_wsum (smvalues), 36

tape_gradoffset, 38, 39–41, 43, 45, 46
tape_gradoffset(), 16, 27
tape_Hessian, 38, 39, 40, 41, 43, 45, 46
tape_Hessian(), 27
tape_Jacobian, 38, 39, 40, 41, 43, 45, 46
tape_Jacobian(), 30, 47
tape_logJacdet, 38–40, 40, 43, 45, 46
tape_smd, 8, 9, 38–41, 41, 45, 46, 52
tape_smd(), 27, 37
tape_swap, 38–41, 43, 44, 46
tape_swap(), 30
tape_uld, 38–41, 43, 45, 45
tape_uld(), 3, 42
tape_uld_inbuilt (tape_uld), 45
testquadratic, 12, 27, 37, 47
testquadratic(), 7
tools::file_ext(), 45

upper.tri(), 23

vMF, 6, 13, 48, 50
vMF(), 3, 13, 50
vMF_robust, 6, 13, 25, 49, 50, 52

Windham, 8, 9, 25, 43, 50, 50
Windham(), 3, 17, 20, 21, 24, 25, 50, 53
Windham_populationinverse, 52
Windham_populationinverse(), 51
Windham_populationinverse_alternative

(Windham_populationinverse), 52
Windham_populationinverse_alternative(),

51

	scorematchingad-package
	Bingham
	cppad_closed
	cppad_search
	dppi
	evaltape
	FB
	microbiome
	ppi
	ppi_cW
	ppi_mmmm
	ppi_param_tools
	ppi_robust
	print,Rcpp_ADFun
	quadratictape_parts
	Rcpp_ADFun-class
	rppi
	rsymmetricmatrix
	scorematchingtheory
	smvalues
	tape_gradoffset
	tape_Hessian
	tape_Jacobian
	tape_logJacdet
	tape_smd
	tape_swap
	tape_uld
	testquadratic
	vMF
	vMF_robust
	Windham
	Windham_populationinverse
	Index

