Package 'scout'

July 23, 2025

Title Implements the Scout Method for Covariance-Regularized

Type Package

Regression
Version 1.0.4
Date 2015-07-09
Author Daniela M. Witten and Robert Tibshirani
Maintainer Daniela M. Witten <dwitten@uw.edu></dwitten@uw.edu>
Imports glasso, stats, grDevices, graphics
Suggests lars
Description Implements the Scout method for regression, described in ``Covariance-regularized regression and classification for high-dimensional problems", by Witten and Tibshirani (2008), Journal of the Royal Statistical Society, Series B 71(3): 615-636.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-07-10 20:41:38
Contents
scout-package 2 crossProdLasso 3 cv.scout 5 predict.scoutobject 7 print.cvobject 8 print.scoutobject 9 scout 10
Index 13

2 scout-package

scout-package

Implements covariance-regularized regression, aka the Scout Method.

Description

Functions for implementing covariance-regularize regression.

Details

Package: scout
Type: Package
Version: 1.0
Date: 2008-11-20

Date: 2008-11-20 License: GPL (>=2)

The main function is "scout", which takes in a data matrix x and an outcome vector y and estimates regression coefficients for Scout(2,1) for a range of tuning parameter values. Alternatively one can specify other tuning parameter values and one can also perform Scout(1,1), Scout(2,.), or Scout(1,.). Cross-validation and prediction functions also are available.

Author(s)

Daniela Witten and Robert Tibshirani

Maintainer: Daniela Witten <dwitten@stanford.edu>

References

Witten and Tibshirani (2008) Covariance-regularized regression and classification for high-dimensional problems. Journal of the Royal Statistical Society, Series B 71(3): 615-636.

See Also

http://www-stat.stanford.edu/~dwitten

```
library(lars)
data(diabetes)
attach(diabetes)
## Not run: cv.out <- cv.scout(x2,y,p1=1,p2=1,K=3)
## Not run: print(cv.out)
## Not run: out <- scout(x2,y,p1=1,p2=1,lam1=cv.out$bestlam1,lam2=cv.out$bestlam2)
## Not run: coef <- out$coef[1,1,]
detach(diabetes)</pre>
```

crossProdLasso 3

crossProdLasso	Performs the lasso on the cross product matrices X'X and X'y

Description

Perform L1-regularized regression of y onto X using only the cross-product matrices X'X and X'y. In the case of covariance-regularized regression, this is useful if you would like to try out something other than L1 or L2 regularization of the inverse covariance matrix.

Suppose you use your own method to regularize X'X. Then let Sigma denote your estimate of the population covariance matrix. Now say you want to minimize beta' Sigma beta - 2 beta' X'y + lambda ||beta||_1 in order to get the regression estimate beta, which maximizes the second scout criterion when an L_1 penalty is used. You can do this by calling crossProdLasso(Sigma, X'y,rho).

If you run crossProdLasso(X'X,X'y,rho) then it should give the same result as lars(X,y)

Notice that the xtx that you pass into this function must be POSITIVE SEMI DEFINITE (or positive definite) or the problem is not convex and the algorithm will not converge.

Usage

crossProdLasso(xtx,xty,rho,thr=1e-4,maxit=100,beta.init=NULL)

Arguments

xtx	A pxp matrix, which should be an estimate of a covariance matrix. This matrix must be POSITIVE SEMI DEFINITE (or positive definite) or the problem is not convex and the algorithm will not converge.
xty	A px1 vector, which is generally obtained via X'y.
rho	Must be non-negative; the regularization parameter you are using.
thr	Convergence threshold.
maxit	How many iterations to perform?
beta.init	If you're running this over a range of rho values, then set beta.init equal to the solution you got for a previous rho value. It will speed things up.

Details

If your xtx is simply X'X for some X, and your xty is simple X'y with some y, then the results will be the same as running lars on data (X,y) for a single shrinkage parameter value.

Note that when you use the scout function with p2=1, the crossProdLasso function is called internally to give the regression coefficients, after the regularized inverse covariance matrix is estimated. It is provided here in case it is useful to the user in other settings.

Value

beta A px1 vector with the regression coefficients.

4 crossProdLasso

Note

The FORTRAN code that this function links to was kindly written and provided by Jerry Friedman.

Author(s)

FORTRAN code by Jerry Friedman. R interface by Daniela M. Witten and Robert Tibshirani

References

Witten, DM and Tibshirani, R (2008) Covariance-regularized regression and classification for high-dimensional problems. Journal of the Royal Statistical Society, Series B 71(3): 615-636. http://www-stat.stanford.edu/~dwitten

```
set.seed(1)
#data(diabetes)
#attach(diabetes)
x2 <- matrix(rnorm(10*20),ncol=20)</pre>
y <- rnorm(10)
# First, let's do scout(2,1) the usual way).
scout.out <- scout(x2,y,p1=2,p2=1)
print(scout.out)
# Now, suppose I want to do develop a covariance-regularized regression
# method as in Section 3.2 of Witten and Tibshirani (2008). It will work
# like this:
# 1. Develop some positive definite estimate of Sigma
# 2. Find \beta by minimize \beta^T \Sigma \beta - 2 \beta^T X^T y +
# \lamda ||\beta||_1
# 3. Re-scale \beta.
# Step 1:
regcovx < cov(x2)*(abs(cov(x2))>.005) + diag(ncol(x2))*.01
# Step 2:
betahat <- crossProdLasso(regcovx, cov(x2,y), rho=.02)$beta
# Step 3:
betahat.sc <- betahat*lsfit(x2%*%betahat, y, intercept=FALSE)$coef
print(betahat.sc)
# Try a different value of rho:
betahat2 <- crossProdLasso(regcovx,cov(x2,y),rho=.04,beta.init=betahat)$beta
plot(betahat, betahat2, xlab="rho=.02", ylab="rho=.04")
#detach(diabetes)
```

cv.scout 5

the Scout.	cv.scout	Perform cross-validation for covariance-regularized regression, aka the Scout.
------------	----------	--

Description

This function returns cross-validation error rates for a range of lambda1 and lambda2 values, and also makes beautiful CV plots if plot=TRUE.

Usage

```
cv.scout(x, y, K= 10,
    lam1s=seq(0.001,.2,len=10),lam2s=seq(0.001,.2,len=10),p1=2,p2=1,
    trace = TRUE, plot=TRUE,plotSE=FALSE,rescale=TRUE,...)
```

Arguments

A matrix of predictors, where the rows are the samples and the columns are the predictors Y A matrix of observations, where length(y) should equal nrow(x) K Number of cross-validation folds to be performed; default is 10 1am1s The (vector of) tuning parameters for regularization of the covariance matrix. Can be NULL if p1=NULL, since then no covariance regularization is taking place. If p1=1 and nrow(x) <ncol(x), 1e-3,="" also,="" be="" because="" cause="" graphical="" if="" in="" lam1s="" lasso="" long.="" ncol(x)="" no="" should="" smaller="" take="" than="" the="" then="" this="" to="" too="" value="" will="">500 then we really do not recommend using p1=1, as graphical lasso can be uncomfortably slow. 1am2s The (vector of) tuning parameters for the \$L_1\$ regularization of the regression coefficients, using the regularized covariance matrix. Can be NULL if p2=NULL. (If p2=NULL, then non-zero lam2s have no effect). A value of 0 will result in no regularization. p1 The \$L_p\$ penalty for the covariance regularization. Must be one of 1, 2, or NULL. NULL corresponds to no covariance regularization. p2 The \$L_p\$ penalty for the estimation of the regression coefficients based on the regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or NULL (for no regularization). trace Print out progress as we go? Default is TRUE. plot If TRUE (by default), makes beautiful CV plots. Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage Additional parameters</ncol(x),>	•	•	
Number of cross-validation folds to be performed; default is 10 The (vector of) tuning parameters for regularization of the covariance matrix. Can be NULL if p1=NULL, since then no covariance regularization is taking place. If p1=1 and nrow(x) <ncol(x), 1e-3,="" also,="" be="" because="" cause="" graphical="" if="" in="" lam1s="" lasso="" long.="" ncol(x)="" no="" should="" smaller="" take="" than="" the="" then="" this="" to="" too="" value="" will="">500 then we really do not recommend using p1=1, as graphical lasso can be uncomfortably slow. The (vector of) tuning parameters for the \$L_1\$ regularization of the regression coefficients, using the regularized covariance matrix. Can be NULL if p2=NULL. (If p2=NULL, then non-zero lam2s have no effect). A value of 0 will result in no regularization. p1 The \$L_p\$ penalty for the covariance regularization. Must be one of 1, 2, or NULL. NULL corresponds to no covariance regularization. p2 The \$L_p\$ penalty for the estimation of the regression coefficients based on the regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or NULL (for no regularization). trace Print out progress as we go? Default is TRUE. plot If TRUE (by default), makes beautiful CV plots. Should those beautiful CV plots also display std error bars for the CV? Default is FALSE Scout rescales coefficients, by default, in order to avoid over-shrinkage</ncol(x),>		х	
The (vector of) tuning parameters for regularization of the covariance matrix. Can be NULL if p1=NULL, since then no covariance regularization is taking place. If p1=1 and nrow(x) <ncol(x), 1e-3,="" also,="" be="" because="" cause="" graphical="" if="" in="" lam1s="" lasso="" long.="" ncol(x)="" no="" should="" smaller="" take="" than="" the="" then="" this="" to="" too="" value="" will="">500 then we really do not recommend using p1=1, as graphical lasso can be uncomfortably slow. 1am2s The (vector of) tuning parameters for the \$L_1\$ regularization of the regression coefficients, using the regularized covariance matrix. Can be NULL if p2=NULL. (If p2=NULL, then non-zero lam2s have no effect). A value of 0 will result in no regularization. p1 The \$L_p\$ penalty for the covariance regularization. Must be one of 1, 2, or NULL. NULL corresponds to no covariance regularization. p2 The \$L_p\$ penalty for the estimation of the regression coefficients based on the regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or NULL (for no regularization). trace Print out progress as we go? Default is TRUE. plot If TRUE (by default), makes beautiful CV plots. Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage</ncol(x),>		у	A matrix of observations, where length(y) should equal nrow(x)
Can be NULL if p1=NULL, since then no covariance regularization is taking place. If p1=1 and nrow(x) <ncol(x), 1e-3,="" also,="" be="" because="" cause="" graphical="" if="" in="" lam1s="" lasso="" long.="" ncol(x)="" no="" should="" smaller="" take="" than="" the="" then="" this="" to="" too="" value="" will="">500 then we really do not recommend using p1=1, as graphical lasso can be uncomfortably slow. 1am2s The (vector of) tuning parameters for the \$L_1\$ regularization of the regression coefficients, using the regularized covariance matrix. Can be NULL if p2=NULL. (If p2=NULL, then non-zero lam2s have no effect). A value of 0 will result in no regularization. p1 The \$L_p\$ penalty for the covariance regularization. Must be one of 1, 2, or NULL. NULL corresponds to no covariance regularization. p2 The \$L_p\$ penalty for the estimation of the regression coefficients based on the regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or NULL (for no regularization). trace Print out progress as we go? Default is TRUE. plot If TRUE (by default), makes beautiful CV plots. Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage</ncol(x),>		K	Number of cross-validation folds to be performed; default is 10
sion coefficients, using the regularized covariacne matrix. Can be NULL if p2=NULL. (If p2=NULL, then non-zero lam2s have no effect). A value of 0 will result in no regularization. p1 The \$L_p\$ penalty for the covariance regularization. Must be one of 1, 2, or NULL. NULL corresponds to no covariance regularization. p2 The \$L_p\$ penalty for the estimation of the regression coefficients based on the regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or NULL (for no regularization). trace Print out progress as we go? Default is TRUE. plot If TRUE (by default), makes beautiful CV plots. plotSE Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage		lam1s	Can be NULL if p1=NULL, since then no covariance regularization is taking place. If p1=1 and $nrow(x) < ncol(x)$, then the no value in lam1s should be smaller than 1e-3, because this will cause graphical lasso to take too long. Also, if $ncol(x) > 500$ then we really do not recommend using p1=1, as graphical lasso
NULL. NULL corresponds to no covariance regularization. P2 The \$L_p\$ penalty for the estimation of the regression coefficients based on the regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or NULL (for no regularization). trace Print out progress as we go? Default is TRUE. plot If TRUE (by default), makes beautiful CV plots. plotSE Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage		lam2s	sion coefficients, using the regularized covariacne matrix. Can be NULL if $p2=NULL$. (If $p2=NULL$, then non-zero lam2s have no effect). A value of 0
regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or NULL (for no regularization). trace Print out progress as we go? Default is TRUE. plot If TRUE (by default), makes beautiful CV plots. plotSE Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage		p1	· · · · · · · · · · · · · · · · · · ·
plot If TRUE (by default), makes beautiful CV plots. plotSE Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage		p2	regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or
plotSE Should those beautiful CV plots also display std error bars for the CV? Default is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage		trace	Print out progress as we go? Default is TRUE.
is FALSE rescale Scout rescales coefficients, by default, in order to avoid over-shrinkage		plot	If TRUE (by default), makes beautiful CV plots.
•		plotSE	± • • • • • • • • • • • • • • • • • • •
Additional parameters		rescale	Scout rescales coefficients, by default, in order to avoid over-shrinkage
			Additional parameters

6 cv.scout

Details

Pass in a data matrix x and a vector of outcomes y; it will perform (10-fold) cross-validation over a range of lambda1 and lambda2 values. By default, Scout(2,1) is performed.

Value

folds	The indices of the members of the K test sets are returned.
cv	A matrix of average cross-validation errors is returned.
cv.error	A matrix containing the standard errors of the elements in "cv", the matrix of average cross-validation errors.
bestlam1	Best value of lam1 found via cross-validation.
bestlam2	Best value fo lam2 found via cross-validation.
lam1s	Values of lam1 considered.
lam2s	Values of lam2 considered.

Author(s)

Daniela M. Witten and Robert Tibshirani

References

Witten, DM and Tibshirani, R (2008) Covariance-regularized regression and classification for high-dimensional problems. Journal of the Royal Statistical Society, Series B 71(3): 615-636. http://www-stat.stanford.edu/~dwitten

See Also

scout, predict.scoutobject

```
library(lars)
data(diabetes)
attach(diabetes)
par(mfrow=c(2,1))
par(mar=c(2,2,2,2))
## Not run: cv.sc <- cv.scout(x2,y,p1=2,p2=1)
## Not run: print(cv.sc)
## Not run: cv.la <- cv.lars(x2,y)
## Not run: print(c("Lars minimum CV is ", min(cv.la$cv)))
## Not run: print(c("Scout(2,1) minimum CV is ", min(cv.sc$cv)))
detach(diabetes)</pre>
```

predict.scoutobject 7

predict.scoutobject	Prediction function for covariance-regularized regression, aka the Scout.
	_

Description

A function to perform prediction, using an x matrix and the output of the "scout" function.

Usage

```
## S3 method for class 'scoutobject'
predict(object, newx, ...)
```

Arguments

object The results of a call to the "scout" function. The coefficients that are part of this

object will be used for making predictions.

newx The new x at which predictions should be made. Can be a vector of length

ncol(x), where x is the data on which scout.obj was created, or a matrix with

ncol(x) columns.

. . . Additional arguments to predict

Value

yhat If newx was a vector, then a matrix will be returned, with dimension length(lam1s)xlength(lam2s)

(where lam1s and lam2s are attributes of scout.obj). The (i,j) element of this matrix will correspond to tuning parameter values (lam1s[i], lam2s[j]). If newx is a matrix, then an array of dimension nrow(newx)xlength(lam1s)xlength(lam2s)

will be returned.

Author(s)

Daniela M. Witten and Robert Tibshirani

References

Witten, DM and Tibshirani, R (2008) Covariance-regularized regression and classification for high-dimensional problems. Journal of the Royal Statistical Society, Series B 71(3): 615-636. http://www-stat.stanford.edu/~dwitten

See Also

scout, cv.scout

8 print.cvobject

Examples

```
library(lars)
data(diabetes)
attach(diabetes)
# Split data into training and test set
training <- sample(nrow(x2),floor(nrow(x2)/2))</pre>
xtrain <- x2[training,]</pre>
ytrain <- y[training]</pre>
xtest <- x2[-training,]</pre>
ytest <- y[-training]</pre>
# Done splitting data into training and test set
# Do cross-validation to determine best tuning parameter values for Scout(1,1)
## Not run: cv.out <- cv.scout(xtrain,ytrain,p1=1,p2=1, lam1s=seq(0.001,.15,len=5),K=4)
## Not run: print(cv.out)
# Done cross-validation
## Fit Model
#scout.object <- scout(xtrain,ytrain,p1=1,p2=1,lam1s=cv.out$bestlam1,lam2s=cv.out$bestlam2)</pre>
#print(scout.object)
## Done Fitting Model
## Predict on test data, and report MSE
#yhats <- predict(scout.object,xtest)</pre>
#print(mean((yhats-ytest)^2))
detach(diabetes)
```

print.cvobject

Print function for scout

Description

A function to print CV output for scout

Usage

```
## S3 method for class 'cvobject' print(x,...)
```

Arguments

x The results of a call to the "cv.scout" function.

... Additional arguments; ignored.

Author(s)

Daniela M. Witten and Robert Tibshirani

References

Witten, DM and Tibshirani, R (2008) Covariance-regularized regression and classification for high-dimensional problems. Journal of the Royal Statistical Society, Series B 71(3): 615-636.

print.scoutobject 9

See Also

```
scout, cv.scout
```

Examples

```
library(lars)
data(diabetes)
attach(diabetes)
# Split data into training and test set
training <- sample(nrow(x2),floor(nrow(x2)/2))
xtrain <- x2[training,]
ytrain <- y[training]
# Done splitting data into training and test set
# Do cross-validation to determine best tuning parameter values for Scout(1,1)
## Not run: cv.out <- cv.scout(xtrain,ytrain,p1=1,p2=1, lam1s=seq(0.001,0.1), K=4)
## Not run: print(cv.out)
# Done cross-validation
detach(diabetes)</pre>
```

print.scoutobject

Print function for scout

Description

A function to print scout output

Usage

```
## S3 method for class 'scoutobject'
print(x,...)
```

Arguments

x The results of a call to the "scout" function.

... additional arguments; these are ignored.

Author(s)

Daniela M. Witten and Robert Tibshirani

References

Witten, DM and Tibshirani, R (2008) Covariance-regularized regression and classification for high-dimensional problems. Journal of the Royal Statistical Society, Series B 71(3): 615-636. http://www-stat.stanford.edu/~dwitten

See Also

scout, cv.scout

10 scout

Examples

```
library(lars)
data(diabetes)
attach(diabetes)
# Split data into training and test set
training <- sample(nrow(x2),floor(nrow(x2)/2))
xtrain <- x2[training,]
ytrain <- y[training]
xtest <- x2[-training,]
ytest <- y[-training]
# Done splitting data into training and test set
# Fit Model
scout.object <- scout(xtrain,ytrain,p1=1,p2=1,lam1s=c(0.001,0.1),lam2s=c(0.01,0.2))
print(scout.object)
# Done Fitting Model
detach(diabetes)</pre>
```

scout

Covariance-regularized regression, aka the Scout.

Description

The main function of the "scout" package. Performs covariance-regularized regression. Required inputs are an x matrix of features (the columns are the features) and a y vector of observations. By default, Scout(2,1) is performed; however, \$p_1\$ and \$p_2\$ can be specified (in which case Scout(\$p_1\$, \$p_2\$) is performed). Also, by default Scout is performed over a grid of lambda1 and lambda2 values, but a different grid of values (or individual values, rather than an entire grid) can be specified.

Usage

```
scout(x,y,newx,p1=2,p2=1,lam1s=seq(.001,.2,len=10),lam2s=seq(.001,.2,len=10), rescale=TRUE, trace=TRUE, standardize=TRUE)
```

Arguments

X	A matrix of predictors, where the rows are the samples and the columns are the predictors
у	A matrix of observations, where length(y) should equal nrow(x)
newx	An *optional* argument, consisting of a matrix with ncol(x) columns, at which one wishes to make predictions for each (lam1,lam2) pair.
p1	The L_p penalty for the covariance regularization. Must be one of 1, 2, or NULL. NULL corresponds to no covariance regularization. WARNING: When p1=1, and $ncol(x)>500$, Scout can be SLOW. We recommend that for very large data sets, you use Scout with p1=2. Also, when $ncol(x)>nrow(x)$ and p1=1, then very small values of lambda1 (lambda1 < 1e-4) will cause problems with graphical lasso, and so those values will be automatically increased to 1e-4.

scout 11

p2 The \$L_p\$ penalty for the estimation of the regression coefficients based on the

regularized covariance matrix. Must be one of 1 (for \$L_1\$ regularization) or

NULL (for no regularization).

lam1s The (vector of) tuning parameters for regularization of the covariance matrix.

Can be NULL if p1=NULL, since then no covariance regularization is taking place. If p1=1 and nrow(x)< ncol(x), then the no value in lam1s should be smaller than 1e-3, because this will cause graphical lasso to take too long. Also, if ncol(x)>500 then we really do not recommend using p1=1, as graphical lasso

can be uncomfortably slow.

lam2s The (vector of) tuning parameters for the \$L_1\$ regularization of the regres-

sion coefficients, using the regularized covariance matrix. Can be NULL if p2=NULL. (If p2=NULL, then non-zero lam2s have no effect). A value of 0

will result in no regularization.

rescale Should coefficients beta obtained by covariance-regularized regression be re-

scaled by a constant, given by regressing \$y\$ onto \$x beta\$? This is done in Witten and Tibshirani (2008) and is important for good performance. Default is

TRUE.

trace Print out progress? Prints out each time a lambda1 is completed. This is a good

idea, especially when ncol(x) is large.

standardize Should the columns of x be scaled to have standard deviation 1, and should y

be scaled to have standard deviation 1, before covariance-regularized regression is performed? This affects the meaning of the penalties that are applied. In

general, standardization should be performed. Default is TRUE.

Value

intercepts Returns a matrix of intercepts, of dimension length(lam1s)xlength(lam2s)

coefficients Returns an array of coefficients, of dimension length(lam1s)xlength(lam2s)xncol(x).

p1 p1 value used p2 p2 value used lam1s lam1s used lam2s used

Note

When p1=1 and ncol(x)>500 or so, then Scout can be very slow!! Please use p1=2 when ncol(x) is large.

Author(s)

Daniela M. Witten and Robert Tibshirani

References

Witten, DM and Tibshirani, R (2008) Covariance-regularized regression and classification for high-dimensional problems. Journal of the Royal Statistical Society, Series B 71(3): 615-636. http://www-stat.stanford.edu/~dwitten

12 scout

See Also

predict.scoutobject, cv.scout

```
library(lars)
data(diabetes)
attach(diabetes)
scout.out <- scout(x2,y,p1=2,p2=1)
print(scout.out)
detach(diabetes)</pre>
```

Index

```
* package
scout-package, 2
crossProdLasso, 3
cv.scout, 5, 7, 9, 12
predict.scoutobject, 6, 7, 12
print.cvobject, 8
print.scoutobject, 9
scout, 6, 7, 9, 10
scout-package, 2
```