
Package ‘seqtrie’
July 23, 2025

Title Radix Tree and Trie-Based String Distances

Version 0.2.9

Date 2025-03-01

Description A collection of Radix Tree and Trie algorithms for finding similar sequences and calculat-
ing sequence distances (Levenshtein and other distance metrics). This work was in-
spired by a trie implementation in Python: ``Fast and Easy Levenshtein distance us-
ing a Trie.'' Hanov (2011) <https://stevehanov.ca/blog/index.php?id=114>.

License GPL-3

Biarch true

Encoding UTF-8

Depends R (>= 3.5.0)

LazyData true

SystemRequirements GNU make

LinkingTo Rcpp, RcppParallel, BH

Imports Rcpp (>= 0.12.18.3), RcppParallel (>= 5.1.3), R6, rlang,
dplyr, stringi

Suggests knitr, rmarkdown, stringdist, qs, Biostrings, pwalign,
igraph, ggplot2

VignetteBuilder knitr

RoxygenNote 7.3.2

Copyright This package includes code from the 'span-lite' library
owned by Martin Moene under Boost Software License 1.0. This
package includes code from the 'ankerl' library owned by Martin
Leitner-Ankerl under MIT License. This package contains data
derived from Adaptive Biotechnologies ``ImmuneCODE'' dataset
under Creative Commons Attribution 4.0.

URL https://github.com/traversc/seqtrie

BugReports https://github.com/traversc/seqtrie/issues

NeedsCompilation yes

1

https://stevehanov.ca/blog/index.php?id=114
https://github.com/traversc/seqtrie
https://github.com/traversc/seqtrie/issues

2 covid_cdr3

Author Travers Ching [aut, cre, cph],
Martin Moene [ctb, cph] (span-lite C++ library),
Steve Hanov [ctb] (Trie levenshtein implementation in Python),
Martin Leitner-Ankerl [ctb] (Ankerl unordered dense hashmap)

Maintainer Travers Ching <traversc@gmail.com>

Repository CRAN

Date/Publication 2025-03-02 09:30:05 UTC

Contents

covid_cdr3 . 2
dist_matrix . 3
dist_pairwise . 4
dist_search . 6
generate_cost_matrix . 8
RadixForest . 8
RadixTree . 12
split_search . 16

Index 18

covid_cdr3 Adaptive COVID TCRB CDR3 data

Description

Unique TCRB CDR3 sequences from the Nolan et al. 2020. CDR3s were extracted via IgBLAST.
The license for this data is Creative Commons Attribution 4.0 International License.

Usage

data(covid_cdr3)

Format

A character vector of length 133,034.

References

Nolan, Sean, et al. "A large-scale database of T-cell receptor beta (TCRB) sequences and binding
associations from natural and synthetic exposure to SARS-CoV-2." (2020). doi: 10.21203/rs.3.rs-
51964/v1.

dist_matrix 3

Examples

data(covid_cdr3)
Average CDR3 length
mean(nchar(covid_cdr3)) # [1] 43.56821

dist_matrix Compute distances between all combinations of two sets of sequences

Description

Compute distances between all combinations of query and target sequences

Usage

dist_matrix(
query,
target,
mode,
cost_matrix = NULL,
gap_cost = NULL,
gap_open_cost = NULL,
nthreads = 1,
show_progress = FALSE

)

Arguments

query A character vector of query sequences.

target A character vector of target sequences.

mode The distance metric to use. One of hamming (hm), global (gb) or anchored (an).

cost_matrix A custom cost matrix for use with the "global" or "anchored" distance metrics.
See details.

gap_cost The cost of a gap for use with the "global" or "anchored" distance metrics. See
details.

gap_open_cost The cost of a gap opening. See details.

nthreads The number of threads to use for parallel computation.

show_progress Whether to show a progress bar.

4 dist_pairwise

Details

This function calculates all combinations of pairwise distances based on Hamming, Levenshtein or
Anchored algorithms. The output is a NxM matrix where N = length(query) and M = length(target).
Note: this can take a really long time; be careful with input size.

Three types of distance metrics are supported, based on the form of alignment performed. These
are: Hamming, Global (Levenshtein) and Anchored.

An anchored alignment is a form of semi-global alignment, where the query sequence is "anchored"
(global) to the beginning of both the query and target sequences, but is semi-global in that the end
of the either the query sequence or target sequence (but not both) can be unaligned. This type of
alignment is sometimes called an "extension" alignment in literature.

In contrast a global alignment must align the entire query and target sequences. When mismatch
and indel costs are equal to 1, this is also known as the Levenshtein distance.

By default, if mode == "global" or "anchored", all mismatches and indels are given a cost of 1.
However, you can define your own distance metric by setting the cost_matrix and gap parameters.
The cost_matrix is a strictly positive square integer matrix and should include all characters in query
and target as column- and rownames. To set the cost of a gap (insertion or deletion) you can include
a row and column named "gap" in the cost_matrix OR set the gap_cost parameter (a single positive
integer). Similarly, the affine gap alignment can be set by including a row and column named
"gap_open" in the cost_matrix OR setting the gap_open_cost parameter (a single positive integer).
If affine alignment is used, the cost of a gap is defined as: TOTAL_GAP_COST = gap_open_cost
+ (gap_cost * gap_length).

If mode == "hamming" all alignment parameters are ignored; mismatch is given a distance of 1 and
gaps are not allowed.

Value

The output is a distance matrix between all query (rows) and target (columns) sequences. For
anchored searches, the output also includes attributes "query_size" and "target_size" which are
matrices containing the lengths of the query and target sequences that are aligned.

Examples

dist_matrix(c("ACGT", "AAAA"), c("ACG", "ACGT"), mode = "global")

dist_pairwise Pairwise distance between two sets of sequences

Description

Compute the pairwise distance between two sets of sequences

dist_pairwise 5

Usage

dist_pairwise(
query,
target,
mode,
cost_matrix = NULL,
gap_cost = NULL,
gap_open_cost = NULL,
nthreads = 1,
show_progress = FALSE

)

Arguments

query A character vector of query sequences.

target A character vector of target sequences.. Must be the same length as query.

mode The distance metric to use. One of hamming (hm), global (gb) or anchored (an).

cost_matrix A custom cost matrix for use with the "global" or "anchored" distance metrics.
See details.

gap_cost The cost of a gap for use with the "global" or "anchored" distance metrics. See
details.

gap_open_cost The cost of a gap opening. See details.

nthreads The number of threads to use for parallel computation.

show_progress Whether to show a progress bar.

Details

This function calculates pairwise distances based on Hamming, Levenshtein or Anchored algo-
rithms. query and target must be the same length.

Three types of distance metrics are supported, based on the form of alignment performed. These
are: Hamming, Global (Levenshtein) and Anchored.

An anchored alignment is a form of semi-global alignment, where the query sequence is "anchored"
(global) to the beginning of both the query and target sequences, but is semi-global in that the end
of the either the query sequence or target sequence (but not both) can be unaligned. This type of
alignment is sometimes called an "extension" alignment in literature.

In contrast a global alignment must align the entire query and target sequences. When mismatch
and indel costs are equal to 1, this is also known as the Levenshtein distance.

By default, if mode == "global" or "anchored", all mismatches and indels are given a cost of 1.
However, you can define your own distance metric by setting the cost_matrix and gap parameters.
The cost_matrix is a strictly positive square integer matrix and should include all characters in query
and target as column- and rownames. To set the cost of a gap (insertion or deletion) you can include
a row and column named "gap" in the cost_matrix OR set the gap_cost parameter (a single positive
integer). Similarly, the affine gap alignment can be set by including a row and column named
"gap_open" in the cost_matrix OR setting the gap_open_cost parameter (a single positive integer).

6 dist_search

If affine alignment is used, the cost of a gap is defined as: TOTAL_GAP_COST = gap_open_cost
+ (gap_cost * gap_length).

If mode == "hamming" all alignment parameters are ignored; mismatch is given a distance of 1 and
gaps are not allowed.

Value

The output of this function is a vector of distances. If mode == "anchored" then the output also
includes attributes "query_size" and "target_size" which are vectors containing the lengths of the
query and target sequences that are aligned.

Examples

dist_pairwise(c("ACGT", "AAAA"), c("ACG", "ACGT"), mode = "global")

dist_search Distance search for similar sequences

Description

Find similar sequences within a distance threshold

Usage

dist_search(
query,
target,
max_distance = NULL,
max_fraction = NULL,
mode = "levenshtein",
cost_matrix = NULL,
gap_cost = NULL,
gap_open_cost = NULL,
tree_class = "RadixTree",
nthreads = 1,
show_progress = FALSE

)

Arguments

query A character vector of query sequences.

target A character vector of target sequences.

max_distance how far to search in units of absolute distance. Can be a single value or a vector.
Mutually exclusive with max_fraction.

max_fraction how far to search in units of relative distance to each query sequence length.
Can be a single value or a vector. Mutually exclusive with max_distance.

dist_search 7

mode The distance metric to use. One of hamming (hm), global (gb) or anchored (an).

cost_matrix A custom cost matrix for use with the "global" or "anchored" distance metrics.
See details.

gap_cost The cost of a gap for use with the "global" or "anchored" distance metrics. See
details.

gap_open_cost The cost of a gap opening. See details.

tree_class Which R6 class to use. Either RadixTree or RadixForest (default: RadixTree)

nthreads The number of threads to use for parallel computation.

show_progress Whether to show a progress bar.

Details

This function finds all sequences in target that are within a distance threshold of any sequence in
query. This function uses either a RadixTree or RadixForest to store target sequences. See the R6
class documentation for additional details.

Three types of distance metrics are supported, based on the form of alignment performed. These
are: Hamming, Global (Levenshtein) and Anchored.

An anchored alignment is a form of semi-global alignment, where the query sequence is "anchored"
(global) to the beginning of both the query and target sequences, but is semi-global in that the end
of the either the query sequence or target sequence (but not both) can be unaligned. This type of
alignment is sometimes called an "extension" alignment in literature.

In contrast a global alignment must align the entire query and target sequences. When mismatch
and indel costs are equal to 1, this is also known as the Levenshtein distance.

By default, if mode == "global" or "anchored", all mismatches and indels are given a cost of 1.
However, you can define your own distance metric by setting the cost_matrix and gap parameters.
The cost_matrix is a strictly positive square integer matrix and should include all characters in query
and target as column- and rownames. To set the cost of a gap (insertion or deletion) you can include
a row and column named "gap" in the cost_matrix OR set the gap_cost parameter (a single positive
integer). Similarly, the affine gap alignment can be set by including a row and column named
"gap_open" in the cost_matrix OR setting the gap_open_cost parameter (a single positive integer).
If affine alignment is used, the cost of a gap is defined as: TOTAL_GAP_COST = gap_open_cost
+ (gap_cost * gap_length).

If mode == "hamming" all alignment parameters are ignored; mismatch is given a distance of 1 and
gaps are not allowed.

Value

The output is a data.frame of all matches with columns "query" and "target". For anchored searches,
the output also includes attributes "query_size" and "target_size" which are vectors containing the
portion of the query and target sequences that are aligned.

Examples

dist_search(c("ACGT", "AAAA"), c("ACG", "ACGT"), max_distance = 1, mode = "levenshtein")

8 RadixForest

generate_cost_matrix Generate a simple cost matrix

Description

Generate a cost matrix for use with the search method

Usage

generate_cost_matrix(
charset,
match = 0L,
mismatch = 1L,
gap = NULL,
gap_open = NULL

)

Arguments

charset A string representing all possible characters in both query and target sequences
(e.g. "ACGT")

match The cost of a match

mismatch The cost of a mismatch

gap The cost of a gap or NULL if this parameter will be set later.

gap_open The cost of a gap opening or NULL. If this parameter is set, gap must also be
set.

Value

A cost matrix

Examples

generate_cost_matrix("ACGT", match = 0, mismatch = 1)

RadixForest RadixForest

Description

Radix Forest class implementation

RadixForest 9

Details

The RadixForest class is a specialization of the RadixTree implementation. Instead of putting se-
quences into a single tree, the RadixForest class puts sequences into separate trees based on se-
quence length. This allows for faster searching of similar sequences based on Hamming or Lev-
enshtein distance metrics. Unlike the RadixTree class, the RadixForest class does not support an-
chored searches or a custom cost matrix. See RadixTree for additional details.

Public fields

forest_pointer Map of sequence length to RadixTree

char_counter_pointer Character count data for the purpose of validating input

Methods

Public methods:
• RadixForest$new()

• RadixForest$show()

• RadixForest$to_string()

• RadixForest$graph()

• RadixForest$to_vector()

• RadixForest$size()

• RadixForest$insert()

• RadixForest$erase()

• RadixForest$find()

• RadixForest$prefix_search()

• RadixForest$search()

• RadixForest$validate()

Method new(): Create a new RadixForest object

Usage:
RadixForest$new(sequences = NULL)

Arguments:

sequences A character vector of sequences to insert into the forest

Method show(): Print the forest to screen

Usage:
RadixForest$show()

Method to_string(): Print the forest to a string

Usage:
RadixForest$to_string()

Method graph(): Plot of the forest using igraph

Usage:

10 RadixForest

RadixForest$graph(depth = -1, root_label = "root", plot = TRUE)

Arguments:

depth The tree depth to plot for each tree in the forest.
root_label The label of the root node(s) in the plot.
plot Whether to create a plot or return the data used to generate the plot.

Returns: A data frame of parent-child relationships used to generate the igraph plot OR a
ggplot2 object

Method to_vector(): Output all sequences held by the forest as a character vector

Usage:
RadixForest$to_vector()

Returns: A character vector of all sequences contained in the forest.

Method size(): Output the size of the forest (i.e. how many sequences are contained)

Usage:
RadixForest$size()

Returns: The size of the forest

Method insert(): Insert new sequences into the forest

Usage:
RadixForest$insert(sequences)

Arguments:

sequences A character vector of sequences to insert into the forest

Returns: A logical vector indicating whether the sequence was inserted (TRUE) or already
existing in the forest (FALSE)

Method erase(): Erase sequences from the forest

Usage:
RadixForest$erase(sequences)

Arguments:

sequences A character vector of sequences to erase from the forest

Returns: A logical vector indicating whether the sequence was erased (TRUE) or not found in
the forest (FALSE)

Method find(): Find sequences in the forest

Usage:
RadixForest$find(query)

Arguments:

query A character vector of sequences to find in the forest

Returns: A logical vector indicating whether the sequence was found (TRUE) or not found in
the forest (FALSE)

RadixForest 11

Method prefix_search(): Search for sequences in the forest that start with a specified prefix.
E.g.: a query of "CAR" will find "CART", "CARBON", "CARROT", etc. but not "CATS".

Usage:
RadixForest$prefix_search(query)

Arguments:
query A character vector of sequences to search for in the forest
Returns: A data frame of all matches with columns "query" and "target".

Method search(): Search for sequences in the forest that are with a specified distance metric
to a specified query.

Usage:
RadixForest$search(
query,
max_distance = NULL,
max_fraction = NULL,
mode = "levenshtein",
nthreads = 1,
show_progress = FALSE

)

Arguments:
query A character vector of query sequences.
max_distance how far to search in units of absolute distance. Can be a single value or a vector.

Mutually exclusive with max_fraction.
max_fraction how far to search in units of relative distance to each query sequence length.

Can be a single value or a vector. Mutually exclusive with max_distance.
mode The distance metric to use. One of hamming (hm), global (gb) or anchored (an).
nthreads The number of threads to use for parallel computation.
show_progress Whether to show a progress bar.
Returns: The output is a data.frame of all matches with columns "query" and "target".

Method validate(): Validate the forest
Usage:
RadixForest$validate()

Returns: A logical indicating whether the forest is valid (TRUE) or not (FALSE). This is mostly
an internal function for debugging purposes and should always return TRUE.

Examples

forest <- RadixForest$new()
forest$insert(c("ACGT", "AAAA"))
forest$erase("AAAA")
forest$search("ACG", max_distance = 1, mode = "levenshtein")
query target distance
1 ACG ACGT 1

forest$search("ACG", max_distance = 1, mode = "hamming")
query target distance
<0 rows> (or 0-length row.names)

12 RadixTree

RadixTree RadixTree

Description

Radix Tree (trie) class implementation

Details

The RadixTree class is a trie implementation. The primary usage is to be able to search of similar
sequences based on a dynamic programming framework. This can be done using the search method
which searches for similar sequences based on the Global, Anchored or Hamming distance metrics.

Three types of distance metrics are supported, based on the form of alignment performed. These
are: Hamming, Global (Levenshtein) and Anchored.

An anchored alignment is a form of semi-global alignment, where the query sequence is "anchored"
(global) to the beginning of both the query and target sequences, but is semi-global in that the end
of the either the query sequence or target sequence (but not both) can be unaligned. This type of
alignment is sometimes called an "extension" alignment in literature.

In contrast a global alignment must align the entire query and target sequences. When mismatch
and indel costs are equal to 1, this is also known as the Levenshtein distance.

By default, if mode == "global" or "anchored", all mismatches and indels are given a cost of 1.
However, you can define your own distance metric by setting the cost_matrix and gap parameters.
The cost_matrix is a strictly positive square integer matrix and should include all characters in query
and target as column- and rownames. To set the cost of a gap (insertion or deletion) you can include
a row and column named "gap" in the cost_matrix OR set the gap_cost parameter (a single positive
integer). Similarly, the affine gap alignment can be set by including a row and column named
"gap_open" in the cost_matrix OR setting the gap_open_cost parameter (a single positive integer).
If affine alignment is used, the cost of a gap is defined as: TOTAL_GAP_COST = gap_open_cost
+ (gap_cost * gap_length).

If mode == "hamming" all alignment parameters are ignored; mismatch is given a distance of 1 and
gaps are not allowed.

Public fields

root_pointer Root of the RadixTree

char_counter_pointer Character count data for the purpose of validating input

Methods

Public methods:

• RadixTree$new()

• RadixTree$show()

• RadixTree$to_string()

• RadixTree$graph()

RadixTree 13

• RadixTree$to_vector()

• RadixTree$size()

• RadixTree$insert()

• RadixTree$erase()

• RadixTree$find()

• RadixTree$prefix_search()

• RadixTree$search()

• RadixTree$validate()

Method new(): Create a new RadixTree object

Usage:
RadixTree$new(sequences = NULL)

Arguments:
sequences A character vector of sequences to insert into the tree

Method show(): Print the tree to screen

Usage:
RadixTree$show()

Method to_string(): Print the tree to a string

Usage:
RadixTree$to_string()

Returns: A string representation of the tree

Method graph(): Plot of the tree using igraph (needs to be installed separately)

Usage:
RadixTree$graph(depth = -1, root_label = "root", plot = TRUE)

Arguments:
depth The tree depth to plot. If -1 (default), plot the entire tree.
root_label The label of the root node in the plot.
plot Whether to create a plot or return the data used to generate the plot.

Returns: A data frame of parent-child relationships used to generate the igraph plot OR a
ggplot2 object

Method to_vector(): Output all sequences held by the tree as a character vector

Usage:
RadixTree$to_vector()

Returns: A character vector of all sequences contained in the tree. Return order is not guaran-
teed.

Method size(): Output the size of the tree (i.e. how many sequences are contained)

Usage:
RadixTree$size()

14 RadixTree

Returns: The size of the tree

Method insert(): Insert new sequences into the tree

Usage:
RadixTree$insert(sequences)

Arguments:

sequences A character vector of sequences to insert into the tree

Returns: A logical vector indicating whether the sequence was inserted (TRUE) or already
existing in the tree (FALSE)

Method erase(): Erase sequences from the tree

Usage:
RadixTree$erase(sequences)

Arguments:

sequences A character vector of sequences to erase from the tree

Returns: A logical vector indicating whether the sequence was erased (TRUE) or not found in
the tree (FALSE)

Method find(): Find sequences in the tree

Usage:
RadixTree$find(query)

Arguments:

query A character vector of sequences to find in the tree

Returns: A logical vector indicating whether the sequence was found (TRUE) or not found in
the tree (FALSE)

Method prefix_search(): Search for sequences in the tree that start with a specified prefix.
E.g.: a query of "CAR" will find "CART", "CARBON", "CARROT", etc. but not "CATS".

Usage:
RadixTree$prefix_search(query)

Arguments:

query A character vector of sequences to search for in the tree

Returns: A data frame of all matches with columns "query" and "target".

Method search(): Search for sequences in the tree that are with a specified distance metric to a
specified query.

Usage:
RadixTree$search(
query,
max_distance = NULL,
max_fraction = NULL,
mode = "levenshtein",
cost_matrix = NULL,

RadixTree 15

gap_cost = NULL,
gap_open_cost = NULL,
nthreads = 1,
show_progress = FALSE

)

Arguments:

query A character vector of query sequences.
max_distance how far to search in units of absolute distance. Can be a single value or a vector.

Mutually exclusive with max_fraction.
max_fraction how far to search in units of relative distance to each query sequence length.

Can be a single value or a vector. Mutually exclusive with max_distance.
mode The distance metric to use. One of hamming (hm), global (gb) or anchored (an).
cost_matrix A custom cost matrix for use with the "global" or "anchored" distance metrics.

See details.
gap_cost The cost of a gap for use with the "global" or "anchored" distance metrics. See

details.
gap_open_cost The cost of a gap opening. See details.
nthreads The number of threads to use for parallel computation.
show_progress Whether to show a progress bar.

Returns: The output is a data.frame of all matches with columns "query" and "target". For
anchored searches, the output also includes attributes "query_size" and "target_size" which are
vectors containing the portion of the query and target sequences that are aligned.

Method validate(): Validate the tree

Usage:
RadixTree$validate()

Returns: A logical indicating whether the tree is valid (TRUE) or not (FALSE). This is mostly
an internal function for debugging purposes and should always return TRUE.

See Also

https://en.wikipedia.org/wiki/Radix_tree

Examples

tree <- RadixTree$new()
tree$insert(c("ACGT", "AAAA"))
tree$erase("AAAA")
tree$search("ACG", max_distance = 1, mode = "levenshtein")
query target distance
1 ACG ACGT 1

tree$search("ACG", max_distance = 1, mode = "hamming")
query target distance
<0 rows> (or 0-length row.names)

16 split_search

split_search split_search

Description

Search for similar sequences based on splitting sequences into left and right sides and searching for
matches in each side using a bi-directional anchored alignment.

Usage

split_search(
query,
target,
query_split,
target_split,
edge_trim = 0L,
max_distance = 0L,
...

)

Arguments

query A character vector of query sequences.

target A character vector of target sequences.

query_split index to split query sequence. Should be within (edge_trim, nchar(query)-
edge_trim] or -1 to indicate no split.

target_split index to split target sequence. Should be within (edge_trim, nchar(query)-edge_trim]
or -1 to indicate no split.

edge_trim number of bases to trim from each side of the sequence (default value: 0).

max_distance how far to search in units of absolute distance. Can be a single value or a vector.
Mutually exclusive with max_fraction.

... additional arguments passed to RadixTree$search

Details

This function is useful for searching for similar sequences that may have variable windows of se-
quencing (e.g. different 5’ and 3’ primers) but contain the same core sequence or position. The
two split parameters partition the query and target sequences into left and right sides, where left =
stri_sub(sequence, edge_trim+1, split) and right = stri_sub(query, split+1, -edge_trim-1).

Value

data.frame with columns query, target, and distance.

split_search 17

Examples

Consider two sets of sequences
query1 AGACCTAA CCC
target1 AAGACCTAA CC
query2 GGGTGTAA CCACCC
target2 GGTGTAA CCAC
Despite having different frames, query1 and query2 and clearly
match to target1 and target2, respectively.
One could consider splitting based on a common core sequence,
e.g. a common TAA stop codon.
split_search(query=c("AGACCTAACCC", "GGGTGTAACCACCC"),

target=c("AAGACCTAACC", "GGTGTAACCAC"),
query_split=c(8, 8),
target_split=c(9, 7),
edge_trim=0,
max_distance=0)

Index

∗ datasets
covid_cdr3, 2

covid_cdr3, 2

dist_matrix, 3
dist_pairwise, 4
dist_search, 6

generate_cost_matrix, 8

RadixForest, 8
RadixTree, 12

split_search, 16

18

	covid_cdr3
	dist_matrix
	dist_pairwise
	dist_search
	generate_cost_matrix
	RadixForest
	RadixTree
	split_search
	Index

