
Package ‘simEd’
July 23, 2025

Title Simulation Education

Version 2.0.1

Imports graphics, grDevices, methods, stats, utils, shape

Depends rstream

Suggests magick

Description Contains various functions to be used for simulation education,
including simple Monte Carlo simulation functions, queueing simulation
functions, variate generation functions capable of producing independent
streams and antithetic variates, functions for illustrating random variate
generation for various discrete and continuous distributions, and functions
to compute time-persistent statistics. Also contains functions for
visualizing: event-driven details of a single-server queue model; a Lehmer
random number generator; variate generation via acceptance-rejection; and
of generating a non-homogeneous Poisson process via thinning. Also
contains two queueing data sets (one fabricated, one real-world) to
facilitate input modeling. More details on the use of these functions can
be found in Lawson and Leemis (2015) <doi:10.1109/WSC.2017.8248124>, in
Kudlay, Lawson, and Leemis (2020) <doi:10.1109/WSC48552.2020.9384010>, and
in Lawson and Leemis (2021) <doi:10.1109/WSC52266.2021.9715299>.

License MIT + file LICENSE

LazyData true

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Barry Lawson [aut, cre, cph],
Larry Leemis [aut],
Vadim Kudlay [aut]

Maintainer Barry Lawson <blawson@bates.edu>

Repository CRAN

Date/Publication 2023-11-26 23:20:13 UTC

1

https://doi.org/10.1109/WSC.2017.8248124
https://doi.org/10.1109/WSC48552.2020.9384010
https://doi.org/10.1109/WSC52266.2021.9715299

2 Contents

Contents
simEd-package . 3
accrej . 5
craps . 7
galileo . 8
ibeta . 9
ibinom . 13
icauchy . 17
ichisq . 22
iexp . 26
ifd . 30
igamma . 34
igeom . 39
ilnorm . 43
ilogis . 47
inbinom . 52
inorm . 56
ipois . 60
it . 64
iunif . 69
iweibull . 73
lehmer . 77
meanTPS . 79
msq . 80
quantileTPS . 86
queueTrace . 87
sample . 88
sdTPS . 90
set.seed . 92
ssq . 93
ssqvis . 99
thinning . 103
tylersGrill . 106
vbeta . 107
vbinom . 109
vcauchy . 110
vchisq . 112
vexp . 114
vfd . 116
vgamma . 118
vgeom . 120
vlnorm . 122
vlogis . 124
vnbinom . 126
vnorm . 128
vpois . 130
vt . 132

simEd-package 3

vunif . 134
vweibull . 136

Index 138

simEd-package Simulation Education

Description

Contains various functions to be used for simulation education, including simple Monte Carlo sim-
ulation functions, queueing simulation functions, variate generation functions capable of producing
independent streams and antithetic variates, functions for illustrating random variate generation
for various discrete and continuous distributions, and functions to compute time-persistent statis-
tics. Also contains functions for visualizing: event-driven details of a single-server queue model; a
Lehmer random number generator; variate generation via acceptance-rejection; and of generating a
non-homogeneous Poisson process via thinning. Also contains two queueing data sets (one fabri-
cated, one real-world) to facilitate input modeling. More details on the use of these functions can
be found in Lawson and Leemis (2015) <doi:10.1109/WSC.2017.8248124>, in Kudlay, Lawson,
and Leemis (2020) <doi:10.1109/WSC48552.2020.9384010>, and in Lawson and Leemis (2021)
<doi:10.1109/WSC52266.2021.9715299>.

Request From Authors: If you adopt and use this package for your simulation course, we would
greatly appreciate were you to email us (addresses below) to let us know, as we would like to main-
tain a list of adopters. Please include your name, university/affiliation, and course name/number.
Thanks!

Details

The goal of this package is to facilitate use of R for an introductory course in discrete-event simu-
lation.

This package contains animation functions for visualizing:

• event-driven details of a single-server queue model (ssqvis);

• a Lehmer random number generator (lehmer);

• variate generation via acceptance-rejection (accrej);

• generation of a non-homogeneous Poisson process via thinning (thinning).

The package contains variate generators capable of independent streams (based on Josef Leydold’s
rstream package) and antithetic variates for four discrete and eleven continuous distributions:

• discrete: vbinom, vgeom, vnbinom, vpois

• continuous: vbeta, vcauchy, vchisq, vexp, vgamma, vlnorm, vlogis, vnorm, vt, vunif,
vweibull

All of the variate generators use inversion, and are therefore monotone and synchronized.

The package contains functions to visualize variate generation for the same four discrete and eleven
continuous distributions:

4 simEd-package

• discrete: ibinom, igeom, inbinom, ipois

• continuous: ibeta, icauchy, ichisq, iexp, igamma, ilnorm, ilogis, inorm, it, iunif,
iweibull

The package also contains functions that are event-driven simulation implementations of a single-
server single-queue system and of a multiple-server single-queue system:

• single-server: ssq

• multiple-server: msq

Both queueing functions are extensible in allowing the user to provide custom arrival and service
process functions. As of version 2.0.0, both of these functions provide animation capability.

The package contains functions that implement Monte Carlo simulation approaches for estimating
probabilities in two different dice games:

• Galileo’s dice problem: galileo

• craps: craps

The package contains three functions for computing time-persistent statistics:

• time-average mean: meanTPS

• time-average standard deviation: sdTPS

• time-average quantiles: quantileTPS

The package also masks two functions from the stats package:

• set.seed, which explicitly calls the stats version in addition to setting up seeds for the
independent streams in the package;

• sample, which provides capability to use independent streams and antithetic variates.

Finally, the package provides two queueing data sets to facilitate input modeling:

• queueTrace, which contains 1000 arrival times and 1000 service times (all fabricated) for a
single-server queueing system;

• tylersGrill, which contains 1434 arrival times and 110 (sampled) service times correspond-
ing to actual data collected during one business day at Tyler’s Grill at the University of Rich-
mond.

Acknowledgments

The authors would like to thank Dr. Barry L. Nelson, Walter P. Murphy Professor in the Depart-
ment of Industrial Engineering & Management Sciences at Northwestern University, for meaningful
feedback during the development of this package.

Author(s)

Barry Lawson [aut, cre, cph], Larry Leemis [aut], Vadim Kudlay [aut] Maintainer: Barry Lawson
<blawson@bates.edu>

accrej 5

accrej Acceptance-Rejection Algorithm Visualization

Description

This function animates the process of generating variates via acceptance-rejection for a specified
density function (pdf) bounded by a specified majorizing function.

Usage

accrej(
n = 20,
pdf = function(x) dbeta(x, 3, 2),
majorizingFcn = NULL,
majorizingFcnType = NULL,
support = c(0, 1),
seed = NA,
maxTrials = Inf,
plot = TRUE,
showTitle = TRUE,
plotDelay = plot * -1

)

Arguments

n number of variates to generate.
pdf desired probability density function from which random variates are to be drawn
majorizingFcn majorizing function. Default value is NULL, corresponding to a constant ma-

jorizing function that is 1.01 times the maximum value of the pdf. May alter-
natively be provided as a user-specified function, or as a data frame requiring
additional notation as either piecewise-constant or piecewise-linear. See exam-
ples.

majorizingFcnType

used to indicate whether a majorizing function that is provided via data frame
is to be interpreted as either piecewise-constant ("pwc") or piecewise-linear
("pwl"). If the majorizing function is either the default or a user-specified func-
tion (closure), the value of this parameter is ignored.

support the lower and upper bounds of the support of the probability distribution of
interest, specified as a two-element vector.

seed initial seed for the uniform variates used during generation.
maxTrials maximum number of accept-reject trials; infinite by default
plot if TRUE, visual display will be produced. If FALSE, generated variates will be

returned without visual display.
showTitle if TRUE, display title in the main plot.
plotDelay wait time, in seconds, between plots; -1 (default) for interactive mode, where

the user is queried for input to progress.

6 accrej

Details

There are three modes for visualizing the acceptance-rejection algorithm for generating random
variates from a particular probability distribution:

• interactive advance (plotDelay = -1), where pressing the ’ENTER’ key advances to the next
step (an accepted random variate) in the algorithm, typing ’j #’ jumps ahead # steps, typing
’q’ quits immediately, and typing ’e’ proceeds to the end;

• automatic advance (plotDelay > 0); or

• final visualization only (plotDelay = 0).

As an alternative to visualizing, variates can be generated

Value

Returns the n generated variates accepted.

Examples

accrej(n = 20, seed = 8675309, plotDelay = 0)
accrej(n = 10, seed = 8675309, plotDelay = 0.1)

interactive mode
if (interactive()) {

accrej(n = 10, seed = 8675309, plotDelay = -1)
}

Piecewise-constant majorizing function
m <- function(x) {

if (x < 0.3) 1.0
else if (x < 0.85) 2.5
else 1.5

}
accrej(n = 10, seed = 8675309, majorizingFcn = m, plotDelay = 0)

Piecewise-constant majorizing function as data frame
m <- data.frame(

x = c(0.0, 0.3, 0.85, 1.0),
y = c(1.0, 1.0, 2.5, 1.5))

accrej(n = 10, seed = 8675309, majorizingFcn = m,
majorizingFcnType = "pwc", plotDelay = 0)

Piecewise-linear majorizing function as data frame
m <- data.frame(

x = c(0.0, 0.1, 0.3, 0.5, 0.7, 1.0),
y = c(0.0, 0.5, 1.1, 2.2, 1.9, 1.0))

accrej(n = 10, seed = 8675309, majorizingFcn = m,
majorizingFcnType = "pwl", plotDelay = 0)

invalid majorizing function; should give warning
try(accrej(n = 20, majorizingFcn = function(x) dbeta(x, 1, 3), plotDelay = 0))

craps 7

Piecewise-linear majorizing function with power-distribution density function
m <- data.frame(x = c(0, 1, 2), y = c(0, 0.375, 1.5))
samples <- accrej(n = 10, pdf = function(x) (3 / 8) * x ^ 2, support = c(0,2),

majorizingFcn = m, majorizingFcnType = "pwl", plotDelay = 0)

craps Monte Carlo Simulation of the Dice Game "Craps"

Description

A Monte Carlo simulation of the dice game "craps". Returns a point estimate of the probability of
winning craps using fair dice.

Usage

craps(nrep = 1000, seed = NA, showProgress = TRUE)

Arguments

nrep Number of replications (plays of a single game of craps)

seed Initial seed to the random number generator (NA uses current state of random
number generator; NULL seeds using system clock)

showProgress If TRUE, displays a progress bar on screen during execution

Details

Implements a Monte Carlo simulation of the dice game craps played with fair dice. A single play
of the game proceeds as follows:

• Two fair dice are rolled. If the sum is 7 or 11, the player wins immediately; if the sum is 2, 3,
or 12, the player loses immediately. Otherwise the sum becomes the point.

• The two dice continue to be rolled until either a sum of 7 is rolled (in which case the player
loses) or a sum equal to the point is rolled (in which case the player wins).

The simulation involves nrep replications of the game.

Note: When the value of nrep is large, the function will execute noticeably faster when showProgress
is set to FALSE.

Value

Point estimate of the probability of winning at craps (a real-valued scalar).

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

8 galileo

See Also

base::set.seed

Examples

set the initial seed externally using set.seed;
then use that current state of the generator with default nrep = 1000
set.seed(8675309)
craps() # uses state of generator set above

explicitly set the seed in the call to the function,
using default nrep = 1000
craps(seed = 8675309)

use the current state of the random number generator with nrep = 10000
prob <- craps(10000)

explicitly set nrep = 10000 and seed = 8675309
prob <- craps(10000, 8675309)

galileo Monte Carlo Simulation of Galileo’s Dice

Description

A Monte Carlo simulation of the Galileo’s Dice problem. Returns a vector containing point esti-
mates of the probabilities of the sum of three fair dice for sums 3, 4, . . ., 18.

Usage

galileo(nrep = 1000, seed = NA, showProgress = TRUE)

Arguments

nrep number of replications (rolls of the three dice)

seed initial seed to the random number generator (NA uses current state of random
number generator; NULL seeds using system clock)

showProgress If TRUE, displays a progress bar on screen during execution

Details

Implements a Monte Carlo simulation of the Galileo’s Dice problem. The simulation involves nrep
replications of rolling three dice and summing the up-faces, and computing point estimates of the
probabilities of each possible sum 3, 4, . . ., 18.

Note: When the value of nrep is large, the function will execute noticeably faster when showProgress
is set to FALSE.

ibeta 9

Value

An 18-element vector of point estimates of the probabilities. (Because a sum of 1 or 2 is not
possible, the corresponding entries in the returned vector have value NA.)

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

Examples

set the initial seed externally using set.seed;
then use that current state of the generator with default nrep = 1000
set.seed(8675309)
galileo() # uses state of generator set above

explicitly set the seed in the call to the function,
using default nrep = 1000
galileo(seed = 8675309)

use the current state of the random number generator with nrep = 10000
prob <- galileo(10000)

explicitly set nrep = 10000 and seed = 8675309
prob <- galileo(10000, 8675309)

ibeta Visualization of Random Variate Generation for the Beta Distribution

Description

Generates random variates from the Beta distribution by inversion. Optionally graphs the population
cumulative distribution function and associated random variates, the population probability density
function and a histogram of the random variates, and the empirical cumulative distribution function
versus the population cumulative distribution function.

Usage

ibeta(
u = runif(1),
shape1,
shape2,
ncp = 0,
minPlotQuantile = 0.01,
maxPlotQuantile = 0.95,
plot = TRUE,

10 ibeta

showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

shape1 Shape parameter 1 (alpha)

shape2 Shape parameter 2 (beta)

ncp Non-centrality parameter (default 0)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

ibeta 11

Details

Generates random variates from the Beta distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The beta distribution has density

\deqn{f(x) = \frac{\Gamma(a+b)}{\Gamma(a) \ \Gamma(b)} x^{a-1}(1-x)^{b-1}}{
f(x) = Gamma(a+b)/(Gamma(a)Gamma(b)) x^(a-1)(1-x)^(b-1)}

for a > 0, b > 0 and 0 ≤ x ≤ 1 where the boundary values at x = 0 or x = 1 are defined as by
continuity (as limits).

The mean is a
a+b and the variance is ab(a+ b)2(a+ b+ 1)

The algorithm for generating random variates from the beta distribution is synchronized (one ran-
dom variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated beta random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qbeta function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

12 ibeta

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Beta random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rbeta

stats::runif, simEd::vunif

Examples

ibeta(0.5, shape1 = 3, shape2 = 1, ncp = 2)

set.seed(8675309)
ibeta(runif(10), 3, 1, showPDF = TRUE)

set.seed(8675309)
ibeta(runif(10), 3, 1, showECDF = TRUE)

set.seed(8675309)

ibinom 13

ibeta(runif(10), 3, 1, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
ibeta(runif(10), 3, 1, showPDF = TRUE, showCDF = FALSE)

ibeta(runif(100), 3, 1, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
ibeta(NULL, 3, 1, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
ibeta(runif(10), 3, 1, show = c(1,1,0))
ibeta(runif(10), 3, 1, show = 6)

plot CDF with inversion and ECDF using show, using vunif
ibeta(vunif(10), 3, 1, show = c(1,0,1))
ibeta(vunif(10), 3, 1, show = 5)

plot CDF with inversion, PDF, and ECDF using show
ibeta(vunif(10), 3, 1, show = c(1,1,1))
ibeta(vunif(10), 3, 1, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
ibeta(runif(20), 3, 1, show = 7, respectLayout = TRUE, restorePar = FALSE)
ibeta(runif(20), 3, 1, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
ibeta(runif(20), 3, 1, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
ibeta(runif(10), 3, 1, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
ibeta(runif(10), 3, 1, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
ibeta(runif(10), 3, 1, show = 7, plotDelay = -1)

}

ibinom Visualization of Random Variate Generation for the Binomial Distri-
bution

Description

Generates random variates from the Binomial distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability

14 ibinom

mass function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

ibinom(
u = runif(1),
size,
prob,
minPlotQuantile = 0,
maxPlotQuantile = 1,
plot = TRUE,
showCDF = TRUE,
showPMF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

size number of trials (zero or more)

prob probability of success on each trial (0 < prob ≤ 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPMF logical; if TRUE (default), PMF plot appears, otherwise PMF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PMF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

ibinom 15

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population
showTitle logical; if TRUE (default), displays a title in the first of any displayed plots
respectLayout logical; if TRUE (default), respects existing settings for device layout
restorePar logical; if TRUE (default), restores user’s previous par settings on function exit
... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Binomial distribution, and optionally, illustrates

• the use of the inverse-CDF technique,
• the effect of random sampling variability in relation to the PMF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PMF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The binomial distribution with parameters size = n and prob = p has pmf

p(x) =

(
n

x

)
px(1− p)(n−x)

for x = 0, . . . , n.

The algorithm for generating random variates from the binomial distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated binomial random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qbinom function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PMF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PMF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

16 ibinom

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPMF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPMF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PMF, the maximum plotting height is associated with 125\ that
extends above this limit will have three dots appearing above it.

Value

A vector of Binomial random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rbinom

stats::runif, simEd::vunif

Examples

ibinom(0.5, size = 7, prob = 0.4,)

set.seed(8675309)
ibinom(runif(10), 10, 0.3, showPMF = TRUE)

icauchy 17

set.seed(8675309)
ibinom(runif(10), 10, 0.3, showECDF = TRUE)

set.seed(8675309)
ibinom(runif(10), 10, 0.3, showPMF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
ibinom(runif(10), 10, 0.3, showPMF = TRUE, showCDF = FALSE)

ibinom(runif(100), 10, 0.3, showPMF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PMF and CDF without any variates
ibinom(NULL, 10, 0.3, showPMF = TRUE, showCDF = TRUE)

plot CDF with inversion and PMF using show
ibinom(runif(10), 10, 0.3, show = c(1,1,0))
ibinom(runif(10), 10, 0.3, show = 6)

plot CDF with inversion and ECDF using show, using vunif
ibinom(vunif(10), 10, 0.3, show = c(1,0,1))
ibinom(vunif(10), 10, 0.3, show = 5)

plot CDF with inversion, PMF, and ECDF using show
ibinom(vunif(10), 10, 0.3, show = c(1,1,1))
ibinom(vunif(10), 10, 0.3, show = 7)

plot three different CDF+PMF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
ibinom(runif(20), 10, 0.3, show = 7, respectLayout = TRUE, restorePar = FALSE)
ibinom(runif(20), 10, 0.3, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
ibinom(runif(20), 10, 0.3, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
ibinom(runif(10), 10, 0.3, show = 7, plotDelay = 0.1)

display animation of CDF and PMF components only
ibinom(runif(10), 10, 0.3, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
ibinom(runif(10), 10, 0.3, show = 7, plotDelay = -1)

}

icauchy Visualization of Random Variate Generation for the Cauchy Distribu-
tion

18 icauchy

Description

Generates random variates from the Cauchy distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

icauchy(
u = runif(1),
location = 0,
scale = 1,
minPlotQuantile = 0.05,
maxPlotQuantile = 0.95,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

location Location parameter (default 0)

scale Scale parameter (default 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

icauchy 19

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Cauchy distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The Cauchy distribution has density
\deqn{f(x) = \frac{1}{\pi s} \ \left(1 + \left(\frac{x - l}{s} \right)^2

\right)^{-1}}{
f(x) = 1 / (\pi s (1 + ((x-l)/s)^2))}

for all x.

The mean is a/(a+ b) and the variance is ab/((a+ b)2(a+ b+ 1)).

The algorithm for generating random variates from the Cauchy distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated Cauchy random variate is plotted.

20 icauchy

This is not a particularly fast variate generation algorithm because it uses the base R qcauchy
function to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Cauchy random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rcauchy

stats::runif, simEd::vunif

icauchy 21

Examples

icauchy(0.5, location = 3, scale = 1)

set.seed(8675309)
icauchy(runif(10), 0, 3, showPDF = TRUE)

set.seed(8675309)
icauchy(runif(10), 0, 3, showECDF = TRUE)

set.seed(8675309)
icauchy(runif(10), 0, 3, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
icauchy(runif(10), 0, 3, showPDF = TRUE, showCDF = FALSE)

icauchy(runif(100), 0, 3, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
icauchy(NULL, 0, 3, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
icauchy(runif(10), 0, 3, show = c(1,1,0))
icauchy(runif(10), 0, 3, show = 6)

plot CDF with inversion and ECDF using show, using vunif
icauchy(vunif(10), 0, 3, show = c(1,0,1))
icauchy(vunif(10), 0, 3, show = 5)

plot CDF with inversion, PDF, and ECDF using show
icauchy(vunif(10), 0, 3, show = c(1,1,1))
icauchy(vunif(10), 0, 3, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
icauchy(runif(20), 0, 3, show = 7, respectLayout = TRUE, restorePar = FALSE)
icauchy(runif(20), 0, 3, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
icauchy(runif(20), 0, 3, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
icauchy(runif(10), 0, 3, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
icauchy(runif(10), 0, 3, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
icauchy(runif(10), 0, 3, show = 7, plotDelay = -1)

}

22 ichisq

ichisq Visualization of Random Variate Generation for the Chi-Squared Dis-
tribution

Description

Generates random variates from the Chi-Squared distribution by inversion. Optionally graphs the
population cumulative distribution function and associated random variates, the population proba-
bility density function and a histogram of the random variates, and the empirical cumulative distri-
bution function versus the population cumulative distribution function.

Usage

ichisq(
u = runif(1),
df,
ncp = 0,
minPlotQuantile = 0.01,
maxPlotQuantile = 0.99,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

df Degrees of freedom (non-negative, but can be non-integer)

ncp Non-centrality parameter (non-negative)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

ichisq 23

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Chi-Squared distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The chi-squared distribution with df = n ≥ 0 degrees of freedom has density

\deqn{f_n(x) = \frac{1}{2^{n/2} \ \Gamma(n/2)} x^{n/2-1} e^{-x/2}}{
f_n(x) = 1 / (2^(n/2) \Gamma(n/2)) x^(n/2-1) e^(-x/2)}

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df = n degrees of freedom and non-centrality param-
eter ncp = λ has density

24 ichisq

\deqn{f(x) = e^{-\lambda/2} \sum_{r=0}^\infty \frac{(\lambda/2)^r}{r!} f_{n + 2r}(x)}{
f(x) = exp(-\lambda/2) SUM_{r=0}^\infty ((\lambda/2)^r / r!) dchisq(x, df + 2r)}

for x ≥ 0.

The algorithm for generating random variates from the chi-squared distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated chi-squared random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qchisq function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

ichisq 25

Value

A vector of Chi-Squared random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rchisq

stats::runif, simEd::vunif

Examples

ichisq(0.5, df = 3, ncp = 2)

set.seed(8675309)
ichisq(runif(10), 3, showPDF = TRUE)

set.seed(8675309)
ichisq(runif(10), 3, showECDF = TRUE)

set.seed(8675309)
ichisq(runif(10), 3, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
ichisq(runif(10), 3, showPDF = TRUE, showCDF = FALSE)

ichisq(runif(100), 3, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
ichisq(NULL, 3, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
ichisq(runif(10), 3, show = c(1,1,0))
ichisq(runif(10), 3, show = 6)

plot CDF with inversion and ECDF using show, using vunif
ichisq(vunif(10), 3, show = c(1,0,1))
ichisq(vunif(10), 3, show = 5)

plot CDF with inversion, PDF, and ECDF using show
ichisq(vunif(10), 3, show = c(1,1,1))
ichisq(vunif(10), 3, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns

26 iexp

set.seed(8675309)
ichisq(runif(20), 3, show = 7, respectLayout = TRUE, restorePar = FALSE)
ichisq(runif(20), 3, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
ichisq(runif(20), 3, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
ichisq(runif(10), 3, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
ichisq(runif(10), 3, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
ichisq(runif(10), 3, show = 7, plotDelay = -1)

}

iexp Visualization of Random Variate Generation for the Exponential Dis-
tribution

Description

Generates random variates from the Exponential distribution by inversion. Optionally graphs the
population cumulative distribution function and associated random variates, the population proba-
bility density function and a histogram of the random variates, and the empirical cumulative distri-
bution function versus the population cumulative distribution function.

Usage

iexp(
u = runif(1),
rate = 1,
minPlotQuantile = 0,
maxPlotQuantile = 0.99,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

iexp 27

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

rate Rate of distribution (default 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Exponential distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

28 iexp

The exponential distribution with rate \eqn{\lambda} has density

\deqn{f(x) = \lambda e^{-\lambda x}}{
f(x) = \lambda e^(-\lambda x)}

for \eqn{x \geq 0}.

The algorithm for generating random variates from the exponential distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated exponential random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qexp function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

iexp 29

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Exponential random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rexp

stats::runif, simEd::vunif

Examples

iexp(0.5, rate = 3)

set.seed(8675309)
iexp(runif(10), 2, showPDF = TRUE)

set.seed(8675309)
iexp(runif(10), 2, showECDF = TRUE)

set.seed(8675309)
iexp(runif(10), 2, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
iexp(runif(10), 2, showPDF = TRUE, showCDF = FALSE)

iexp(runif(100), 2, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
iexp(NULL, 2, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
iexp(runif(10), 2, show = c(1,1,0))
iexp(runif(10), 2, show = 6)

plot CDF with inversion and ECDF using show, using vunif
iexp(vunif(10), 2, show = c(1,0,1))
iexp(vunif(10), 2, show = 5)

plot CDF with inversion, PDF, and ECDF using show
iexp(vunif(10), 2, show = c(1,1,1))
iexp(vunif(10), 2, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,

30 ifd

with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
iexp(runif(20), 2, show = 7, respectLayout = TRUE, restorePar = FALSE)
iexp(runif(20), 2, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
iexp(runif(20), 2, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
iexp(runif(10), 2, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
iexp(runif(10), 2, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
iexp(runif(10), 2, show = 7, plotDelay = -1)

}

overlay visual exploration of ks.test results
oldpar <- par(no.readonly = TRUE)
set.seed(54321)
vals <- iexp(runif(10), 2, showECDF = TRUE, restorePar = FALSE)
D <- as.numeric(ks.test(vals, "pexp", 2)$statistic)
for (x in seq(0.25, 0.65, by = 0.05)) {

y <- pexp(x, 2)
segments(x, y, x, y + D, col = "darkgreen", lwd = 2, xpd = NA)

}
par(oldpar) # restore original par values, since restorePar = FALSE above

ifd Visualization of Random Variate Generation for the FALSE Distribu-
tion

Description

Generates random variates from the FALSE distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

ifd(
u = runif(1),
df1,
df2,
ncp = 0,

ifd 31

minPlotQuantile = 0.01,
maxPlotQuantile = 0.99,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

df1 Degrees of freedom > 0
df2 Degrees of freedom > 0
ncp Non-centrality parameter >= 0
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot
plot logical; if TRUE (default), one or more plots will appear (see parameters below);

otherwise no plots appear
showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed
showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed
showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed
show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum

for desired combination
maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles

only
plotDelay delay in seconds between CDF plots
sampleColor Color used to display random sample from distribution
populationColor

Color used to display population
showTitle logical; if TRUE (default), displays a title in the first of any displayed plots
respectLayout logical; if TRUE (default), respects existing settings for device layout
restorePar logical; if TRUE (default), restores user’s previous par settings on function exit
... Possible additional arguments. Currently, additional arguments not considered.

32 ifd

Details

Generates random variates from the FALSE distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The F distribution with df1 = n1 and df2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)

Γ(n1/2) Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

The algorithm for generating random variates from the FALSE distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated FALSE random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qf function to
invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

ifd 33

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of FALSE random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rf

stats::runif, simEd::vunif

Examples

ifd(0.5, df1 = 1, df2 = 2, ncp = 10)

set.seed(8675309)
ifd(runif(10), 5, 5, showPDF = TRUE)

set.seed(8675309)
ifd(runif(10), 5, 5, showECDF = TRUE)

set.seed(8675309)
ifd(runif(10), 5, 5, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
ifd(runif(10), 5, 5, showPDF = TRUE, showCDF = FALSE)

34 igamma

ifd(runif(100), 5, 5, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
ifd(NULL, 5, 5, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
ifd(runif(10), 5, 5, show = c(1,1,0))
ifd(runif(10), 5, 5, show = 6)

plot CDF with inversion and ECDF using show, using vunif
ifd(vunif(10), 5, 5, show = c(1,0,1))
ifd(vunif(10), 5, 5, show = 5)

plot CDF with inversion, PDF, and ECDF using show
ifd(vunif(10), 5, 5, show = c(1,1,1))
ifd(vunif(10), 5, 5, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
ifd(runif(20), 5, 5, show = 7, respectLayout = TRUE, restorePar = FALSE)
ifd(runif(20), 5, 5, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
ifd(runif(20), 5, 5, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
ifd(runif(10), 5, 5, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
ifd(runif(10), 5, 5, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
ifd(runif(10), 5, 5, show = 7, plotDelay = -1)

}

igamma Visualization of Random Variate Generation for the Gamma Distribu-
tion

Description

Generates random variates from the Gamma distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

igamma 35

Usage

igamma(
u = runif(1),
shape,
rate = 1,
scale = 1/rate,
minPlotQuantile = 0,
maxPlotQuantile = 0.95,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

shape Shape parameter

rate Alternate parameterization for scale

scale Scale parameter
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution

36 igamma

populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Gamma distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The gamma distribution with parameters \code{shape} = \eqn{a} and
\code{scale} = \eqn{s} has density

\deqn{f(x) = \frac{1}{s^a\, \Gamma(a)} x^{a-1} e^{-x/s}}{
f(x) = 1/(s^a Gamma(a)) x^(a-1) e^(-x/s)}

for \eqn{x \ge 0}, \eqn{a > 0}, and \eqn{s > 0}.
(Here \eqn{\Gamma(a)}{Gamma(a)} is the function implemented by
R's \code{\link[base:Special]{gamma}()} and defined in its help.)

The population mean and variance are \eqn{E(X) = as}
and \eqn{Var(X) = as^2}.

The algorithm for generating random variates from the gamma distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated gamma random variate is plotted.

igamma 37

This is not a particularly fast variate generation algorithm because it uses the base R qgamma function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Gamma random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rgamma

stats::runif, simEd::vunif

38 igamma

Examples

igamma(0.5, shape = 5, scale = 3)

set.seed(8675309)
igamma(runif(10), 3, 2, showPDF = TRUE)

set.seed(8675309)
igamma(runif(10), 3, 2, showECDF = TRUE)

set.seed(8675309)
igamma(runif(10), 3, 2, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
igamma(runif(10), 3, 2, showPDF = TRUE, showCDF = FALSE)

igamma(runif(100), 3, 2, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
igamma(NULL, 3, 2, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
igamma(runif(10), 3, 2, show = c(1,1,0))
igamma(runif(10), 3, 2, show = 6)

plot CDF with inversion and ECDF using show, using vunif
igamma(vunif(10), 3, 2, show = c(1,0,1))
igamma(vunif(10), 3, 2, show = 5)

plot CDF with inversion, PDF, and ECDF using show
igamma(vunif(10), 3, 2, show = c(1,1,1))
igamma(vunif(10), 3, 2, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
igamma(runif(20), 3, 2, show = 7, respectLayout = TRUE, restorePar = FALSE)
igamma(runif(20), 3, 2, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
igamma(runif(20), 3, 2, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
igamma(runif(10), 3, 2, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
igamma(runif(10), 3, 2, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
igamma(runif(10), 3, 2, show = 7, plotDelay = -1)

}

igeom 39

overlay visual exploration of ks.test results
oldpar <- par(no.readonly = TRUE)
set.seed(54321)
vals <- igamma(runif(10), 3, 2, showECDF = TRUE, restorePar = FALSE)
D <- as.numeric(ks.test(vals, "pgamma", 3, 2)$statistic)
for (x in seq(1.20, 1.60, by = 0.05)) {

y <- pgamma(x, 3, 2)
segments(x, y, x, y + D, col = "darkgreen", lwd = 2, xpd = NA)

}
par(oldpar) # restore original par values, since restorePar = FALSE above

igeom Visualization of Random Variate Generation for the Geometric Distri-
bution

Description

Generates random variates from the Geometric distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
mass function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

igeom(
u = runif(1),
prob,
minPlotQuantile = 0,
maxPlotQuantile = 0.95,
plot = TRUE,
showCDF = TRUE,
showPMF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

40 igeom

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

prob Probability of success in each trial (0 < prob ≤ 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPMF logical; if TRUE (default), PMF plot appears, otherwise PMF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PMF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Geometric distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PMF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PMF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

igeom 41

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The geometric distribution with parameter prob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . ., where 0 < p ≤ 1.

The algorithm for generating random variates from the geometric distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated geometric random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qgeom function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PMF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PMF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPMF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPMF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

42 igeom

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PMF, the maximum plotting height is associated with 125\ that
extends above this limit will have three dots appearing above it.

Value

A vector of Geometric random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rgeom

stats::runif, simEd::vunif

Examples

igeom(0.5, prob = 0.25)

set.seed(8675309)
igeom(runif(10), 0.4, showPMF = TRUE)

set.seed(8675309)
igeom(runif(10), 0.4, showECDF = TRUE)

set.seed(8675309)
igeom(runif(10), 0.4, showPMF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
igeom(runif(10), 0.4, showPMF = TRUE, showCDF = FALSE)

igeom(runif(100), 0.4, showPMF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PMF and CDF without any variates
igeom(NULL, 0.4, showPMF = TRUE, showCDF = TRUE)

plot CDF with inversion and PMF using show
igeom(runif(10), 0.4, show = c(1,1,0))
igeom(runif(10), 0.4, show = 6)

plot CDF with inversion and ECDF using show, using vunif
igeom(vunif(10), 0.4, show = c(1,0,1))
igeom(vunif(10), 0.4, show = 5)

plot CDF with inversion, PMF, and ECDF using show
igeom(vunif(10), 0.4, show = c(1,1,1))
igeom(vunif(10), 0.4, show = 7)

ilnorm 43

plot three different CDF+PMF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
igeom(runif(20), 0.4, show = 7, respectLayout = TRUE, restorePar = FALSE)
igeom(runif(20), 0.4, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
igeom(runif(20), 0.4, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
igeom(runif(10), 0.4, show = 7, plotDelay = 0.1)

display animation of CDF and PMF components only
igeom(runif(10), 0.4, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
igeom(runif(10), 0.4, show = 7, plotDelay = -1)

}

ilnorm Visualization of Random Variate Generation for the Log-Normal Dis-
tribution

Description

Generates random variates from the Log-Normal distribution by inversion. Optionally graphs the
population cumulative distribution function and associated random variates, the population proba-
bility density function and a histogram of the random variates, and the empirical cumulative distri-
bution function versus the population cumulative distribution function.

Usage

ilnorm(
u = runif(1),
meanlog = 0,
sdlog = 1,
minPlotQuantile = 0,
maxPlotQuantile = 0.95,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,

44 ilnorm

sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

meanlog Mean of distribution on log scale (default 0)

sdlog Standard deviation of distribution on log scale (default 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Log-Normal distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

ilnorm 45

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The log-normal distribution has density

\deqn{f(x) = \frac{1}{\sqrt{2 \pi} \sigma x}
e^{-(\log{x} - \mu)^2 / (2 \sigma^2)} }{

f(x) = 1/(\sqrt(2 \pi) \sigma x) e^-((log x - \mu)^2 / (2 \sigma^2))}

where µ and σ are the mean and standard deviation of the logarithm.

The mean is E(X) = exp(µ + 1/2σ2), the median is med(X) = exp(µ), and the variance is
V ar(X) = exp(2×µ+σ2)×(exp(σ2)−1) and hence the coefficient of variation is sqrt(exp(σ2)−
1) which is approximately σ when small (e.g., σ < 1/2).

The algorithm for generating random variates from the log-normal distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated log-normal random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qlnorm function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

46 ilnorm

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Log-Normal random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rlnorm

stats::runif, simEd::vunif

Examples

ilnorm(0.5, meanlog = 5, sdlog = 0.5)

set.seed(8675309)
ilnorm(runif(10), 8, 2, showPDF = TRUE)

set.seed(8675309)
ilnorm(runif(10), 8, 2, showECDF = TRUE)

set.seed(8675309)
ilnorm(runif(10), 8, 2, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
ilnorm(runif(10), 8, 2, showPDF = TRUE, showCDF = FALSE)

ilnorm(runif(100), 8, 2, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

ilogis 47

plot the PDF and CDF without any variates
ilnorm(NULL, 8, 2, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
ilnorm(runif(10), 8, 2, show = c(1,1,0))
ilnorm(runif(10), 8, 2, show = 6)

plot CDF with inversion and ECDF using show, using vunif
ilnorm(vunif(10), 8, 2, show = c(1,0,1))
ilnorm(vunif(10), 8, 2, show = 5)

plot CDF with inversion, PDF, and ECDF using show
ilnorm(vunif(10), 8, 2, show = c(1,1,1))
ilnorm(vunif(10), 8, 2, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
ilnorm(runif(20), 8, 2, show = 7, respectLayout = TRUE, restorePar = FALSE)
ilnorm(runif(20), 8, 2, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
ilnorm(runif(20), 8, 2, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
ilnorm(runif(10), 8, 2, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
ilnorm(runif(10), 8, 2, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
ilnorm(runif(10), 8, 2, show = 7, plotDelay = -1)

}

ilogis Visualization of Random Variate Generation for the Logistic Distribu-
tion

Description

Generates random variates from the Logistic distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

48 ilogis

Usage

ilogis(
u = runif(1),
location = 0,
scale = 1,
minPlotQuantile = 0.01,
maxPlotQuantile = 0.99,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

location Location parameter

scale Scale parameter (default 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

ilogis 49

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Logistic distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The logistic distribution with location = µ and scale = σ has distribution function

F (x) =
1

1 + e−(x−µ)/σ

and density

f(x) =
1

σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2.

The algorithm for generating random variates from the logistic distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated logistic random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qlogis function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

50 ilogis

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Logistic random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rlogis

stats::runif, simEd::vunif

ilogis 51

Examples

ilogis(0.5, location = 5, scale = 0.5)

set.seed(8675309)
ilogis(runif(10), 5, 1.5, showPDF = TRUE)

set.seed(8675309)
ilogis(runif(10), 5, 1.5, showECDF = TRUE)

set.seed(8675309)
ilogis(runif(10), 5, 1.5, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
ilogis(runif(10), 5, 1.5, showPDF = TRUE, showCDF = FALSE)

ilogis(runif(100), 5, 1.5, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
ilogis(NULL, 5, 1.5, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
ilogis(runif(10), 5, 1.5, show = c(1,1,0))
ilogis(runif(10), 5, 1.5, show = 6)

plot CDF with inversion and ECDF using show, using vunif
ilogis(vunif(10), 5, 1.5, show = c(1,0,1))
ilogis(vunif(10), 5, 1.5, show = 5)

plot CDF with inversion, PDF, and ECDF using show
ilogis(vunif(10), 5, 1.5, show = c(1,1,1))
ilogis(vunif(10), 5, 1.5, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
ilogis(runif(20), 5, 1.5, show = 7, respectLayout = TRUE, restorePar = FALSE)
ilogis(runif(20), 5, 1.5, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
ilogis(runif(20), 5, 1.5, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
ilogis(runif(10), 5, 1.5, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
ilogis(runif(10), 5, 1.5, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
ilogis(runif(10), 5, 1.5, show = 7, plotDelay = -1)

}

52 inbinom

inbinom Visualization of Random Variate Generation for the Negative Binomial
Distribution

Description

Generates random variates from the Negative Binomial distribution by inversion. Optionally graphs
the population cumulative distribution function and associated random variates, the population
probability mass function and a histogram of the random variates, and the empirical cumulative
distribution function versus the population cumulative distribution function.

Usage

inbinom(
u = runif(1),
size,
prob,
mu,
minPlotQuantile = 0,
maxPlotQuantile = 0.95,
plot = TRUE,
showCDF = TRUE,
showPMF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.

prob Probability of success in each trial; ’0 < prob <= 1’

mu alternative parameterization via mean

inbinom 53

minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPMF logical; if TRUE (default), PMF plot appears, otherwise PMF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PMF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Negative Binomial distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PMF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PMF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The negative binomial distribution with size = n and prob = p has density

\deqn{p(x) = \frac{\Gamma(x+n)}{\Gamma(n) \ x!} p^n (1-p)^x}{
p(x) = Gamma(x+n)/(Gamma(n) x!) p^n (1-p)^x}

54 inbinom

for x = 0, 1, 2, . . . , n > 0 and 0 < p ≤ 1. This represents the number of failures which occur in a
sequence of Bernoulli trials before a target number of successes is reached.

The mean is µ = n(1− p)/p and variance n(1− p)/p2

The algorithm for generating random variates from the negative binomial distribution is synchro-
nized (one random variate for each random number) and monotone in u. This means that the vari-
ates generated here might be useful in some variance reduction techniques used in Monte Carlo and
discrete-event simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated negative binomial random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qnbinom
function to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PMF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PMF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPMF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPMF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PMF, the maximum plotting height is associated with 125\ that
extends above this limit will have three dots appearing above it.

inbinom 55

Value

A vector of Negative Binomial random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rnbinom

stats::runif, simEd::vunif

Examples

inbinom(0.5, size = 10, mu = 10)

set.seed(8675309)
inbinom(runif(10), 10, 0.25, showPMF = TRUE)

set.seed(8675309)
inbinom(runif(10), 10, 0.25, showECDF = TRUE)

set.seed(8675309)
inbinom(runif(10), 10, 0.25, showPMF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
inbinom(runif(10), 10, 0.25, showPMF = TRUE, showCDF = FALSE)

inbinom(runif(100), 10, 0.25, showPMF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PMF and CDF without any variates
inbinom(NULL, 10, 0.25, showPMF = TRUE, showCDF = TRUE)

plot CDF with inversion and PMF using show
inbinom(runif(10), 10, 0.25, show = c(1,1,0))
inbinom(runif(10), 10, 0.25, show = 6)

plot CDF with inversion and ECDF using show, using vunif
inbinom(vunif(10), 10, 0.25, show = c(1,0,1))
inbinom(vunif(10), 10, 0.25, show = 5)

plot CDF with inversion, PMF, and ECDF using show
inbinom(vunif(10), 10, 0.25, show = c(1,1,1))
inbinom(vunif(10), 10, 0.25, show = 7)

plot three different CDF+PMF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns

56 inorm

set.seed(8675309)
inbinom(runif(20), 10, 0.25, show = 7, respectLayout = TRUE, restorePar = FALSE)
inbinom(runif(20), 10, 0.25, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
inbinom(runif(20), 10, 0.25, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
inbinom(runif(10), 10, 0.25, show = 7, plotDelay = 0.1)

display animation of CDF and PMF components only
inbinom(runif(10), 10, 0.25, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
inbinom(runif(10), 10, 0.25, show = 7, plotDelay = -1)

}

inorm Visualization of Random Variate Generation for the Normal Distribu-
tion

Description

Generates random variates from the Normal distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

inorm(
u = runif(1),
mean = 0,
sd = 1,
minPlotQuantile = 0.01,
maxPlotQuantile = 0.99,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,

inorm 57

restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

mean Mean of distribution (default 0)

sd Standard deviation of distribution (default 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Normal distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

58 inorm

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The normal distribution has density

\deqn{f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x - \mu)^2/(2 \sigma^2)}}{
f(x) = 1/(\sqrt(2\pi)\sigma) e^(-(x - \mu)^2/(2 \sigma^2))}

for −∞ < x < ∞ and σ > 0, where µ is the mean of the distribution and σ the standard deviation.

The algorithm for generating random variates from the normal distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated normal random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qnorm function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

inorm 59

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Normal random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rnorm

stats::runif, simEd::vunif

Examples

inorm(0.5, mean = 3, sd = 1)

set.seed(8675309)
inorm(runif(10), 10, 2, showPDF = TRUE)

set.seed(8675309)
inorm(runif(10), 10, 2, showECDF = TRUE)

set.seed(8675309)
inorm(runif(10), 10, 2, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
inorm(runif(10), 10, 2, showPDF = TRUE, showCDF = FALSE)

inorm(runif(100), 10, 2, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
inorm(NULL, 10, 2, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
inorm(runif(10), 10, 2, show = c(1,1,0))
inorm(runif(10), 10, 2, show = 6)

plot CDF with inversion and ECDF using show, using vunif
inorm(vunif(10), 10, 2, show = c(1,0,1))
inorm(vunif(10), 10, 2, show = 5)

60 ipois

plot CDF with inversion, PDF, and ECDF using show
inorm(vunif(10), 10, 2, show = c(1,1,1))
inorm(vunif(10), 10, 2, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
inorm(runif(20), 10, 2, show = 7, respectLayout = TRUE, restorePar = FALSE)
inorm(runif(20), 10, 2, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
inorm(runif(20), 10, 2, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
inorm(runif(10), 10, 2, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
inorm(runif(10), 10, 2, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
inorm(runif(10), 10, 2, show = 7, plotDelay = -1)

}

overlay visual exploration of ks.test results
oldpar <- par(no.readonly = TRUE)
set.seed(54321)
vals <- inorm(runif(10), 10, 2, showECDF = TRUE, restorePar = FALSE)
D <- as.numeric(ks.test(vals, "pnorm", 10, 2)$statistic)
for (x in seq(9.5, 10.5, by = 0.1)) {

y <- pnorm(x, 10, 2)
segments(x, y, x, y + D, col = "darkgreen", lwd = 2, xpd = NA)

}
par(oldpar) # restore original par values, since restorePar = FALSE above

ipois Visualization of Random Variate Generation for the Poisson Distribu-
tion

Description

Generates random variates from the Poisson distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
mass function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

ipois 61

Usage

ipois(
u = runif(1),
lambda,
minPlotQuantile = 0,
maxPlotQuantile = 0.95,
plot = TRUE,
showCDF = TRUE,
showPMF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

lambda Rate of distribution
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPMF logical; if TRUE (default), PMF plot appears, otherwise PMF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PMF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

62 ipois

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Poisson distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PMF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PMF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The Poisson distribution has density

p(x) =
λxe−λ

x!

for x = 0, 1, 2, The mean and variance are E(X) = V ar(X) = λ

The algorithm for generating random variates from the Poisson distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated Poisson random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qpois function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PMF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PMF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPMF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

ipois 63

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPMF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PMF, the maximum plotting height is associated with 125\ that
extends above this limit will have three dots appearing above it.

Value

A vector of Poisson random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rpois

stats::runif, simEd::vunif

Examples

ipois(0.5, lambda = 5)

set.seed(8675309)
ipois(runif(10), 3, showPMF = TRUE)

set.seed(8675309)
ipois(runif(10), 3, showECDF = TRUE)

set.seed(8675309)

64 it

ipois(runif(10), 3, showPMF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
ipois(runif(10), 3, showPMF = TRUE, showCDF = FALSE)

ipois(runif(100), 3, showPMF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PMF and CDF without any variates
ipois(NULL, 3, showPMF = TRUE, showCDF = TRUE)

plot CDF with inversion and PMF using show
ipois(runif(10), 3, show = c(1,1,0))
ipois(runif(10), 3, show = 6)

plot CDF with inversion and ECDF using show, using vunif
ipois(vunif(10), 3, show = c(1,0,1))
ipois(vunif(10), 3, show = 5)

plot CDF with inversion, PMF, and ECDF using show
ipois(vunif(10), 3, show = c(1,1,1))
ipois(vunif(10), 3, show = 7)

plot three different CDF+PMF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
ipois(runif(20), 3, show = 7, respectLayout = TRUE, restorePar = FALSE)
ipois(runif(20), 3, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
ipois(runif(20), 3, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
ipois(runif(10), 3, show = 7, plotDelay = 0.1)

display animation of CDF and PMF components only
ipois(runif(10), 3, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
ipois(runif(10), 3, show = 7, plotDelay = -1)

}

it Visualization of Random Variate Generation for the Student T Distri-
bution

Description

Generates random variates from the Student T distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability

it 65

density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

it(
u = runif(1),
df,
ncp,
minPlotQuantile = 0.01,
maxPlotQuantile = 0.99,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

df Degrees of freedom > 0

ncp Non-centrality parameter delta (default NULL)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

66 it

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Student T distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The t-distribution with df = v degrees of freedom has density

f(x) =
Γ((v + 1)/2)√
vπ Γ(v/2)

(1 + x2/v)−(v+1)/2

for all real x. It has mean 0 (for v > 1) and variance v/(v − 2) (for v > 2).

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as the distribution of
Tν(δ) := (U + δ) /

√
(V/ν) where U and V are independent random variables, U ∼ N (0, 1)

and V ∼ χ2(ν).

The algorithm for generating random variates from the Student t distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated Student t random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qt function to
invert the values contained in u.

it 67

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Student T random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rt

stats::runif, simEd::vunif

68 it

Examples

it(0.5, df = 5, ncp = 10)

set.seed(8675309)
it(runif(10), 4, showPDF = TRUE)

set.seed(8675309)
it(runif(10), 4, showECDF = TRUE)

set.seed(8675309)
it(runif(10), 4, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
it(runif(10), 4, showPDF = TRUE, showCDF = FALSE)

it(runif(100), 4, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
it(NULL, 4, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
it(runif(10), 4, show = c(1,1,0))
it(runif(10), 4, show = 6)

plot CDF with inversion and ECDF using show, using vunif
it(vunif(10), 4, show = c(1,0,1))
it(vunif(10), 4, show = 5)

plot CDF with inversion, PDF, and ECDF using show
it(vunif(10), 4, show = c(1,1,1))
it(vunif(10), 4, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
it(runif(20), 4, show = 7, respectLayout = TRUE, restorePar = FALSE)
it(runif(20), 4, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
it(runif(20), 4, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
it(runif(10), 4, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
it(runif(10), 4, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
it(runif(10), 4, show = 7, plotDelay = -1)

}

iunif 69

iunif Visualization of Random Variate Generation for the Uniform Distribu-
tion

Description

Generates random variates from the Uniform distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

iunif(
u = runif(1),
min = 0,
max = 1,
minPlotQuantile = 0,
maxPlotQuantile = 1,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

min lower limit of distribution (default 0)

max upper limit of distribution (default 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

70 iunif

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution

populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Uniform distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The uniform distribution has density

\deqn{f(x) = \frac{1}{max-min}}{
f(x) = 1/(max-min)}

iunif 71

for min ≤ x ≤ max.

The algorithm for generating random variates from the uniform distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated uniform random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qunif function
to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),
the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Uniform random variates

72 iunif

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::runif

stats::runif, simEd::vunif

Examples

iunif(0.5, min = -10, max = 10)

set.seed(8675309)
iunif(runif(10), 0, 10, showPDF = TRUE)

set.seed(8675309)
iunif(runif(10), 0, 10, showECDF = TRUE)

set.seed(8675309)
iunif(runif(10), 0, 10, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
iunif(runif(10), 0, 10, showPDF = TRUE, showCDF = FALSE)

iunif(runif(100), 0, 10, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
iunif(NULL, 0, 10, showPDF = TRUE, showCDF = TRUE)

plot CDF with inversion and PDF using show
iunif(runif(10), 0, 10, show = c(1,1,0))
iunif(runif(10), 0, 10, show = 6)

plot CDF with inversion and ECDF using show, using vunif
iunif(vunif(10), 0, 10, show = c(1,0,1))
iunif(vunif(10), 0, 10, show = 5)

plot CDF with inversion, PDF, and ECDF using show
iunif(vunif(10), 0, 10, show = c(1,1,1))
iunif(vunif(10), 0, 10, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
iunif(runif(20), 0, 10, show = 7, respectLayout = TRUE, restorePar = FALSE)
iunif(runif(20), 0, 10, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
iunif(runif(20), 0, 10, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)

iweibull 73

par(oldpar)

display animation of all components
iunif(runif(10), 0, 10, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
iunif(runif(10), 0, 10, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
iunif(runif(10), 0, 10, show = 7, plotDelay = -1)

}

overlay visual exploration of ks.test results
oldpar <- par(no.readonly = TRUE)
set.seed(54321)
vals <- iunif(runif(10), 0, 10, showECDF = TRUE, restorePar = FALSE)
D <- as.numeric(ks.test(vals, "punif", 0, 10)$statistic)
for (x in seq(4.0, 6.0, by = 0.1)) {

y <- punif(x, 0, 10)
segments(x, y, x, y + D, col = "darkgreen", lwd = 2, xpd = NA)

}
par(oldpar) # restore original par values, since restorePar = FALSE above

iweibull Visualization of Random Variate Generation for the Weibull Distribu-
tion

Description

Generates random variates from the Weibull distribution by inversion. Optionally graphs the pop-
ulation cumulative distribution function and associated random variates, the population probability
density function and a histogram of the random variates, and the empirical cumulative distribution
function versus the population cumulative distribution function.

Usage

iweibull(
u = runif(1),
shape,
scale = 1,
minPlotQuantile = 0.01,
maxPlotQuantile = 0.99,
plot = TRUE,
showCDF = TRUE,
showPDF = TRUE,
showECDF = TRUE,
show = NULL,

74 iweibull

maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE,
restorePar = TRUE,
...

)

Arguments

u vector of uniform(0,1) random numbers, or NULL to show population figures
only

shape Shape parameter

scale Scale parameter (default 1)
minPlotQuantile

minimum quantile to plot
maxPlotQuantile

maximum quantile to plot

plot logical; if TRUE (default), one or more plots will appear (see parameters below);
otherwise no plots appear

showCDF logical; if TRUE (default), cdf plot appears, otherwise cdf plot is suppressed

showPDF logical; if TRUE (default), PDF plot appears, otherwise PDF plot is suppressed

showECDF logical; if TRUE (default), ecdf plot appears, otherwise ecdf plot is suppressed

show octal number (0-7) indicating plots to display; 4: CDF, 2: PDF, 1: ECDF; sum
for desired combination

maxInvPlotted number of inversions to plot across CDF before switching to plotting quantiles
only

plotDelay delay in seconds between CDF plots

sampleColor Color used to display random sample from distribution
populationColor

Color used to display population

showTitle logical; if TRUE (default), displays a title in the first of any displayed plots

respectLayout logical; if TRUE (default), respects existing settings for device layout

restorePar logical; if TRUE (default), restores user’s previous par settings on function exit

... Possible additional arguments. Currently, additional arguments not considered.

Details

Generates random variates from the Weibull distribution, and optionally, illustrates

• the use of the inverse-CDF technique,

• the effect of random sampling variability in relation to the PDF and CDF.

iweibull 75

When all of the graphics are requested,

• the first graph illustrates the use of the inverse-CDF technique by graphing the population
CDF and the transformation of the random numbers to random variates,

• the second graph illustrates the effect of random sampling variability by graphing the popula-
tion PDF and the histogram associated with the random variates, and

• the third graph illustrates effect of random sampling variability by graphing the population
CDF and the empirical CDF associated with the random variates.

All aspects of the random variate generation algorithm are output in red by default, which can be
changed by specifying sampleColor. All aspects of the population distribution are output in gray
by default, which can be changed by specifying populationColor.

The Weibull distribution with parameters shape = a and scale = b has density

\deqn{f(x) = \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} e^{-(x/b)^a}}{
f(x) = (a/b) (x/b)^(a-1) exp(-(x/b)^a)}

for x ≥ 0, a > 0, and b > 0.

The algorithm for generating random variates from the Weibull distribution is synchronized (one
random variate for each random number) and monotone in u. This means that the variates generated
here might be useful in some variance reduction techniques used in Monte Carlo and discrete-event
simulation.

Values from the u vector are plotted in the cdf plot along the vertical axis as colored dots. A
horizontal, dashed, colored line extends from the dot to the population cdf. At the intersection, a
vertical, dashed colored line extends downward to the horizontal axis, where a second colored dot,
denoting the associated Weibull random variate is plotted.

This is not a particularly fast variate generation algorithm because it uses the base R qweibull
function to invert the values contained in u.

All of the elements of the u vector must be between 0 and 1. Alternatively, u can be NULL in which
case plot(s) of the theoretical PDF and cdf are displayed according to plotting parameter values
(defaulting to display of both the PDF and cdf).

The show parameter can be used as a shortcut way to denote plots to display. The argument to show
can be either:

• a binary vector of length three, where the entries from left to right correspond to showCDF,
showPDF, and showECDF, respectively. For each entry, a 1 indicates the plot should be dis-
played, and a 0 indicates the plot should be suppressed.

• an integer in [0,7] interpreted similar to the Unix chmod command. That is, the integer’s
binary representation can be transformed into a length-three vector discussed above (e.g., 6
corresponds to c(1,1,0)). See examples.

Any valid value for show takes precedence over existing individual values for showCDF, showPDF,
and showECDF.

If respectLayout is TRUE, the function respects existing settings for device layout. Note, however,
that if the number of plots requested (either via show or via showCDF, showPMF, and showECDF) ex-
ceeds the number of plots available in the current layout (as determined by prod(par("mfrow"))),

76 iweibull

the function will display all requested plots but will also display a warning message indicating that
the current layout does not permit simultaneous viewing of all requested plots. The most recent plot
with this attribute can be further annotated after the call.

If respectLayout is FALSE, any existing user settings for device layout are ignored. That is, the
function uses par to explicitly set mfrow sufficient to show all requested plots stacked vertically to
align their horizontal axes, and then resets row, column, and margin settings to their prior state on
exit.

The minPlotQuantile and maxPlotQuantile arguments are present in order to compress the plots
horizontally. The random variates generated are not impacted by these two arguments. Vertical,
dotted, black lines are plotted at the associated quantiles on the plots.

plotDelay can be used to slow down or halt the variate generation for classroom explanation.

In the plot associated with the PDF, the maximum plotting height is associated with 125\ that ex-
tends above this limit will have three dots appearing above it.

Value

A vector of Weibull random variates

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

stats::rweibull

stats::runif, simEd::vunif

Examples

iweibull(0.5, shape = 2, scale = 0.5)

set.seed(8675309)
iweibull(runif(10), 1, 2, showPDF = TRUE)

set.seed(8675309)
iweibull(runif(10), 1, 2, showECDF = TRUE)

set.seed(8675309)
iweibull(runif(10), 1, 2, showPDF = TRUE, showECDF = TRUE, sampleColor = "blue3")

set.seed(8675309)
iweibull(runif(10), 1, 2, showPDF = TRUE, showCDF = FALSE)

iweibull(runif(100), 1, 2, showPDF = TRUE, minPlotQuantile = 0.02, maxPlotQuantile = 0.98)

plot the PDF and CDF without any variates
iweibull(NULL, 1, 2, showPDF = TRUE, showCDF = TRUE)

lehmer 77

plot CDF with inversion and PDF using show
iweibull(runif(10), 1, 2, show = c(1,1,0))
iweibull(runif(10), 1, 2, show = 6)

plot CDF with inversion and ECDF using show, using vunif
iweibull(vunif(10), 1, 2, show = c(1,0,1))
iweibull(vunif(10), 1, 2, show = 5)

plot CDF with inversion, PDF, and ECDF using show
iweibull(vunif(10), 1, 2, show = c(1,1,1))
iweibull(vunif(10), 1, 2, show = 7)

plot three different CDF+PDF+ECDF horizontal displays,
with title only on the first display
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(3,3)) # 3 rows, 3 cols, filling rows before columns
set.seed(8675309)
iweibull(runif(20), 1, 2, show = 7, respectLayout = TRUE, restorePar = FALSE)
iweibull(runif(20), 1, 2, show = 7, respectLayout = TRUE, restorePar = FALSE, showTitle = FALSE)
iweibull(runif(20), 1, 2, show = 7, respectLayout = TRUE, restorePar = TRUE, showTitle = FALSE)
par(oldpar)

display animation of all components
iweibull(runif(10), 1, 2, show = 7, plotDelay = 0.1)

display animation of CDF and PDF components only
iweibull(runif(10), 1, 2, show = 5, plotDelay = 0.1)

if (interactive()) {
interactive -- pause at each stage of inversion
iweibull(runif(10), 1, 2, show = 7, plotDelay = -1)

}

lehmer Lehmer Generator Visualization

Description

This function animates the processes of a basic Lehmer pseudo-random number generator (PRNG).
Also known in the literature as a multiplicative linear congruential generator (MLCG), the generator
is based on the formula:

Xk+1 ≡ a ·Xk (mod m)

where ’m’ is the prime modulus, ’a’ is the multiplier chosen from {1, m-1}, and ’X_0’ is the initial
seed chosen from {1, m-1}. The random numbers generated in (0,1) are X_{k+1}/m.

78 lehmer

Usage

lehmer(
a = 13,
m = 31,
seed = 1,
animate = TRUE,
numSteps = NA,
title = NA,
showTitle = TRUE,
plotDelay = -1

)

Arguments

a multiplier in MLCG equation.

m prime modulus in MLCG equation.

seed initial seed for the generator, i.e., the initial value X_0

animate should the visual output be displayed.

numSteps number of steps to animate; default value is Inf if plotDelay is -1, or the size
of the period otherwise. Ignored if animate is false.

title optional title to display in plot (NA uses default title)

showTitle if TRUE, display title in the main plot.

plotDelay wait time between transitioning; -1 (default) for interactive mode, where the user
is queried for input to progress.

Value

the entire period from the PRNG cycle, as a vector of integers in {1, m-1}.

References

Lehmer, D.H. (1951). Mathematical Models in Large-Scale Computing Units. Ann. Comput. Lab.
Harvard University, 26, 141-146.

Examples

Default case (m, a = 31, 13); small full period
lehmer(plotDelay = 0, numSteps = 16)
lehmer(numSteps = 10, plotDelay = 0.1) # auto-advance mode

if (interactive()) {
lehmer(plotDelay = -1) # plotDelay -1 uses interactive mode

}

multiplier producing period of length 5, with different seeds
lehmer(a = 8, m = 31, seed = 1, numSteps = 5, plotDelay = 0.1)
lehmer(a = 8, m = 31, seed = 24, numSteps = 5, plotDelay = 0.1)

meanTPS 79

degenerate cases where seed does not appear in the final period
lehmer(a = 12, m = 20, seed = 7, numSteps = 4, plotDelay = 0.1) # length 4
lehmer(a = 4, m = 6, seed = 1, numSteps = 1, plotDelay = 0.1) # length 1

meanTPS Mean of Time-Persistent Statistics (TPS)

Description

Computes the sample mean of a time-persistent function.

Usage

meanTPS(times = NULL, numbers = NULL)

Arguments

times A numeric vector of non-decreasing time observations

numbers A numeric vector containing the values of the time-persistent statistic between
the time observation

Details

The lengths of times and numbers either must be the same, or times may have one more entry
than numbers (interval endpoints vs. interval counts). The sample mean is the area under the step-
function created by the values in numbers between the first and last element in times divided by
the length of the observation period.

Value

the sample mean of the time-persistent function provided

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

Examples

times <- c(1,2,3,4,5)
counts <- c(1,2,1,1,2)
meanTPS(times, counts)

output <- ssq(seed = 54321, maxTime = 100, saveServerStatus = TRUE)
utilization <- meanTPS(output$serverStatusT, output$serverStatusN)

compute and graphically display mean of number in system vs time

80 msq

output <- ssq(maxArrivals = 60, seed = 54321, saveAllStats = TRUE)
plot(output$numInSystemT, output$numInSystemN, type = "s", bty = "l",

las = 1, xlab = "time", ylab = "number in system")
timeAvgNumInSysMean <- meanTPS(output$numInSystemT, output$numInSystemN)
abline(h = timeAvgNumInSysMean, lty = "solid", col = "red", lwd = 2)

msq Multi-Server Queue Simulation

Description

A next-event simulation of a single-queue multiple-server service node, with extensible arrival and
service processes.

Usage

msq(
maxArrivals = Inf,
seed = NA,
numServers = 2,
serverSelection = c("LRU", "LFU", "CYC", "RAN", "ORD"),
interarrivalFcn = NULL,
serviceFcn = NULL,
interarrivalType = "M",
serviceType = "M",
maxTime = Inf,
maxDepartures = Inf,
maxInSystem = Inf,
maxEventsPerSkyline = 15,
saveAllStats = FALSE,
saveInterarrivalTimes = FALSE,
saveServiceTimes = FALSE,
saveWaitTimes = FALSE,
saveSojournTimes = FALSE,
saveNumInQueue = FALSE,
saveNumInSystem = FALSE,
saveServerStatus = FALSE,
showOutput = TRUE,
animate = FALSE,
showQueue = NULL,
showSkyline = NULL,
showSkylineSystem = FALSE,
showSkylineQueue = FALSE,
showSkylineServer = FALSE,
showTitle = TRUE,
showProgress = TRUE,

msq 81

plotQueueFcn = defaultPlotMSQ,
plotSkylineFcn = defaultPlotSkyline,
jobImage = NA,
plotDelay = NA,
respectLayout = FALSE

)

Arguments

maxArrivals maximum number of customer arrivals allowed to enter the system

seed initial seed to the random number generator (NA uses current state of random
number generator; NULL seeds using system clock)

numServers Number of servers to simulation (an integer between 1 and 24)
serverSelection

Algorithm to use for selecting among idle servers (default is "LRU")
interarrivalFcn

Function for generating interarrival times for queue simulation. Default value
(NA) will result in use of default interarrival function based on interarrivalType.
See examples.

serviceFcn Function for generating service times for queue simulation. Default value (NA)
will result in use of default service function based on serviceType. See exam-
ples.

interarrivalType

string representation of desired interarrival process. Options are "M" – expo-
nential with rate 1; "G" – uniform(0,2), having mean 1; and "D" – deterministic
with constant value 1. Default is "M".

serviceType string representation of desired service process . Options are "M" – exponential
with rate 10/9; "G" – uniform(0, 1.8), having mean 9/10; and "D" – deterministic
with constant value 9/10. Default is "M".

maxTime maximum time to simulate

maxDepartures maximum number of customer departures to process

maxInSystem maximum number of customers that the system can hold (server(s) plus queue).
Infinite by default.

maxEventsPerSkyline

maximum number of events viewable at a time in the skyline plot. A large value
for this parameter may result in plotting delays. This parameter does not impact
the final plotting, which will show all end-of-simulation results.

saveAllStats if TRUE, returns all vectors of statistics (see below) collected by the simulation
saveInterarrivalTimes

if TRUE, returns a vector of all interarrival times generated
saveServiceTimes

if TRUE, returns a vector of all service times generated

saveWaitTimes if TRUE, returns a vector of all wait times (in the queue) generated
saveSojournTimes

if TRUE, returns a vector of all sojourn times (time spent in the system) generated

82 msq

saveNumInQueue if TRUE, returns a vector of times and a vector of counts for whenever the number
in the queue changes

saveNumInSystem

if TRUE, returns a vector of times and a vector of counts for whenever the number
in the system changes

saveServerStatus

if TRUE, returns a vector of times and a vector of server status (0:idle, 1:busy)
for whenever the status changes

showOutput if TRUE, displays summary statistics upon completion

animate If FALSE, no animation will be shown.

showQueue if TRUE, displays a visualization of the queue

showSkyline If NULL (default), defers to each individual showSkyline... parameter below;
otherwise, supersedes individual showSkyline... parameter values. If TRUE, dis-
plays full skyline plot; FALSE suppresses skyline plot. Can alternatively be spec-
ified using chmod-like octal component specification: use 1, 2, 4 for system,
queue, and server respectively, summing to indicate desired combination (e.g.,
7 for all). Can also be specified as a binary vector (e.g., c(1,1,1) for all).

showSkylineSystem

logical; if TRUE, includes number in system as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showSkylineQueue

logical; if TRUE, includes number in queue as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showSkylineServer

logical; if TRUE, includes number in server as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showTitle if TRUE, display title at the top of the main plot

showProgress if TRUE, displays a progress bar on screen during no-animation execution

plotQueueFcn Plotting function to display Queue visualization. By default, this is provided by
defaultPlotSSQ. Please refer to the corresponding help for more details about
required arguments.

plotSkylineFcn Plotting function to display Skyline visualization. By default, this is provided by
defaultPlotSkyline. Please refer to the corresponding help for more details
about required arguments.

jobImage a vector of URLs/local addresses of images to use as jobs. Requires package
'magick'.

plotDelay a positive numeric value indicating seconds between plots. A value of -1 enters
’interactive’ mode, where the state will pause for user input at each step. A value
of 0 will display only the final end-of-simulation plot.

respectLayout If TRUE, plot layout (i.e., par, device, etc.) settings will be respected. Not
recommended except for specialized use.

msq 83

Details

Implements a next-event implementation of a single-queue multiple-server queue simulation.

The seed parameter can take one of three valid argument types:

• NA (default), which will use the current state of the random number generator without explic-
itly setting a new seed (see examples);

• a positive integer, which will be used as the initial seed passed in an explicit call to set.seed;
or

• NULL, which will be passed in an explicit call to to set.seed, thereby setting the initial seed
using the system clock.

The server selection mechanism can be chosen from among five options, with "LRU" being the
default:

• "LRU" (least recently used): from among the currently available (idle) servers, selects the
server who has been idle longest.

• "LFU" (least frequently used): from among the currently available servers, selects the server
having the lowest computed utilization.

• "CYC" (cyclic): selects a server in a cyclic manner; i.e, indexing the servers 1, 2, . . ., numServers
and incrementing cyclically, starts from one greater than the index of the most recently en-
gaged server and selects the first idle server encountered.

• "RAN" (random): selects a server at random from among the currently available servers.

• "ORD" (in order): indexing the servers 1, 2, . . ., numServers, selects the idle server having the
lowest index.

Value

The function returns a list containing:

• the number of arrivals to the system (customerArrivals),

• the number of customers processed (customerDepartures),

• the ending time of the simulation (simulationEndTime),

• average wait time in the queue (avgWait),

• average time in the system (avgSojourn),

• average number in the system (avgNumInSystem),

• average number in the queue (avgNumInQueue), and

• server utilization (utilization).

of the queue as computed by the simulation. When requested via the “save...” parameters, the list
may also contain:

• a vector of interarrival times (interarrivalTimes),

• a vector of wait times (waitTimes),

• a vector of service times (serviceTimes),

• a vector of sojourn times (sojournTimes),

84 msq

• two vectors (time and count) noting changes to number in the system (numInSystemT, numInSystemN),

• two vectors (time and count) noting changes to number in the queue (numInQueueT, numInQueueN),
and

• two vectors (time and status) noting changes to server status (serverStatusT, serverStatusN).

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

Examples

process 100 arrivals, R-provided seed (via NULL seed), default 2 servers
msq(100, NULL)
process 100 arrivals, seed 8675309, 3 servers, LFU server selection
msq(100, 8675309, 3, 'LFU')

msq(maxArrivals = 100, seed = 8675309)
msq(maxTime = 100, seed = 8675309)

##
example to show use of seed = NA (default) to rely on current state of generator
output1 <- msq(200, 8675309, showOutput = FALSE, saveAllStats = TRUE)
output2 <- msq(300, showOutput = FALSE, saveAllStats = TRUE)
set.seed(8675309)
output3 <- msq(200, showOutput = FALSE, saveAllStats = TRUE)
output4 <- msq(300, showOutput = FALSE, saveAllStats = TRUE)
sum(output1$sojournTimes != output3$sojournTimes) # should be zero
sum(output2$sojournTimes != output4$sojournTimes) # should be zero

##
use same service function for (default) two servers
myArrFcn <- function() { vexp(1, rate = 1/4, stream = 1) } # mean is 4
mySvcFcn <- function() { vgamma(1, shape = 1, rate = 0.3, stream = 2) } # mean is 3.3
output <- msq(maxArrivals = 100, interarrivalFcn = myArrFcn,

serviceFcn = mySvcFcn, saveAllStats = TRUE)
mean(output$interarrivalTimes)
mean(output$serviceTimes)

##
use different service function for (default) two servers
myArrFcn <- function() { vexp(1, rate = 1/4, stream = 1) } # mean is 4
mySvcFcn1 <- function() { vgamma(1, shape = 3, scale = 1.1, stream = 2) } # mean is 3.3
mySvcFcn2 <- function() { vgamma(1, shape = 3, scale = 1.2, stream = 3) } # mean is 3.6
output <- msq(maxArrivals = 100, interarrivalFcn = myArrFcn,

serviceFcn = list(mySvcFcn1, mySvcFcn2), saveAllStats = TRUE)

msq 85

mean(output$interarrivalTimes)
meanTPS(output$numInQueueT, output$numInQueueN) # compute time-averaged num in queue
mean(output$serviceTimesPerServer[[1]]) # compute avg service time for server 1
mean(output$serviceTimesPerServer[[2]]) # compute avg service time for server 2
meanTPS(output$serverStatusT[[1]], output$serverStatusN[[1]]) # compute server 1 utilization
meanTPS(output$serverStatusT[[2]], output$serverStatusN[[2]]) # compute server 2 utilization

##
example to show use of (simple) trace data for arrivals and service times,
allowing for reuse of trace data times
smallQueueTrace <- list()
smallQueueTrace$arrivalTimes <- c(15, 47, 71, 111, 123, 152, 166, 226, 310, 320)
smallQueueTrace$serviceTimes <- c(43, 36, 34, 30, 38, 40, 31, 29, 36, 30)

interarrivalTimes <- NULL
serviceTimes <- NULL

getInterarr <- function()
{

if (length(interarrivalTimes) == 0) {
interarrivalTimes <<- c(smallQueueTrace$arrivalTimes[1],

diff(smallQueueTrace$arrivalTimes))
}
nextInterarr <- interarrivalTimes[1]
interarrivalTimes <<- interarrivalTimes[-1] # remove 1st element globally
return(nextInterarr)

}

getService <- function()
{

if (length(serviceTimes) == 0) {
serviceTimes <<- smallQueueTrace$serviceTimes

}
nextService <- serviceTimes[1]
serviceTimes <<- serviceTimes[-1] # remove 1st element globally
return(nextService)

}

output <- msq(maxArrivals = 100, numServers = 2, interarrivalFcn = getInterarr,
serviceFcn = getService, saveAllStats = TRUE)

mean(output$interarrivalTimes)
mean(output$serviceTimes)
mean(output$serviceTimesPerServer[[1]]) # compute avg service time for server 1
mean(output$serviceTimesPerServer[[2]]) # compute avg service time for server 2

##
Testing with visualization

Visualizing msq with a set seed, infinite queue capacity, 10 arrivals,
and showing queue (default) and skyline for all 3 attributes
msq(seed = 1234, numServers = 5, maxArrivals = 10, showSkyline = 7,

plotDelay = 0.1)

86 quantileTPS

Same simulation as above but using default interactive mode
if (interactive()) {

msq(seed = 1234, numServers = 5, maxArrivals = 10, showSkyline = 7)
}

Visualizing msq with a set seed, finite queue capacity, 20 arrivals,
and showing queue (default) and skyline for all 3 attributes
msq(seed = 1234, numServers = 5, maxArrivals = 25, showSkyline = 7,

maxInSystem = 5, plotDelay = 0)

Using default distributions to simulate an M/G/2 queue
msq(seed = 1234, maxDepartures = 10,

interarrivalType = "M", serviceType = "G", plotDelay = 0)

quantileTPS Sample Quantiles of Time-Persistent Statistics (TPS)

Description

Computes the sample quantiles of a time-persistent function, corresponding to the given probabili-
ties.

Usage

quantileTPS(times = NULL, numbers = NULL, probs = c(0, 0.25, 0.5, 0.75, 1))

Arguments

times A numeric vector of non-decreasing time observations

numbers A numeric vector containing the values of the time-persistent statistic between
the time observation

probs A numeric vector of probabilities with values in [0,1]

Details

The lengths of \code{times} and \code{numbers} either must be
the same, or \code{times} may have one more entry than \code{numbers}
(interval endpoints vs. interval counts). The sample quantiles are calculated
by determining the length of time spent in each state, sorting these times,
then calculating the quantiles associated with the values in the \code{prob}
vector in the same fashion as one would calculate quantiles associated with
a univariate discrete probability distribution.

Value

a vector of the sample quantiles of the time-persistent function provided

queueTrace 87

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

Examples

times <- c(1,2,3,4,5)
counts <- c(1,2,1,1,2)
meanTPS(times, counts)
sdTPS(times, counts)
quantileTPS(times, counts)

output <- ssq(seed = 54321, maxTime = 100, saveNumInSystem = TRUE)
utilization <- meanTPS(output$numInSystemT, output$numInSystemN)
sdServerStatus <- sdTPS(output$numInSystemT, output$numInSystemN)
quantileServerStatus <- quantileTPS(output$numInSystemT, output$numInSystemN)

compute and graphically display quantiles of number in system vs time
output <- ssq(maxArrivals = 60, seed = 54321, saveAllStats = TRUE)
quantileSys <- quantileTPS(output$numInSystemT, output$numInSystemN)
plot(output$numInSystemT, output$numInSystemN, type = "s", bty = "l",

las = 1, xlab = "time", ylab = "number in system")
labels <- c("0%", "25%", "50%", "75%", "100%")
mtext(text = labels, side = 4, at = quantileSys, las = 1, col = "red")
abline(h = quantileSys, lty = "dashed", col = "red", lwd = 2)

queueTrace Trace Data for Single-Server Queue Simulation

Description

This data set contains the arrival and service times for 1000 jobs arriving to a generic single-server
queue.

Usage

queueTrace

Format

A list of two vectors, arrivalTimes and serviceTimes.

Details

This trace data could be used as input for the ssq function, but not directly. That is, ssq expects in-
terarrival and service functions as input, not vectors of arrival times and service times. Accordingly,
the user will need to write functions to extract the interarrival and service times from this trace,
which can then be passed to ssq. See examples below.

88 sample

Source

Discrete-Event Simulation: A First Course (2006). L.M. Leemis and S.K. Park. Pearson/Prentice
Hall, Upper Saddle River, NJ. ISBN-13: 978-0131429178

Examples

interarrivalTimes <- c(queueTrace$arrivalTimes[1], diff(queueTrace$arrivalTimes))
serviceTimes <- queueTrace$serviceTimes

avgInterarrivalTime <- mean(interarrivalTimes)
avgServiceTime <- mean(serviceTimes)

functions to use this trace data for the ssq() function;
note that the functions below destroy the global values of the copied
interarrivalTimes and serviceTimes vectors along the way...
#
interarrivalTimes <- NULL
serviceTimes <- NULL
getInterarr <- function(...)
{

if (length(interarrivalTimes) == 0) {
interarrivalTimes <- c(queueTrace$arrivalTimes[1],

diff(queueTrace$arrivalTimes))
}
nextInterarr <- interarrivalTimes[1]
interarrivalTimes <- interarrivalTimes[-1]
return(nextInterarr)

}
getService <- function(...)
{

if (length(serviceTimes) == 0) {
serviceTimes <- queueTrace$serviceTimes

}
nextService <- serviceTimes[1]
serviceTimes <- serviceTimes[-1]
return(nextService)

}
ssq(maxArrivals = 1000, interarrivalFcn = getInterarr, serviceFcn = getService)

sample Random Samples

Description

sample takes a sample of the specified size from the elements of x, either with or without replace-
ment, and with capability to use independent streams and antithetic variates in the draws.

sample 89

Usage

sample(
x,
size,
replace = FALSE,
prob = NULL,
stream = NULL,
antithetic = FALSE

)

Arguments

x Either a vector of one or more elements from which to choose, or a positive
integer

size A non-negative integer giving the number of items to choose

replace If FALSE (default), sampling is without replacement; otherwise, sample is with
replacement

prob A vector of probability weights for obtaining the elements of the vector being
sampled

stream If NULL (default), directly calls base::sample and returns its result; otherwise,
an integer in 1:100 indicates the rstream stream used to generate the sample

antithetic If FALSE (default), uses u = uniform(0,1) variate(s)generated via rstream::rstream.sample
to generate the sample; otherwise, uses 1− u. (NB: ignored if stream is NULL.)

Details

If stream is NULL, sampling is done by direct call to base::sample (refer to its documentation for
details). In this case, a value of TRUE for antithetic is ignored.

The remainder of details below presume that stream has a positive integer value, corresponding to
use of the vunif variate generator for generating the random sample.

If x has length 1 and is numeric, sampling takes place from 1:x only if x is a positive integer;
otherwise, sampling takes place using the single value of x provided (either a floating-point value
or a non-positive integer). Otherwise x can be a valid R vector, list, or data frame from which to
sample.

The default for size is the number of items inferred from x, so that sample(x, stream = m) gen-
erates a random permutation of the elements of x (or 1:x) using random number stream m.

It is allowed to ask for size = 0 samples (and only then is a zero-length x permitted), in which case
base::sample is invoked to return the correct (empty) data type.

The optional prob argument can be used to give a vector of probabilities for obtaining the elements
of the vector being sampled. Unlike base::sample, the weights here must sum to one. If replace
is false, these probabilities are applied successively; that is the probability of choosing the next item
is proportional to the weights among the remaining items. The number of nonzero probabilities
must be at least size in this case.

90 sdTPS

Value

If x is a single positive integer, sample returns a vector drawn from the integers 1:x. Otherwise,
sample returns a vector, list, or data frame consistent with typeof(x).

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

base::sample, vunif

Examples

set.seed(8675309)

use base::sample (since stream is NULL) to generate a permutation of 1:5
sample(5)

use vunif(1, stream = 1) to generate a permutation of 1:5
sample(5, stream = 1)

generate a (boring) sample of identical values drawn using the single value 867.5309
sample(867.5309, size = 10, replace = TRUE, stream = 1)

use vunif(1, stream = 1) to generate a size-10 sample drawn from 7:9
sample(7:9, size = 10, replace = TRUE, stream = 1)

use vunif(1, stream = 1) to generate a size-10 sample drawn from c('x','y','z')
sample(c('x','y','z'), size = 10, replace = TRUE, stream = 1)

use vunif(1, stream = 1) to generate a size-5 sample drawn from a list
mylist <- list()
mylist$a <- 1:5
mylist$b <- 2:6
mylist$c <- 3:7
sample(mylist, size = 5, replace = TRUE, stream = 1)

use vunif(1, stream = 1) to generate a size-5 sample drawn from a data frame
mydf <- data.frame(a = 1:6, b = c(1:3, 1:3))
sample(mydf, size = 5, replace = TRUE, stream = 1)

sdTPS Standard Deviation of Time-Persistent Statistics (TPS)

sdTPS 91

Description

Computes the sample standard deviation of a time-persistent function.

Usage

sdTPS(times = NULL, numbers = NULL)

Arguments

times A numeric vector of non-decreasing time observations

numbers A numeric vector containing the values of the time-persistent statistic between
the time observation

Details

The lengths of \code{times} and \code{numbers} either must be
the same, or \code{times} may have one more entry than \code{numbers}
(interval endpoints vs. interval counts). The sample variance is the
area under the square of the step-function created by the values in
\code{numbers} between the first and last element in \code{times} divided
by the length of the observation period, less the square of the sample mean.
The sample standard deviation is the square root of the sample variance.

Value

the sample standard deviation of the time-persistent function provided

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

Examples

times <- c(1,2,3,4,5)
counts <- c(1,2,1,1,2)
meanTPS(times, counts)
sdTPS(times, counts)

output <- ssq(seed = 54321, maxTime = 100, saveServerStatus = TRUE)
utilization <- meanTPS(output$serverStatusT, output$serverStatusN)
sdServerStatus <- sdTPS(output$serverStatusT, output$serverStatusN)

compute and graphically display mean and sd of number in system vs time
output <- ssq(maxArrivals = 60, seed = 54321, saveAllStats = TRUE)
plot(output$numInSystemT, output$numInSystemN, type = "s", bty = "l",

las = 1, xlab = "time", ylab = "number in system")
meanSys <- meanTPS(output$numInSystemT, output$numInSystemN)
sdSys <- sdTPS(output$numInSystemT, output$numInSystemN)

92 set.seed

abline(h = meanSys, lty = "solid", col = "red", lwd = 2)
abline(h = c(meanSys - sdSys, meanSys + sdSys),

lty = "dashed", col = "red", lwd = 2)

set.seed Seeding Random Variate Generators

Description

set.seed in the simEd package allows the user to simultaneously set the initial seed for both the
stats and simEd variate generators.

Usage

set.seed(seed, kind = NULL, normal.kind = NULL)

Arguments

seed A single value, interpreted as an integer, or NULL (see ’Details’)

kind Character or NULL. This is passed verbatim to base::set.seed.

normal.kind Character or NULL. This is passed verbatim to base::set.seed.

Details

This function intentionally masks the base::set.seed function, allowing the user to simultane-
ously set the initial seed for the stats variate generators (by explicitly calling base::set.seed)
and for the simEd variate generators (by explicitly setting up 10 streams using the rstream.mrg32k3a
generator from the rstream package).

Any call to set.seed re-initializes the seed for the stats and simEd generators as if no seed had
been set. If called with seed = NULL, both the stats and simEd variate generators are re-initialized
using a random seed based on the system clock.

If the user wishes to set the seed for the stats generators without affecting the seeds of the simEd
generators, an explicit call to base::set.seed can be made.

Note that once set.seed is called, advancing the simEd generator state using any of the stream-
based simEd variate generators will not affect the state of the non-stream-based stats generators,
and vice-versa.

As soon as the simEd package is attached (i.e., when simEd is the parent of the global environ-
ment), simEd::set.seed becomes the default for a call to set.seed. When the simEd package is
detached, base::set.seed will revert to the default.

Value

set.seed returns NULL, invisibly, consistent with base::set.seed.

ssq 93

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

base::set.seed

Examples

set.seed(8675309)
rexp(3, rate = 2) # explicit call of stats::rexp

set.seed(8675309)
vexp(3, rate = 2) # also uses stats::rexp

set.seed(8675309)
vexp(3, rate = 2, stream = 1) # uses rstream and stats::qexp
vexp(3, rate = 2, stream = 2)
rexp(3, rate = 2) # explicit call of stats::rexp, starting with seed 8675309

set.seed(8675309)
vexp(1, rate = 2, stream = 1) # uses rstream and stats::qexp
vexp(1, rate = 2, stream = 2)
vexp(1, rate = 2, stream = 1)
vexp(1, rate = 2, stream = 2)
vexp(1, rate = 2, stream = 1)
vexp(1, rate = 2, stream = 2)
vexp(3, rate = 2) # calls stats::rexp, starting with seed 8675309

ssq Single-Server Queue Simulation

Description

A next-event simulation of a single-server queue, with extensible arrival and service processes.

Usage

ssq(
maxArrivals = Inf,
seed = NA,
interarrivalFcn = NULL,
serviceFcn = NULL,
interarrivalType = "M",
serviceType = "M",

94 ssq

maxTime = Inf,
maxDepartures = Inf,
maxInSystem = Inf,
maxEventsPerSkyline = 15,
saveAllStats = FALSE,
saveInterarrivalTimes = FALSE,
saveServiceTimes = FALSE,
saveWaitTimes = FALSE,
saveSojournTimes = FALSE,
saveNumInQueue = FALSE,
saveNumInSystem = FALSE,
saveServerStatus = FALSE,
showOutput = TRUE,
animate = FALSE,
showQueue = NULL,
showSkyline = NULL,
showSkylineSystem = FALSE,
showSkylineQueue = FALSE,
showSkylineServer = FALSE,
showTitle = TRUE,
showProgress = TRUE,
plotQueueFcn = defaultPlotSSQ,
plotSkylineFcn = defaultPlotSkyline,
jobImage = NA,
plotDelay = NA,
respectLayout = FALSE

)

Arguments

maxArrivals maximum number of customer arrivals allowed to enter the system

seed initial seed to the random number generator (NA uses current state of random
number generator; NULL seeds using system clock)

interarrivalFcn

function for generating interarrival times for queue simulation. Default value
(NA) will result in use of default interarrival function based on interarrivalType.
See examples.

serviceFcn function for generating service times for queue simulation. Default value (NA)
will result in use of default service function based on serviceType. See exam-
ples.

interarrivalType

string representation of desired interarrival process. Options are "M" – expo-
nential with rate 1; "G" – uniform(0,2), having mean 1; and "D" – deterministic
with constant value 1. Default is "M".

serviceType string representation of desired service process . Options are "M" – exponential
with rate 10/9; "G" – uniform(0, 1.8), having mean 9/10; and "D" – deterministic
with constant value 9/10. Default is "M".

ssq 95

maxTime maximum time to simulate

maxDepartures maximum number of customer departures to process

maxInSystem maximum number of customers that the system can hold (server(s) plus queue).
Infinite by default.

maxEventsPerSkyline

maximum number of events viewable at a time in the skyline plot. A large value
for this parameter may result in plotting delays. This parameter does not impact
the final plotting, which will show all end-of-simulation results.

saveAllStats if TRUE, returns all vectors of statistics (see below) collected by the simulation
saveInterarrivalTimes

if TRUE, returns a vector of all interarrival times generated
saveServiceTimes

if TRUE, returns a vector of all service times generated

saveWaitTimes if TRUE, returns a vector of all wait times (in the queue) generated
saveSojournTimes

if TRUE, returns a vector of all sojourn times (time spent in the system) generated

saveNumInQueue if TRUE, returns a vector of times and a vector of counts for whenever the number
in the queue changes

saveNumInSystem

if TRUE, returns a vector of times and a vector of counts for whenever the number
in the system changes

saveServerStatus

if TRUE, returns a vector of times and a vector of server status (0:idle, 1:busy)
for whenever the status changes

showOutput if TRUE, displays summary statistics upon completion

animate logical; if FALSE, no animation plots will be shown.

showQueue logical; if TRUE, displays a visualization of the queue

showSkyline If NULL (default), defers to each individual showSkyline... parameter below;
otherwise, supersedes individual showSkyline... parameter values. If TRUE, dis-
plays full skyline plot; FALSE suppresses skyline plot. Can alternatively be spec-
ified using chmod-like octal component specification: use 1, 2, 4 for system,
queue, and server respectively, summing to indicate desired combination (e.g.,
7 for all). Can also be specified as a binary vector (e.g., c(1,1,1) for all).

showSkylineSystem

logical; if TRUE, includes number in system as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showSkylineQueue

logical; if TRUE, includes number in queue as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showSkylineServer

logical; if TRUE, includes number in server as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showTitle if TRUE, display title at the top of the main plot

96 ssq

showProgress if TRUE, displays a progress bar on screen during no-animation execution

plotQueueFcn plotting function to display queue visualization. By default, this is provided
by defaultPlotSSQ. Please refer to that associated help for more details about
required arguments.

plotSkylineFcn plotting function to display Skyline visualization. By default, this is provided
by defaultPlotSkyline. Please refer to that associated help for more details
about required arguments.

jobImage a vector of URLs/local addresses of images to use as jobs. Requires package
'magick'.

plotDelay a positive numeric value indicating seconds between plots. A value of -1 enters
’interactive’ mode, where the state will pause for user input at each step. A value
of 0 will display only the final end-of-simulation plot.

respectLayout logical; if TRUE, plot layout (i.e. par, device, etc.) settings will be respected.

Details

Implements a next-event implementation of a single-server queue simulation.

The seed parameter can take one of three valid argument types:

• NA (default), which will use the current state of the random number generator without explic-
itly setting a new seed (see examples);

• a positive integer, which will be used as the initial seed passed in an explicit call to set.seed;
or

• NULL, which will be passed in an explicit call to to set.seed, thereby setting the initial seed
using the system clock.

Value

The function returns a list containing:

• the number of arrivals to the system (customerArrivals),

• the number of customers processed (customerDepartures),

• the ending time of the simulation (simulationEndTime),

• average wait time in the queue (avgWait),

• average time in the system (avgSojourn),

• average number in the system (avgNumInSystem),

• average number in the queue (avgNumInQueue), and

• server utilization (utilization).

of the queue as computed by the simulation. When requested via the “save...” parameters, the list
may also contain:

• a vector of interarrival times (interarrivalTimes),

• a vector of wait times (waitTimes),

• a vector of service times (serviceTimes),

ssq 97

• a vector of sojourn times (sojournTimes),

• two vectors (time and count) noting changes to number in the system (numInSystemT, numInSystemN),

• two vectors (time and count) noting changes to number in the queue (numInQueueT, numInQueueN),
and

• two vectors (time and status) noting changes to server status (serverStatusT, serverStatusN).

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

Examples

process 100 arrivals, R-provided seed (via NULL seed)
ssq(100, NULL)

ssq(maxArrivals = 100, seed = 54321)
ssq(maxDepartures = 100, seed = 54321)
ssq(maxTime = 100, seed = 54321)

##
example to show use of seed = NA (default) to rely on current state of generator
output1 <- ssq(200, 8675309, showOutput = FALSE, saveAllStats = TRUE)
output2 <- ssq(300, showOutput = FALSE, saveAllStats = TRUE)
set.seed(8675309)
output3 <- ssq(200, showOutput = FALSE, saveAllStats = TRUE)
output4 <- ssq(300, showOutput = FALSE, saveAllStats = TRUE)
sum(output1$sojournTimes != output3$sojournTimes) # should be zero
sum(output2$sojournTimes != output4$sojournTimes) # should be zero

myArrFcn <- function() { vexp(1, rate = 1/4, stream = 1) } # mean is 4
mySvcFcn <- function() { vgamma(1, shape = 1, rate = 0.3) } # mean is 3.3

output <- ssq(maxArrivals = 100, interarrivalFcn = myArrFcn, serviceFcn = mySvcFcn,
saveAllStats = TRUE)

mean(output$interarrivalTimes)
mean(output$serviceTimes)
meanTPS(output$numInQueueT, output$numInQueueN) # compute time-averaged num in queue
meanTPS(output$serverStatusT, output$serverStatusN) # compute server utilization

##
example to show use of (simple) trace data for arrivals and service times;
ssq() will need one more interarrival (arrival) time than jobs processed
#
arrivalTimes <- NULL
interarrivalTimes <- NULL

98 ssq

serviceTimes <- NULL

initTimes <- function() {
arrivalTimes <<- c(15, 47, 71, 111, 123, 152, 232, 245, 99999)
interarrivalTimes <<- c(arrivalTimes[1], diff(arrivalTimes))
serviceTimes <<- c(43, 36, 34, 30, 38, 30, 31, 29)

}

getInterarr <- function() {
nextInterarr <- interarrivalTimes[1]
interarrivalTimes <<- interarrivalTimes[-1] # remove 1st element globally
return(nextInterarr)

}

getService <- function() {
nextService <- serviceTimes[1]
serviceTimes <<- serviceTimes[-1] # remove 1st element globally
return(nextService)

}

initTimes()
numJobs <- length(serviceTimes)
output <- ssq(maxArrivals = numJobs, interarrivalFcn = getInterarr,

serviceFcn = getService, saveAllStats = TRUE)
mean(output$interarrivalTimes)
mean(output$serviceTimes)

##
example to show use of (simple) trace data for arrivals and service times,
allowing for reuse (recycling) of trace data times
arrivalTimes <- NULL
interarrivalTimes <- NULL
serviceTimes <- NULL

initArrivalTimes <- function() {
arrivalTimes <<- c(15, 47, 71, 111, 123, 152, 232, 245)
interarrivalTimes <<- c(arrivalTimes[1], diff(arrivalTimes))

}

initServiceTimes <- function() {
serviceTimes <<- c(43, 36, 34, 30, 38, 30, 31, 29)

}

getInterarr <- function() {
if (length(interarrivalTimes) == 0) initArrivalTimes()

nextInterarr <- interarrivalTimes[1]
interarrivalTimes <<- interarrivalTimes[-1] # remove 1st element globally
return(nextInterarr)

}

getService <- function() {

ssqvis 99

if (length(serviceTimes) == 0) initServiceTimes()

nextService <- serviceTimes[1]
serviceTimes <<- serviceTimes[-1] # remove 1st element globally
return(nextService)

}

initArrivalTimes()
initServiceTimes()
output <- ssq(maxArrivals = 100, interarrivalFcn = getInterarr,

serviceFcn = getService, saveAllStats = TRUE)
mean(output$interarrivalTimes)
mean(output$serviceTimes)

##
Testing with visualization

Visualizing ssq with a set seed, infinite queue capacity, 20 arrivals,
interactive mode (default), showing skyline for all 3 attributes (default)
if (interactive()) {
ssq(seed = 1234, maxArrivals = 20, animate = TRUE)

}

Same as above, but jump to final queue visualization using plotDelay 0
ssq(seed = 1234, maxArrivals = 20, animate = TRUE, plotDelay = 0)

Perform simulation again with finite queue of low capacity. Note same
variate generation but different outcomes due to rejection pathway
ssq(seed = 1234, maxArrivals = 25, animate = TRUE, maxInSystem = 5, plotDelay = 0)

Using default distributions to simulate a default M/G/1 Queue
ssq(seed = 1234, maxDepartures = 10, interarrivalType = "M", serviceType = "G",

animate = TRUE, plotDelay = 0)

ssqvis Single-Server Queue Simulation Visualization

Description

A modified ssq implementation that illustrates event-driven details, including the event calendar,
inversion for interarrival and service time variate generation, the simulation clock, the status of the
queueing system, and statistics collection. The function plots step-by-step in either an interactive
mode or time-delayed automatic mode.

Usage

ssqvis(
maxArrivals = Inf,
seed = NA,

100 ssqvis

interarrivalType = "M",
serviceType = "M",
maxTime = Inf,
maxDepartures = Inf,
maxEventsPerSkyline = 15,
saveAllStats = FALSE,
saveInterarrivalTimes = FALSE,
saveServiceTimes = FALSE,
saveWaitTimes = FALSE,
saveSojournTimes = FALSE,
saveNumInQueue = FALSE,
saveNumInSystem = FALSE,
saveServerStatus = FALSE,
showOutput = TRUE,
showSkyline = NULL,
showSkylineQueue = TRUE,
showSkylineSystem = TRUE,
showSkylineServer = TRUE,
showTitle = TRUE,
jobImage = NA,
plotDelay = -1

)

Arguments

maxArrivals maximum number of customer arrivals allowed to enter the system

seed initial seed to the random number generator (NA uses current state of random
number generator; NULL seeds using system clock)

interarrivalType

string representation of desired interarrival process. Options are "M" – expo-
nential with rate 1; "G" – uniform(0,2), having mean 1; and "D" – deterministic
with constant value 1. Default is "M".

serviceType string representation of desired service process . Options are "M" – exponential
with rate 10/9; "G" – uniform(0, 1.8), having mean 9/10; and "D" – deterministic
with constant value 9/10. Default is "M".

maxTime maximum time to simulate

maxDepartures maximum number of customer departures to process
maxEventsPerSkyline

maximum number of events viewable at a time in the skyline plot. A large value
for this parameter may result in plotting delays. This parameter does not impact
the final plotting, which will show all end-of-simulation results.

saveAllStats if TRUE, returns all vectors of statistics (see below) collected by the simulation
saveInterarrivalTimes

if TRUE, returns a vector of all interarrival times generated
saveServiceTimes

if TRUE, returns a vector of all service times generated

ssqvis 101

saveWaitTimes if TRUE, returns a vector of all wait times (in the queue) generated
saveSojournTimes

if TRUE, returns a vector of all sojourn times (time spent in the system) generated

saveNumInQueue if TRUE, returns a vector of times and a vector of counts for whenever the number
in the queue changes

saveNumInSystem

if TRUE, returns a vector of times and a vector of counts for whenever the number
in the system changes

saveServerStatus

if TRUE, returns a vector of times and a vector of server status (0:idle, 1:busy)
for whenever the status changes

showOutput if TRUE, displays summary statistics upon completion

showSkyline If NULL (default), defers to each individual showSkyline... parameter below;
otherwise, supersedes individual showSkyline... parameter values. If TRUE, dis-
plays full skyline plot; FALSE suppresses skyline plot. Can alternatively be spec-
ified using chmod-like octal component specification: use 1, 2, 4 for system,
queue, and server respectively, summing to indicate desired combination (e.g.,
7 for all). Can also be specified as a binary vector (e.g., c(1,1,1) for all).

showSkylineQueue

logical; if TRUE, includes number in queue as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showSkylineSystem

logical; if TRUE, includes number in system as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showSkylineServer

logical; if TRUE, includes number in server as part of skyline plot. Value for
showSkyline supersedes this parameter’s value.

showTitle if TRUE, display title at the top of the main plot

jobImage a vector of URLs/local addresses of images to use as jobs. Requires package
'magick'.

plotDelay a positive numeric value indicating seconds between plots. A value of -1 enters
’interactive’ mode, where the state will pause for user input at each step. A value
of 0 will display only the final end-of-simulation plot.

Details

Animates the details of an event-driven implementation of a single-server queue simulation.

The event calendar, inversion for interarrival and service time variates, and an abbreviated (current)
timeline are animated in the top pane of the window. In this pane, blue corresponds to the arrival
process, orange corresponds to the service process, and purple corresponds to uniform variates used
in inversion. Yellow is used to highlight recent updates.

The state of the queueing system is animated in the middle pane of the window. In this pane, red
indicates an idle server, orange indicates that a new customer has just arrived to the server and
a corresponding service time is being generated, and green indicates a busy server. By default,

102 ssqvis

customers are depicted as black rectangles and identified by increasing arrival number, but this
depiction can be overridden by the jobImage parameter.

Statistics are displayed in the bottom pane of the window. Time-persistent statistics are shown as
"skyline functions" in the left portion of this pane. Both time-persistent and based-on-observation
statistics are shown in respective tables in the right portion of this pane. In the tables, yellow is used
to highlight recent updates.

The seed parameter can take one of three valid argument types:

• NA (default), which will use the current state of the random number generator without explic-
itly setting a new seed (see examples);

• a positive integer, which will be used as the initial seed passed in an explicit call to set.seed;
or

• NULL, which will be passed in an explicit call to to set.seed, thereby setting the initial seed
using the system clock.

Value

The function returns a list containing:

• the number of arrivals to the system (customerArrivals),

• the number of customers processed (customerDepartures),

• the ending time of the simulation (simulationEndTime),

• average wait time in the queue (avgWait),

• average time in the system (avgSojourn),

• average number in the system (avgNumInSystem),

• average number in the queue (avgNumInQueue), and

• server utilization (utilization).

of the queue as computed by the simulation. When requested via the “save...” parameters, the list
may also contain:

• a vector of interarrival times (interarrivalTimes),

• a vector of wait times (waitTimes),

• a vector of service times (serviceTimes),

• a vector of sojourn times (sojournTimes),

• two vectors (time and count) noting changes to number in the system (numInSystemT, numInSystemN),

• two vectors (time and count) noting changes to number in the queue (numInQueueT, numInQueueN),
and

• two vectors (time and status) noting changes to server status (serverStatusT, serverStatusN).

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

thinning 103

See Also

rstream, set.seed, stats::runif

Examples

Visualizing ssq with a set seed, infinite queue capacity, 4 arrivals,
and showing skyline with number in system, queue, and server.
ssqvis(seed = 1234, maxArrivals = 4, showSkyline = 7, plotDelay = 0.01)

thinning Thinning Algorithm Visualization

Description

This function animates the "thinning" approach the generation of the random event times for a non-
homogeneous Poisson process with a specified intensity function, given a majorizing function that
dominates the intensity function.

Usage

thinning(
maxTime = 24,
intensityFcn = function(x) (5 - sin(x/0.955) - (4 * cos(x/3.82)))/0.5,
majorizingFcn = NULL,
majorizingFcnType = NULL,
seed = NA,
maxTrials = Inf,
plot = TRUE,
showTitle = TRUE,
plotDelay = plot * -1

)

Arguments

maxTime maximum time of the non-homogeneous Poisson process. (The minimum time
is assumed to be zero.)

intensityFcn intensity function corresponding to rate of arrivals across time.
majorizingFcn majorizing function. Default value is NULL, corresponding to a constant ma-

jorizing function that is 1.01 times the maximum value of the intensity function.
May alternatively be provided as a user-specified function, or as a data frame re-
quiring additional notation as either piecewise-constant or piecewise-linear. See
examples.

majorizingFcnType

used to indicate whether a majorizing function that is provided via data frame
is to be interpreted as either piecewise-constant ("pwc") or piecewise-linear
("pwl"). If the majorizing function is either the default or a user-specified func-
tion (closure), the value of this parameter is ignored.

104 thinning

seed initial seed for the uniform variates used during generation.

maxTrials maximum number of accept-reject trials; infinite by default.

plot if TRUE, visual display will be produced. If FALSE, generated event times will
be returned without visual display.

showTitle if TRUE, display title in the main plot.

plotDelay wait time, in seconds, between plots; -1 (default) for interactive mode, where
the user is queried for input to progress.

Details

There are three modes for visualizing Lewis and Shedler’s thinning algorithm for generating random
event times for a non-homogeneous Poisson process with a particular intensity function:

• interactive advance (plotDelay = -1), where pressing the ’ENTER’ key advances to the next
step (an accepted random variate) in the algorithm, typing ’j #’ jumps ahead # steps, typing
’q’ quits immediately, and typing ’e’ proceeds to the end;

• automatic advance (plotDelay > 0); or

• final visualization only (plotDelay = 0).

As an alternative to visualizing, event times can be generated

Value

returns a vector of the generated random event times

References

Lewis, P.A.W. and Shedler, G.S. (1979). Simulation of non-homogeneous Poisson processes by
thinning. Naval Research Logistics, 26, 403–413.

Examples

nhpp <- thinning(maxTime = 12, seed = 8675309, plotDelay = 0)
nhpp <- thinning(maxTime = 24, seed = 8675309, plotDelay = 0)

nhpp <- thinning(maxTime = 48, seed = 8675309, plotDelay = 0)

thinning with custom intensity function and default majorizing function
intensity <- function(x) {

day <- 24 * floor(x/24)
return(80 * (dnorm(x, day + 6, 2.5) +

dnorm(x, day + 12.5, 1.5) +
dnorm(x, day + 19, 2.0)))

}
nhpp <- thinning(maxTime = 24, plotDelay = 0, intensityFcn = intensity)

thinning with custom intensity and constant majorizing functions
major <- function(x) { 25 }
nhpp <- thinning(maxTime = 24, plotDelay = 0, intensityFcn = intensity,

thinning 105

majorizingFcn = major)

piecewise-constant data.frame for bounding default intensity function
fpwc <- data.frame(

x = c(0, 2, 20, 30, 44, 48),
y = c(5, 5, 20, 12, 20, 5)

)
nhpp <- thinning(maxTime = 24, plotDelay = 0, majorizingFcn = fpwc, majorizingFcnType = "pwc")

piecewise-linear data.frame for bounding default intensity function
fpwl <- data.frame(

x = c(0, 12, 24, 36, 48),
y = c(5, 25, 10, 25, 5)

)
nhpp <- thinning(maxTime = 24, plotDelay = 0, majorizingFcn = fpwl, majorizingFcnType = "pwl")

piecewise-linear closure/function bounding default intensity function
fclo <- function(x) {

if (x <= 12) (5/3)*x + 5
else if (x <= 24) 40 - (5/4)*x
else if (x <= 36) (5/4)*x - 20
else 85 - (5/3) * x

}
nhpp <- thinning(maxTime = 48, plotDelay = 0, majorizingFcn = fclo)

thinning with fancy custom intensity function and default majorizing
intensity <- function(x) {

day <- 24 * floor(x/24)
return(80 * (dnorm(x, day + 6, 2.5) +

dnorm(x, day + 12.5, 1.5) +
dnorm(x, day + 19, 2.0)))

}
nhpp <- thinning(maxTime = 24, plotDelay = 0, intensityFcn = intensity)

piecewise-linear data.frame for bounding custom intensity function
fpwl <- data.frame(

x = c(0, 6, 9, 12, 16, 19, 24, 30, 33, 36, 40, 43, 48),
y = c(5, 17, 12, 28, 14, 18, 7, 17, 12, 28, 14, 18, 7)

)
nhpp <- thinning(maxTime = 48, plotDelay = 0, intensityFcn = intensity,

majorizingFcn = fpwl, majorizingFcnType = "pwl")

thinning with simple custom intensity function and custom majorizing
intensity <- function(t) {

if (t < 12) t
else if (t < 24) 24 - t
else if (t < 36) t - 24
else 48 - t

}
majorizing <- data.frame(

x = c(0, 12, 24, 36, 48),
y = c(1, 13, 1, 13, 1))

times <- thinning(plotDelay = 0, intensityFcn = intensity,

106 tylersGrill

majorizingFcn = majorizing , majorizingFcnType = "pwl", maxTime = 48)

tylersGrill Arrival and Service Data for Tyler’s Grill (University of Richmond)

Description

This data set contains a list of two vectors of data.

The first vector in the list contains the arrival times for 1434 customers arriving to Tyler’s Grill
at the University of Richmond during a single day in 2005. The arrival times were collected dur-
ing operating hours, from 07:30 until 21:00. Arrival times are provided in seconds from opening
(07:30).

The second vector contains service times sample for 110 customers at Tyler’s Grill in 2005. Service
times are provided in seconds.

Usage

tylersGrill

Format

tylersGrill$arrivalTimes returns the vector of 1434 arrival times.
tylersGrill$serviceTimes returns the vector of 110 service times.

Source

CMSC 326 Simulation course at the University of Richmond, 2005.

Examples

interarr <- c(0, diff(tylersGrill$arrivalTimes))
svc <- tylersGrill$serviceTimes

avgInterarrivalTime <- mean(interarr)
avgServiceTime <- mean(svc)

use method of moments to fit gamma to Tyler's Grill service times
aHat <- mean(svc)^2 / var(svc)
bHat <- var(svc) / mean(svc)
hist(svc, freq = FALSE, las = 1, xlab = "service time", ylab = "density")
x <- 1:max(svc)
curve(dgamma(x, shape = aHat, scale = bHat), add = TRUE, col = "red", lwd = 2)

vbeta 107

vbeta Variate Generation for Beta Distribution

Description

Variate Generation for Beta Distribution

Usage

vbeta(
n,
shape1,
shape2,
ncp = 0,
stream = NULL,
antithetic = FALSE,
asList = FALSE

)

Arguments

n number of observations

shape1 Shape parameter 1 (alpha)

shape2 Shape parameter 2 (beta)

ncp Non-centrality parameter (default 0)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qbeta; otherwise, an integer in 1:25 indicates the rstream stream from
which to generate uniform variates to invert via stats::qbeta;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the beta distribution.

Beta variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qbeta is used to invert the uniform(0,1) variate(s). In this way, using vbeta provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The beta distribution has density

\deqn{f(x) = \frac{\Gamma(a+b)}{\Gamma(a) \ \Gamma(b)} x^{a-1}(1-x)^{b-1}}{
f(x) = Gamma(a+b)/(Gamma(a)Gamma(b)) x^(a-1)(1-x)^(b-1)}

108 vbeta

for a > 0, b > 0 and 0 ≤ x ≤ 1 where the boundary values at x = 0 or x = 1 are defined as by
continuity (as limits).

The mean is a
a+b and the variance is ab(a+ b)2(a+ b+ 1)

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates
x A vector of beta random variates
quantile Parameterized quantile function
text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rbeta

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qbeta
vbeta(3, shape1 = 3, shape2 = 1, ncp = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qbeta
vbeta(3, 3, 1, stream = 1)
vbeta(3, 3, 1, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qbeta
vbeta(1, 3, 1, stream = 1)
vbeta(1, 3, 1, stream = 2)
vbeta(1, 3, 1, stream = 1)
vbeta(1, 3, 1, stream = 2)
vbeta(1, 3, 1, stream = 1)
vbeta(1, 3, 1, stream = 2)

set.seed(8675309)
variates <- vbeta(100, 3, 1, stream = 1)
set.seed(8675309)
variates <- vbeta(100, 3, 1, stream = 1, antithetic = TRUE)

vbinom 109

vbinom Variate Generation for Binomial Distribution

Description

Variate Generation for Binomial Distribution

Usage

vbinom(n, size, prob, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations
size number of trials (zero or more)
prob probability of success on each trial (0 < prob ≤ 1)
stream if NULL (default), uses stats::runif to generate uniform variates to invert via

stats::qbinom; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qbinom;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the binomial distribution.
Binomial variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qbinom is used to invert the uniform(0,1) variate(s). In this way, using vbinom provides a
monotone and synchronized binomial variate generator, although not particularly fast.
The stream indicated must be an integer between 1 and 25 inclusive.
The binomial distribution with parameters size = n and prob = p has pmf

p(x) =

(
n

x

)
px(1− p)(n−x)

for x = 0, . . . , n.

Value

If asList is FALSE (default), return a vector of random variates.
Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates
x A vector of binomial random variates
quantile Parameterized quantile function
text Parameterized title of distribution

110 vcauchy

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rbinom

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qbinom
vbinom(3, size = 10, prob = 0.25)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qbinom
vbinom(3, 10, 0.25, stream = 1)
vbinom(3, 10, 0.25, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qbinom
vbinom(1, 10, 0.25, stream = 1)
vbinom(1, 10, 0.25, stream = 2)
vbinom(1, 10, 0.25, stream = 1)
vbinom(1, 10, 0.25, stream = 2)
vbinom(1, 10, 0.25, stream = 1)
vbinom(1, 10, 0.25, stream = 2)

set.seed(8675309)
variates <- vbinom(100, 10, 0.25, stream = 1)
set.seed(8675309)
variates <- vbinom(100, 10, 0.25, stream = 1, antithetic = TRUE)

vcauchy Variate Generation for Cauchy Distribution

Description

Variate Generation for Cauchy Distribution

Usage

vcauchy(
n,
location = 0,

vcauchy 111

scale = 1,
stream = NULL,
antithetic = FALSE,
asList = FALSE

)

Arguments

n number of observations

location Location parameter (default 0)

scale Scale parameter (default 1)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qcauchy; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qcauchy;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the Cauchy distribution.

Cauchy variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qcauchy is used to invert the uniform(0,1) variate(s). In this way, using vcauchy provides
a monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The Cauchy distribution has density
\deqn{f(x) = \frac{1}{\pi s} \ \left(1 + \left(\frac{x - l}{s} \right)^2

\right)^{-1}}{
f(x) = 1 / (\pi s (1 + ((x-l)/s)^2))}

for all x.

The mean is a/(a+ b) and the variance is ab/((a+ b)2(a+ b+ 1)).

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of Cauchy random variates

quantile Parameterized quantile function

text Parameterized title of distribution

112 vchisq

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rcauchy

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qcauchy
vcauchy(3, location = 3, scale = 1)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qcauchy
vcauchy(3, 0, 3, stream = 1)
vcauchy(3, 0, 3, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qcauchy
vcauchy(1, 0, 3, stream = 1)
vcauchy(1, 0, 3, stream = 2)
vcauchy(1, 0, 3, stream = 1)
vcauchy(1, 0, 3, stream = 2)
vcauchy(1, 0, 3, stream = 1)
vcauchy(1, 0, 3, stream = 2)

set.seed(8675309)
variates <- vcauchy(100, 0, 3, stream = 1)
set.seed(8675309)
variates <- vcauchy(100, 0, 3, stream = 1, antithetic = TRUE)

vchisq Variate Generation for Chi-Squared Distribution

Description

Variate Generation for Chi-Squared Distribution

Usage

vchisq(n, df, ncp = 0, stream = NULL, antithetic = FALSE, asList = FALSE)

vchisq 113

Arguments

n number of observations

df Degrees of freedom (non-negative, but can be non-integer)

ncp Non-centrality parameter (non-negative)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qchisq; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qchisq;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the chi-squared distribution.

Chi-Squared variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qchisq is used to invert the uniform(0,1) variate(s). In this way, using vchisq provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The chi-squared distribution with df = n ≥ 0 degrees of freedom has density

\deqn{f_n(x) = \frac{1}{2^{n/2} \ \Gamma(n/2)} x^{n/2-1} e^{-x/2}}{
f_n(x) = 1 / (2^(n/2) \Gamma(n/2)) x^(n/2-1) e^(-x/2)}

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df = n degrees of freedom and non-centrality param-
eter ncp = λ has density

\deqn{f(x) = e^{-\lambda/2} \sum_{r=0}^\infty \frac{(\lambda/2)^r}{r!} f_{n + 2r}(x)}{
f(x) = exp(-\lambda/2) SUM_{r=0}^\infty ((\lambda/2)^r / r!) dchisq(x, df + 2r)}

for x ≥ 0.

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of chi-squared random variates

quantile Parameterized quantile function

text Parameterized title of distribution

114 vexp

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rchisq

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qchisq
vchisq(3, df = 3, ncp = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qchisq
vchisq(3, 3, stream = 1)
vchisq(3, 3, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qchisq
vchisq(1, 3, stream = 1)
vchisq(1, 3, stream = 2)
vchisq(1, 3, stream = 1)
vchisq(1, 3, stream = 2)
vchisq(1, 3, stream = 1)
vchisq(1, 3, stream = 2)

set.seed(8675309)
variates <- vchisq(100, 3, stream = 1)
set.seed(8675309)
variates <- vchisq(100, 3, stream = 1, antithetic = TRUE)

vexp Variate Generation for Exponential Distribution

Description

Variate Generation for Exponential Distribution

Usage

vexp(n, rate = 1, stream = NULL, antithetic = FALSE, asList = FALSE)

vexp 115

Arguments

n number of observations
rate Rate of distribution (default 1)
stream if NULL (default), uses stats::runif to generate uniform variates to invert via

stats::qexp; otherwise, an integer in 1:25 indicates the rstream stream from
which to generate uniform variates to invert via stats::qexp;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the exponential distribution.

Exponential variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qexp is used to invert the uniform(0,1) variate(s). In this way, using vexp provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The exponential distribution with rate \eqn{\lambda} has density

\deqn{f(x) = \lambda e^{-\lambda x}}{
f(x) = \lambda e^(-\lambda x)}

for \eqn{x \geq 0}.

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates
x A vector of exponential random variates
quantile Parameterized quantile function
text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rexp

116 vfd

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qexp
vexp(3, rate = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qexp
vexp(3, 2, stream = 1)
vexp(3, 2, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qexp
vexp(1, 2, stream = 1)
vexp(1, 2, stream = 2)
vexp(1, 2, stream = 1)
vexp(1, 2, stream = 2)
vexp(1, 2, stream = 1)
vexp(1, 2, stream = 2)

set.seed(8675309)
variates <- vexp(100, 2, stream = 1)
set.seed(8675309)
variates <- vexp(100, 2, stream = 1, antithetic = TRUE)

set.seed(8675309)
NOTE: Default functions for M/M/1 ssq(), ignoring fixed n
interarrivals <- vexp(1000, rate = 1, stream = 1)
services <- vexp(1000, rate = 10/9, stream = 2)

vfd Variate Generation for FALSE Distribution

Description

Variate Generation for FALSE Distribution

Usage

vfd(n, df1, df2, ncp = 0, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations

df1 Degrees of freedom > 0

df2 Degrees of freedom > 0

ncp Non-centrality parameter >= 0

vfd 117

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qf; otherwise, an integer in 1:25 indicates the rstream stream from
which to generate uniform variates to invert via stats::qf;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the FALSE distribution.

FALSE variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qf is used to invert the uniform(0,1) variate(s). In this way, using vfd provides a monotone
and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The F distribution with df1 = n1 and df2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)

Γ(n1/2) Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of FALSE random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rf

118 vgamma

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qf
vfd(3, df1 = 1, df2 = 2, ncp = 10)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qf
vfd(3, 5, 5, stream = 1)
vfd(3, 5, 5, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qf
vfd(1, 5, 5, stream = 1)
vfd(1, 5, 5, stream = 2)
vfd(1, 5, 5, stream = 1)
vfd(1, 5, 5, stream = 2)
vfd(1, 5, 5, stream = 1)
vfd(1, 5, 5, stream = 2)

set.seed(8675309)
variates <- vfd(100, 5, 5, stream = 1)
set.seed(8675309)
variates <- vfd(100, 5, 5, stream = 1, antithetic = TRUE)

vgamma Variate Generation for Gamma Distribution

Description

Variate Generation for Gamma Distribution

Usage

vgamma(
n,
shape,
rate = 1,
scale = 1/rate,
stream = NULL,
antithetic = FALSE,
asList = FALSE

)

Arguments

n number of observations

shape Shape parameter

vgamma 119

rate Alternate parameterization for scale

scale Scale parameter

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qgamma; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qgamma;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the gamma distribution.

Gamma variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qgamma is used to invert the uniform(0,1) variate(s). In this way, using vgamma provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The gamma distribution with parameters \code{shape} = \eqn{a} and
\code{scale} = \eqn{s} has density

\deqn{f(x) = \frac{1}{s^a\, \Gamma(a)} x^{a-1} e^{-x/s}}{
f(x) = 1/(s^a Gamma(a)) x^(a-1) e^(-x/s)}

for \eqn{x \ge 0}, \eqn{a > 0}, and \eqn{s > 0}.
(Here \eqn{\Gamma(a)}{Gamma(a)} is the function implemented by
R's \code{\link[base:Special]{gamma}()} and defined in its help.)

The population mean and variance are \eqn{E(X) = as}
and \eqn{Var(X) = as^2}.

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of gamma random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

120 vgeom

See Also

rstream, set.seed, stats::runif

stats::rgamma

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qgamma
vgamma(3, shape = 2, rate = 1)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qgamma
vgamma(3, 2, scale = 1, stream = 1)
vgamma(3, 2, scale = 1, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qgamma
vgamma(1, 2, scale = 1, stream = 1)
vgamma(1, 2, scale = 1, stream = 2)
vgamma(1, 2, scale = 1, stream = 1)
vgamma(1, 2, scale = 1, stream = 2)
vgamma(1, 2, scale = 1, stream = 1)
vgamma(1, 2, scale = 1, stream = 2)

set.seed(8675309)
variates <- vgamma(100, 2, scale = 1, stream = 1)
set.seed(8675309)
variates <- vgamma(100, 2, scale = 1, stream = 1, antithetic = TRUE)

vgeom Variate Generation for Geometric Distribution

Description

Variate Generation for Geometric Distribution

Usage

vgeom(n, prob, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations

prob Probability of success in each trial (0 < prob ≤ 1)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qgeom; otherwise, an integer in 1:25 indicates the rstream stream from
which to generate uniform variates to invert via stats::qgeom;

vgeom 121

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the geometric distribution.

Geometric variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qgeom is used to invert the uniform(0,1) variate(s). In this way, using vgeom provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The geometric distribution with parameter prob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . ., where 0 < p ≤ 1.

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of geometric random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rgeom

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qgeom
vgeom(3, prob = 0.3)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qgeom

122 vlnorm

vgeom(3, 0.3, stream = 1)
vgeom(3, 0.3, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qgeom
vgeom(1, 0.3, stream = 1)
vgeom(1, 0.3, stream = 2)
vgeom(1, 0.3, stream = 1)
vgeom(1, 0.3, stream = 2)
vgeom(1, 0.3, stream = 1)
vgeom(1, 0.3, stream = 2)

set.seed(8675309)
variates <- vgeom(100, 0.3, stream = 1)
set.seed(8675309)
variates <- vgeom(100, 0.3, stream = 1, antithetic = TRUE)

vlnorm Variate Generation for Log-Normal Distribution

Description

Variate Generation for Log-Normal Distribution

Usage

vlnorm(
n,
meanlog = 0,
sdlog = 1,
stream = NULL,
antithetic = FALSE,
asList = FALSE

)

Arguments

n number of observations

meanlog Mean of distribution on log scale (default 0)

sdlog Standard deviation of distribution on log scale (default 1)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qlnorm; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qlnorm;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

vlnorm 123

Details

Generates random variates from the log-normal distribution.

Log-Normal variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qlnorm is used to invert the uniform(0,1) variate(s). In this way, using vlnorm provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The log-normal distribution has density

\deqn{f(x) = \frac{1}{\sqrt{2 \pi} \sigma x}
e^{-(\log{x} - \mu)^2 / (2 \sigma^2)} }{

f(x) = 1/(\sqrt(2 \pi) \sigma x) e^-((log x - \mu)^2 / (2 \sigma^2))}

where µ and σ are the mean and standard deviation of the logarithm.

The mean is E(X) = exp(µ + 1/2σ2), the median is med(X) = exp(µ), and the variance is
V ar(X) = exp(2×µ+σ2)×(exp(σ2)−1) and hence the coefficient of variation is sqrt(exp(σ2)−
1) which is approximately σ when small (e.g., σ < 1/2).

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of log-normal random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rlnorm

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qlnorm
vlnorm(3, meanlog = 5, sdlog = 0.5)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qlnorm

124 vlogis

vlnorm(3, 8, 2, stream = 1)
vlnorm(3, 8, 2, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qlnorm
vlnorm(1, 8, 2, stream = 1)
vlnorm(1, 8, 2, stream = 2)
vlnorm(1, 8, 2, stream = 1)
vlnorm(1, 8, 2, stream = 2)
vlnorm(1, 8, 2, stream = 1)
vlnorm(1, 8, 2, stream = 2)

set.seed(8675309)
variates <- vlnorm(100, 8, 2, stream = 1)
set.seed(8675309)
variates <- vlnorm(100, 8, 2, stream = 1, antithetic = TRUE)

vlogis Variate Generation for Logistic Distribution

Description

Variate Generation for Logistic Distribution

Usage

vlogis(
n,
location = 0,
scale = 1,
stream = NULL,
antithetic = FALSE,
asList = FALSE

)

Arguments

n number of observations

location Location parameter

scale Scale parameter (default 1)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qlogis; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qlogis;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

vlogis 125

Details

Generates random variates from the logistic distribution.

Logistic variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qlogis is used to invert the uniform(0,1) variate(s). In this way, using vlogis provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The logistic distribution with location = µ and scale = σ has distribution function

F (x) =
1

1 + e−(x−µ)/σ

and density

f(x) =
1

σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2.

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of logistic random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rlogis

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qlogis
vlogis(3, location = 5, scale = 0.5)

set.seed(8675309)

126 vnbinom

NOTE: following inverts rstream::rstream.sample using stats::qlogis
vlogis(3, 5, 1.5, stream = 1)
vlogis(3, 5, 1.5, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qlogis
vlogis(1, 5, 1.5, stream = 1)
vlogis(1, 5, 1.5, stream = 2)
vlogis(1, 5, 1.5, stream = 1)
vlogis(1, 5, 1.5, stream = 2)
vlogis(1, 5, 1.5, stream = 1)
vlogis(1, 5, 1.5, stream = 2)

set.seed(8675309)
variates <- vlogis(100, 5, 1.5, stream = 1)
set.seed(8675309)
variates <- vlogis(100, 5, 1.5, stream = 1, antithetic = TRUE)

vnbinom Variate Generation for Negative Binomial Distribution

Description

Variate Generation for Negative Binomial Distribution

Usage

vnbinom(n, size, prob, mu, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.

prob Probability of success in each trial; ’0 < prob <= 1’

mu alternative parameterization via mean

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qnbinom; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qnbinom;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

vnbinom 127

Details

Generates random variates from the negative binomial distribution.

Negative Binomial variates are generated by inverting uniform(0,1) variates produced either by
stats::runif (if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In ei-
ther case, stats::qnbinom is used to invert the uniform(0,1) variate(s). In this way, using vnbinom
provides a monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The negative binomial distribution with size = n and prob = p has density

\deqn{p(x) = \frac{\Gamma(x+n)}{\Gamma(n) \ x!} p^n (1-p)^x}{
p(x) = Gamma(x+n)/(Gamma(n) x!) p^n (1-p)^x}

for x = 0, 1, 2, . . . , n > 0 and 0 < p ≤ 1. This represents the number of failures which occur in a
sequence of Bernoulli trials before a target number of successes is reached.

The mean is µ = n(1− p)/p and variance n(1− p)/p2

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of negative binomial random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rnbinom

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qnbinom
vnbinom(3, size = 10, mu = 10)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qnbinom
vnbinom(3, 10, 0.25, stream = 1)
vnbinom(3, 10, 0.25, stream = 2)

128 vnorm

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qnbinom
vnbinom(1, 10, 0.25, stream = 1)
vnbinom(1, 10, 0.25, stream = 2)
vnbinom(1, 10, 0.25, stream = 1)
vnbinom(1, 10, 0.25, stream = 2)
vnbinom(1, 10, 0.25, stream = 1)
vnbinom(1, 10, 0.25, stream = 2)

set.seed(8675309)
variates <- vnbinom(100, 10, 0.25, stream = 1)
set.seed(8675309)
variates <- vnbinom(100, 10, 0.25, stream = 1, antithetic = TRUE)

vnorm Variate Generation for Normal Distribution

Description

Variate Generation for Normal Distribution

Usage

vnorm(n, mean = 0, sd = 1, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations

mean Mean of distribution (default 0)

sd Standard deviation of distribution (default 1)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qnorm; otherwise, an integer in 1:25 indicates the rstream stream from
which to generate uniform variates to invert via stats::qnorm;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the normal distribution.

Normal variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qnorm is used to invert the uniform(0,1) variate(s). In this way, using vnorm provides a
monotone and synchronized binomial variate generator, although not particularly fast.

vnorm 129

The stream indicated must be an integer between 1 and 25 inclusive.

The normal distribution has density

\deqn{f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x - \mu)^2/(2 \sigma^2)}}{
f(x) = 1/(\sqrt(2\pi)\sigma) e^(-(x - \mu)^2/(2 \sigma^2))}

for −∞ < x < ∞ and σ > 0, where µ is the mean of the distribution and σ the standard deviation.

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of normal random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rnorm

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qnorm
vnorm(3, mean = 2, sd = 1)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qnorm
vnorm(3, 10, 2, stream = 1)
vnorm(3, 10, 2, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qnorm
vnorm(1, 10, 2, stream = 1)
vnorm(1, 10, 2, stream = 2)
vnorm(1, 10, 2, stream = 1)
vnorm(1, 10, 2, stream = 2)
vnorm(1, 10, 2, stream = 1)
vnorm(1, 10, 2, stream = 2)

130 vpois

set.seed(8675309)
variates <- vnorm(100, 10, 2, stream = 1)
set.seed(8675309)
variates <- vnorm(100, 10, 2, stream = 1, antithetic = TRUE)

vpois Variate Generation for Poisson Distribution

Description

Variate Generation for Poisson Distribution

Usage

vpois(n, lambda, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations

lambda Rate of distribution

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qpois; otherwise, an integer in 1:25 indicates the rstream stream from
which to generate uniform variates to invert via stats::qpois;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the Poisson distribution.

Poisson variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qpois is used to invert the uniform(0,1) variate(s). In this way, using vpois provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The Poisson distribution has density

p(x) =
λxe−λ

x!

for x = 0, 1, 2, The mean and variance are E(X) = V ar(X) = λ

vpois 131

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of Poisson random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rpois

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qpois
vpois(3, lambda = 5)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qpois
vpois(3, 3, stream = 1)
vpois(3, 3, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qpois
vpois(1, 3, stream = 1)
vpois(1, 3, stream = 2)
vpois(1, 3, stream = 1)
vpois(1, 3, stream = 2)
vpois(1, 3, stream = 1)
vpois(1, 3, stream = 2)

set.seed(8675309)
variates <- vpois(100, 3, stream = 1)
set.seed(8675309)
variates <- vpois(100, 3, stream = 1, antithetic = TRUE)

132 vt

vt Variate Generation for Student T Distribution

Description

Variate Generation for Student T Distribution

Usage

vt(n, df, ncp = 0, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations

df Degrees of freedom > 0

ncp Non-centrality parameter delta (default NULL)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qt; otherwise, an integer in 1:25 indicates the rstream stream from
which to generate uniform variates to invert via stats::qt;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the Student t distribution.

Student T variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qt is used to invert the uniform(0,1) variate(s). In this way, using vt provides a mono-
tone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The t-distribution with df = v degrees of freedom has density

f(x) =
Γ((v + 1)/2)√
vπ Γ(v/2)

(1 + x2/v)−(v+1)/2

for all real x. It has mean 0 (for v > 1) and variance v/(v − 2) (for v > 2).

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as the distribution of
Tν(δ) := (U + δ) /

√
(V/ν) where U and V are independent random variables, U ∼ N (0, 1)

and V ∼ χ2(ν).

vt 133

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of Student t random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rt

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qt
vt(3, df = 3, ncp = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qt
vt(3, 2, stream = 1)
vt(3, 2, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qt
vt(1, 2, stream = 1)
vt(1, 2, stream = 2)
vt(1, 2, stream = 1)
vt(1, 2, stream = 2)
vt(1, 2, stream = 1)
vt(1, 2, stream = 2)

set.seed(8675309)
variates <- vt(100, 2, stream = 1)
set.seed(8675309)
variates <- vt(100, 2, stream = 1, antithetic = TRUE)

134 vunif

vunif Variate Generation for Uniform Distribution

Description

Variate Generation for Uniform Distribution

Usage

vunif(n, min = 0, max = 1, stream = NULL, antithetic = FALSE, asList = FALSE)

Arguments

n number of observations

min lower limit of distribution (default 0)

max upper limit of distribution (default 1)

stream if NULL (default), uses stats::runif to generate uniform variates; otherwise,
an integer in 1:25 indicates the rstream stream from which to generate uniform
variates;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the uniform distribution.

Uniform variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qunif is used to invert the uniform(0,1) variate(s). In this way, using vunif provides a
monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The uniform distribution has density

\deqn{f(x) = \frac{1}{max-min}}{
f(x) = 1/(max-min)}

for min ≤ x ≤ max.

vunif 135

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of uniform random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::runif

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qunif
vunif(3, min = -2, max = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qunif
vunif(3, 0, 10, stream = 1)
vunif(3, 0, 10, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qunif
vunif(1, 0, 10, stream = 1)
vunif(1, 0, 10, stream = 2)
vunif(1, 0, 10, stream = 1)
vunif(1, 0, 10, stream = 2)
vunif(1, 0, 10, stream = 1)
vunif(1, 0, 10, stream = 2)

set.seed(8675309)
variates <- vunif(100, 0, 10, stream = 1)
set.seed(8675309)
variates <- vunif(100, 0, 10, stream = 1, antithetic = TRUE)

136 vweibull

vweibull Variate Generation for Weibull Distribution

Description

Variate Generation for Weibull Distribution

Usage

vweibull(
n,
shape,
scale = 1,
stream = NULL,
antithetic = FALSE,
asList = FALSE

)

Arguments

n number of observations

shape Shape parameter

scale Scale parameter (default 1)

stream if NULL (default), uses stats::runif to generate uniform variates to invert via
stats::qweibull; otherwise, an integer in 1:25 indicates the rstream stream
from which to generate uniform variates to invert via stats::qweibull;

antithetic if FALSE (default), inverts u = uniform(0,1) variate(s) generated via either stats::runif
or rstream::rstream.sample; otherwise, uses 1− u

asList if FALSE (default), output only the generated random variates; otherwise, return
a list with components suitable for visualizing inversion. See return for details

Details

Generates random variates from the Weibull distribution.

Weibull variates are generated by inverting uniform(0,1) variates produced either by stats::runif
(if stream is NULL) or by rstream::rstream.sample (if stream is not NULL). In either case,
stats::qweibull is used to invert the uniform(0,1) variate(s). In this way, using vweibull pro-
vides a monotone and synchronized binomial variate generator, although not particularly fast.

The stream indicated must be an integer between 1 and 25 inclusive.

The Weibull distribution with parameters shape = a and scale = b has density

\deqn{f(x) = \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} e^{-(x/b)^a}}{
f(x) = (a/b) (x/b)^(a-1) exp(-(x/b)^a)}

for x ≥ 0, a > 0, and b > 0.

vweibull 137

Value

If asList is FALSE (default), return a vector of random variates.

Otherwise, return a list with components suitable for visualizing inversion, specifically:

u A vector of generated U(0,1) variates

x A vector of Weibull random variates

quantile Parameterized quantile function

text Parameterized title of distribution

Author(s)

Barry Lawson (<blawson@bates.edu>),
Larry Leemis (<leemis@math.wm.edu>),
Vadim Kudlay (<vkudlay@nvidia.com>)

See Also

rstream, set.seed, stats::runif

stats::rweibull

Examples

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qweibull
vweibull(3, shape = 2, scale = 1)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qweibull
vweibull(3, 2, 1, stream = 1)
vweibull(3, 2, 1, stream = 2)

set.seed(8675309)
NOTE: following inverts rstream::rstream.sample using stats::qweibull
vweibull(1, 2, 1, stream = 1)
vweibull(1, 2, 1, stream = 2)
vweibull(1, 2, 1, stream = 1)
vweibull(1, 2, 1, stream = 2)
vweibull(1, 2, 1, stream = 1)
vweibull(1, 2, 1, stream = 2)

set.seed(8675309)
variates <- vweibull(100, 2, 1, stream = 1)
set.seed(8675309)
variates <- vweibull(100, 2, 1, stream = 1, antithetic = TRUE)

Index

∗ Monte Carlo simulation
galileo, 8

∗ datasets
queueTrace, 87
tylersGrill, 106

∗ distribution
ibeta, 9
ibinom, 13
icauchy, 17
ichisq, 22
iexp, 26
ifd, 30
igamma, 34
igeom, 39
ilnorm, 43
ilogis, 47
inbinom, 52
inorm, 56
ipois, 60
it, 64
iunif, 69
iweibull, 73
sample, 88
vbeta, 107
vbinom, 109
vcauchy, 110
vchisq, 112
vexp, 114
vfd, 116
vgamma, 118
vgeom, 120
vlnorm, 122
vlogis, 124
vnbinom, 126
vnorm, 128
vpois, 130
vt, 132
vunif, 134
vweibull, 136

∗ dynamic
ibeta, 9
ibinom, 13
icauchy, 17
ichisq, 22
iexp, 26
ifd, 30
igamma, 34
igeom, 39
ilnorm, 43
ilogis, 47
inbinom, 52
inorm, 56
ipois, 60
it, 64
iunif, 69
iweibull, 73

∗ hplot
ibeta, 9
ibinom, 13
icauchy, 17
ichisq, 22
iexp, 26
ifd, 30
igamma, 34
igeom, 39
ilnorm, 43
ilogis, 47
inbinom, 52
inorm, 56
ipois, 60
it, 64
iunif, 69
iweibull, 73

∗ misc
craps, 7
galileo, 8

∗ non-homogeneous Poisson process
thinning, 103

138

INDEX 139

∗ package
simEd-package, 3

∗ queueing
msq, 80
ssq, 93
ssqvis, 99

∗ random sampling
sample, 88

∗ random variate generation
accrej, 5
craps, 7
ibeta, 9
ibinom, 13
icauchy, 17
ichisq, 22
iexp, 26
ifd, 30
igamma, 34
igeom, 39
ilnorm, 43
ilogis, 47
inbinom, 52
inorm, 56
ipois, 60
it, 64
iunif, 69
iweibull, 73
lehmer, 77
set.seed, 92
vbeta, 107
vbinom, 109
vcauchy, 110
vchisq, 112
vexp, 114
vfd, 116
vgamma, 118
vgeom, 120
vlnorm, 122
vlogis, 124
vnbinom, 126
vnorm, 128
vpois, 130
vt, 132
vunif, 134
vweibull, 136

∗ utilities
meanTPS, 79
msq, 80

quantileTPS, 86
sdTPS, 90
ssq, 93
ssqvis, 99

accrej, 3, 5

base::sample, 89, 90
base::set.seed, 8, 93

craps, 4, 7

galileo, 4, 8

ibeta, 4, 9
ibinom, 4, 13
icauchy, 4, 17
ichisq, 4, 22
iexp, 4, 26
ifd, 30
igamma, 4, 34
igeom, 4, 39
ilnorm, 4, 43
ilogis, 4, 47
inbinom, 4, 52
inorm, 4, 56
ipois, 4, 60
it, 4, 64
iunif, 4, 69
iweibull, 4, 73

lehmer, 3, 77

meanTPS, 4, 79
msq, 4, 80

quantileTPS, 4, 86
queueTrace, 4, 87

rstream, 3, 84, 97, 103, 107–115, 117,
119–137

rstream::rstream.sample, 107, 109, 111,
113, 115, 117, 119, 121–128, 130,
132, 134, 136

sample, 4, 88
sdTPS, 4, 90
set.seed, 4, 83, 84, 92, 96, 97, 102, 103, 108,

110, 112, 114, 115, 117, 120, 121,
123, 125, 127, 129, 131, 133, 135,
137

140 INDEX

simEd (simEd-package), 3
simEd-package, 3
simEd::vunif, 12, 16, 20, 25, 29, 33, 37, 42,

46, 50, 55, 59, 63, 67, 72, 76
ssq, 4, 87, 93
ssqvis, 3, 99
stats, 4
stats::qbeta, 107
stats::qbinom, 109
stats::qcauchy, 111
stats::qchisq, 113
stats::qexp, 115
stats::qf, 117
stats::qgamma, 119
stats::qgeom, 120, 121
stats::qlnorm, 122, 123
stats::qlogis, 124, 125
stats::qnbinom, 126, 127
stats::qnorm, 128
stats::qpois, 130
stats::qt, 132
stats::qunif, 134
stats::qweibull, 136
stats::rbeta, 12, 108
stats::rbinom, 16, 110
stats::rcauchy, 20, 112
stats::rchisq, 25, 114
stats::rexp, 29, 115
stats::rf, 33, 117
stats::rgamma, 37, 120
stats::rgeom, 42, 121
stats::rlnorm, 46, 123
stats::rlogis, 50, 125
stats::rnbinom, 55, 127
stats::rnorm, 59, 129
stats::rpois, 63, 131
stats::rt, 67, 133
stats::runif, 12, 16, 20, 25, 29, 33, 37, 42,

46, 50, 55, 59, 63, 67, 72, 76, 84, 97,
103, 107–115, 117, 119–137

stats::rweibull, 76, 137

thinning, 3, 103
tylersGrill, 4, 106

vbeta, 3, 107
vbinom, 3, 109
vcauchy, 3, 110
vchisq, 3, 112

vexp, 3, 114
vfd, 116
vgamma, 3, 118
vgeom, 3, 120
vlnorm, 3, 122
vlogis, 3, 124
vnbinom, 3, 126
vnorm, 3, 128
vpois, 3, 130
vt, 3, 132
vunif, 3, 89, 90, 134
vweibull, 3, 136

	simEd-package
	accrej
	craps
	galileo
	ibeta
	ibinom
	icauchy
	ichisq
	iexp
	ifd
	igamma
	igeom
	ilnorm
	ilogis
	inbinom
	inorm
	ipois
	it
	iunif
	iweibull
	lehmer
	meanTPS
	msq
	quantileTPS
	queueTrace
	sample
	sdTPS
	set.seed
	ssq
	ssqvis
	thinning
	tylersGrill
	vbeta
	vbinom
	vcauchy
	vchisq
	vexp
	vfd
	vgamma
	vgeom
	vlnorm
	vlogis
	vnbinom
	vnorm
	vpois
	vt
	vunif
	vweibull
	Index

