
Package ‘simsalapar’
July 23, 2025

Version 1.0-12

Date 2023-04-26

Title Tools for Simulation Studies in Parallel

Description Tools for setting up (``design''), conducting, and evaluating
large-scale simulation studies with graphics and tables, including
parallel computations.

Author Marius Hofert and Martin Maechler <maechler@stat.math.ethz.ch>

Maintainer Marius Hofert <mhofert@hku.hk>

Depends R (>= 3.1.0), graphics

Imports stats, parallel, utils, grDevices, methods, grid, sfsmisc,
gridBase (>= 0.4-6), colorspace

Suggests lattice, Rmpi, Hmisc, copula, foreach, doParallel, fGarch,
robustbase

SuggestsNote copula is only used for the vignettes, see their
VignetteDepends; fGarch: only used in demo(TGforecasts),
robustbase in another demo.

KeepSource yes

License GPL-2 | GPL-3

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2023-04-27 08:30:02 UTC

Contents
simsalapar-package . 2
array-stuff . 4
device . 7
doApply . 8
doCallWE . 10
doCheck . 12

1

2 simsalapar-package

expr2latex . 12
grid-stuff . 13
LEseeds . 15
mayplot . 16
subjob . 19
toLatex-ftable . 21
tryCatch.W.E . 24
varlist . 25
wrapLaTable . 27

Index 29

simsalapar-package Tools for Simulation Studies in Parallel with R

Description

Tools for setting up, conducting, and evaluating larger-scale simulation studies, including parallel
computations, in R.

Details

The DESCRIPTION file:

Package: simsalapar
Version: 1.0-12
Date: 2023-04-26
Title: Tools for Simulation Studies in Parallel
Description: Tools for setting up ("design"), conducting, and evaluating large-scale simulation studies with graphics and tables, including parallel computations.
Author: Marius Hofert and Martin Maechler <maechler@stat.math.ethz.ch>
Maintainer: Marius Hofert <mhofert@hku.hk>
Depends: R (>= 3.1.0), graphics
Imports: stats, parallel, utils, grDevices, methods, grid, sfsmisc, gridBase (>= 0.4-6), colorspace
Suggests: lattice, Rmpi, Hmisc, copula, foreach, doParallel, fGarch, robustbase
SuggestsNote: copula is only used for the vignettes, see their VignetteDepends; fGarch: only used in demo(TGforecasts), robustbase in another demo.
KeepSource: yes
License: GPL-2 | GPL-3
Encoding: UTF-8

Index of help topics:

dev.off.pdf Cropping and Font Embedding PDF Device
doCallWE Innermost Computation: Error Catching Version

of do.call()
doCheck Checking a User's doOne
doLapply Functions for Iterating Over All Subjobs
expr2latex Translate 'plotmath' expressions to LaTeX

simsalapar-package 3

getEl Tools For Working with Variable Specification
Lists

LEseeds Advancing .Random.seed for "L'Ecuyer-CMRG"
mayplot Matrix-like Plot for Arrays up to Rank 5
simsalapar-package Tools for Simulation Studies in Parallel with R
subjob Subjob - Compute one Row of the Virtual Grid
toLatex.ftable Convert Flat Contingency Table (ftable) and

VarLists to LaTeX Table
tryCatch.W.E Catching and Storing Warnings and Errors

Simultaneously
ul Tools For Converting To and From Arrays, Lists,

and Array of Lists
varlist Variable Specification List - Generation and

Class
wrapLaTable Wrapper for a floating LaTeX Table

Setting up a simulation:
varlist() creates a variable specification list.
dimnames2varlist() creates a variable specification list from given dimension names.
getEl() extracts elements from a variable list.
mkGrid() function for creating a grid of all variables of type “grid”; see mkGrid().
mkNms() builds a list of names from a variable list; see mkNms().
get.n.sim() extracts “n.sim”; see get.n.sim().
get.nonGrids() extracts all variables not of type “grid”; see get.nonGrids().

Conducting a simulation:
tryCatch.W.E() catching and storing warnings and errors simultaneously; see tryCatch.W.E().
doCallWE() innermost computation (return value of doOne()): returns value, error, warning, and

run time; see doCallWE().
LEseeds() create a list of advanced .Random.seed’s for “L’Ecuyer-CMRG”; see LEseeds().
printInfo() displays information about the sub-job just finished; see printInfo().
subjob() computes one row of the virtual grid in a simulation; see subjob().
mkTimer() creates a function to be passed to doCallWE() as timer; see mkTimer().
doLapply() sequentially iterates over all subjobs via standard lapply().
doForeach() iterates over all subjobs in parallel (via foreach(), package foreach).
doRmpi() iterates over all subjobs in parallel (via Rmpi’s mpi.apply()).
doMclapply() iterates over all subjobs in parallel (via mclapply()).
doClusterApply() iterates over all subjobs in parallel (via clusterApply()).

Analysis:
doRes.equal() convenience wrapper for comparing two results of the do* lapply-like functions;

see doRes.equal().
mkAL() converts a list of named 5-lists to an array of lists; see mkAL().
saveSim() (optionally) converts a result list to an array of lists using mkAL(); see saveSim().
maybeRead() (optionally) reads the provided .rds; see maybeRead().

https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=Rmpi

4 array-stuff

getArray() gets an array of 4-lists and computes an array of values, errors, warnings, or run
times; see getArray().

array2df() conveniently converts an array to a data.frame.
toLatex(): an S3 method for varlist and ftable.
fftable() essentially calls format.ftable() and adds attributes ncv and nrv to the return

object.
tablines() computes ingredients for converting a character matrix with attributes to a LaTeX

table.
wrapLaTable() wraps a table and tabular environment around the lines of the body of a LaTeX

table.
mayplot(): a matrix-like plot for arrays up to rank 5, with grid and gridBase.

Author(s)

Marius Hofert and Martin Maechler <maechler@stat.math.ethz.ch>

Maintainer: Marius Hofert <marius.hofert@math.ethz.ch>

References

Publication Marius Hofert, Martin Maechler (2016). Parallel and Other Simulations in R Made
Easy: An End-to-End Study. Journal of Statistical Software, 69(4), 1–44. doi:10.18637/
jss.v069.i04

Preprint (for simsalapar 1.0-0; including timing info): Hofert, M. and Mächler, M. (2013). Par-
allel and other simulations in R made easy: An end-to-end study. https://arxiv.org/abs/
1309.4402

Examples

Not run:
demo(TGforecasts)

End(Not run)

array-stuff Tools For Converting To and From Arrays, Lists, and Array of Lists

Description

ul() is a simple wrapper for unlist() with recursive=FALSE.

mkAL() gets a list x with elements that are named lists of length five, see x below, and converts it
to an array of lists.

saveSim() (optionally) converts a result list to an array using mkAL() and (optionally) saves it to a
file via saveRDS().

maybeRead() if the provided ‘.rds’ file exists, this function reads it via readRDS(); otherwise,
nothing is done.

https://doi.org/10.18637/jss.v069.i04
https://doi.org/10.18637/jss.v069.i04
https://arxiv.org/abs/1309.4402
https://arxiv.org/abs/1309.4402

array-stuff 5

getArray() gets an array of 4-lists as returned by mkAL(), picks out the specified component
comp, applies the specified function FUN (with useful defaults), and builds an array.

array2df() auxiliary function to convert an array to a data.frame (correctly dealing with n.sim).

Usage

ul(x)

mkAL (x, vList, repFirst, check=TRUE)
saveSim(x, vList, repFirst, sfile, check=TRUE, doAL=TRUE)

maybeRead(sfile, msg=TRUE)

getArray(x, comp=c("value", "error", "warning", "time"),
FUN=NULL, err.value=NA)

array2df(x, responseName = "value")

Arguments

x for

ul() a list.
mkAL(), saveSim() a list (of length n.sim * nrow(pGrid)) where each ele-

ment is a list of length five, containing the named elements "value", "error",
"warning", "time", and ".Random.seed", the first four as returned by
doCallWE().

getArray() an array of lists as returned by mkAL().
array2df() a numeric array as returned by getArray(*, "value").

vList a list of variable specifications. Each variable specification is itself a named
list which must contain a "value" component.

repFirst logical; must match the value of repFirst in the x <- do*Apply() call where
x has been created.

check logical activating consistency checks for x.

sfile a file name, typically with extension ‘.rds’ or NULL.

doAL logical indicating if mkAL() should be called, or rather just x be saved.

msg logical indicating whether a message is printed when an object is read from
sfile.

err.value numeric which is used to replace the value of the array entry in case of an error.

comp character string denoting the component.

FUN function to be applied right before the resulting array array is constructed.

responseName (for arrady2df():) a string specifying the name of the “value” column of the
resulting data frame.

6 array-stuff

Details

mkAL() is useful when creating arrays from result lists returned from large(r) simulation studies
which use doCallWE(). To create a proper argument x for mkAL(), the function ul() turns out to
be useful to (stepwise) unlist nested lists.

getArray() converts arrays of lists as returned by mkAL() to an array of numeric (or logical,
see below) after applying the specified FUN.
In case of an error, the corresponding entry in the resulting array is replaced by err.value.

The default FUN converts possible errors and warnings to logical (indicating whether there was
a error or warning, respectively) and run times to numeric. For comp="value", the situation is
trickier. First of all, the resulting array contains dimensions for variables of type “inner” and, if
greater than 1, for the variable of type “N” (typically called "n.sim"); see the vignette for details.
Use FUN = identity to get at the full error or warning objects, for comp = "error" or for comp =
"warning", respectively.

saveSim() and maybeRead() are useful for creating and (re)storing arrays from large(r) simulation
studies (to avoid recomputation, to ease the data analysis etc.). saveSim() calls mkAL(), nowadays
wrapped in tryCatch(.), such that the simulation is not lost, even when the resulting format cannot
correctly be treated by mkAL(). Consequently, doAL is not much needed anymore. Note that both
saveSim() and maybeRead() accept sfile=NULL in which case nothing is saved or read.

Value

For

ul() the unlisted list; see unlist().

mkAL() an array of lists.

saveSim() the array returned by mkAL().

maybeRead() the object read by readRDS() from sfile or nothing (if sfile does not exist).

getArray() an array containing the values of the specified component comp after applying FUN to
them. The default FUN produces an array, depending on comp, of

"value": values or err.value (in case of an error)
"error": logicals indicating whether there was an error
"warning": logicals indicating whether there was a warning
"time": timings as returned by doCallWE(), i.e., typically (from mkTimer’s proc.time()[1])

the number of milliseconds of “"CPU user time"”.

array2df(x) a data.frame with several columns built from the dimnames(x) and a column named
responseName with the values of x.

Author(s)

Marius Hofert and Martin Maechler.

References

see simsalapar-package.

device 7

See Also

getEl() and mkNms() used by mkAL(). saveRDS() and readRDS(), the “workhorses” of saveSim()
and maybeRead(), respectively.

Examples

Not run:
Get at the full error objects, notably (message, call):
errObjs <- getArray(res, "error", FUN=identity)

End(Not run)

if(FALSE) ## A longer, "interesting" example is in
demo(robust.mean)

device Cropping and Font Embedding PDF Device

Description

dev.off.pdf() is a wrapper of dev.off() which is meant for closing a pdf device. It also performs
cropping and font embedding if chosen.

Usage

dev.off.pdf(file="Rplots.pdf", crop=NULL, embedFonts="", ...)

Arguments

file output file name including extension .pdf.

crop cropping command, can be one of:

NULL crop with the command "pdfcrop --pdftexcmd pdftex file file 1>/dev/null
2>&1". This is suitable for Unix; for non-Unix, no cropping is done.

character a string containing the crop command.
"" do not crop.

embedFonts font embedding command, can be one of:

NULL embed fonts with the command embedFonts(file, options="-dSubsetFonts=true
-dEmbedAllFonts=true -dPDFSETTINGS=/printer -dUseCIEColor"). This
is suitable for Unix; for non-Unix, no font embedding is done.

character a string containing a font embedding command.
"" do not embed fonts.

... additional arguments passed to dev.off().

Value

invisible().

8 doApply

Author(s)

Marius Hofert

See Also

dev.off() for closing a device, embedFonts() for font embedding. sfsmisc’s pdf.end() for an-
other approach.

Examples

typical usage
doPDF <- !dev.interactive(orNone=TRUE)
if(doPDF) pdf(file=(file <- "crop_device.pdf"), width=6, height=6)
plot(1)
if(doPDF) dev.off.pdf(file)
if(file.exists(file)) file.remove(file)

doApply Functions for Iterating Over All Subjobs

Description

doLapply() iterates over all subjobs (using the non-parallel lapply()). Similarly, but in paral-
lel, for doForeach (based on CRAN package foreach’s foreach()), doRmpi (based on Rmpi’s
mpi.apply()), doMclapply (based on parallel’s mclapply()), and doClusterApply (based on
parallel’s clusterApply()).

doRes.equal() is simple convenience wrapper for all.equal(), for comparing two results (from
the same varlist and doOne arguments) of the do* lapply-like functions above.

Usage

doLapply(vList, seed="seq", repFirst=TRUE,
sfile=NULL, check=TRUE, doAL=TRUE, subjob.=subjob, monitor=FALSE,
doOne, ...)

doForeach(vList, cluster=makeCluster(detectCores(), type="PSOCK"),
cores=NULL, block.size = 1, seed="seq", repFirst=TRUE,
sfile=NULL, check=TRUE, doAL=TRUE, subjob.=subjob, monitor=FALSE,
doOne, extraPkgs=character(), exports=character(), ...)

doRmpi(vList,
nslaves = if((sz <- Rmpi::mpi.universe.size()) <= 1) detectCores() else sz,
load.balancing=TRUE, block.size = 1, seed="seq", repFirst=TRUE,
sfile=NULL, check=TRUE, doAL=TRUE, subjob.=subjob, monitor=FALSE,
doOne, exports=character(), ...)

doMclapply(vList, cores = if(.Platform$OS.type == "windows") 1 else detectCores(),
load.balancing=TRUE, block.size = 1, seed="seq", repFirst=TRUE,
sfile=NULL, check=TRUE, doAL=TRUE, subjob.=subjob, monitor=FALSE,
doOne, ...)

https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=Rmpi

doApply 9

doClusterApply(vList, cluster=makeCluster(detectCores(), type="PSOCK"),
load.balancing=TRUE, block.size = 1, seed="seq", repFirst=TRUE,
sfile=NULL, check=TRUE, doAL=TRUE, subjob.=subjob, monitor=FALSE,
doOne, initExpr, exports=character(), ...)

doRes.equal(x, y, tol = 1e-15, ...)

Arguments

vList a list of variable specifications. Each variable spec is itself a named list which
must contain a "value" component.

cluster cluster object, typically generated by makeCluster(). For doForeach(), this
can be NULL as well, see Details below.

cores the number of cores. For doForeach(), this can be NULL as well, see Details
below.

nslaves the number of workers for doRmpi, passed to package Rmpi’s mpi.spawn.Rslaves
when no running workers are found.

load.balancing logical indicating whether load balancing is used:

doRmpi() mpi.applyLB() is used instead of mpi.apply().
doMclapply() here, mc.preschedule=!load.balancing determines load bal-

ancing.
doClusterApply() clusterApplyLB() instead of clusterApply().

block.size size of blocks of rows in the virtual grid which are computed simultaneously
(load-balancing).

seed, repFirst see subjob().
sfile, check, doAL

see saveSim().

subjob. a function for computing a subjob (one row of the virtual grid). Typically
subjob().

doOne a user-supplied function for computing one row of the (physical) grid.

monitor a logical or a function for producing “monitoring” output; the function argu-
ment list must contain the one of printInfo[["default"]].

extraPkgs character vector of packages to be made available on the nodes.

exports character vector of functions (for doForeach() and doClusterApply()) or
objects (for doRmpi()) to export.

initExpr expression initially evaluated on the cluster (can be missing).

... additional arguments passed to subjob() (typically further passed on to doOne()),
or, for doRes.equal(), to all.equal(*).

x, y each a result of, say doLapply() which should be compared where sensible, i.e.,
the first three components "value","error","warning", using all.equal.

tol passed to all.equal(*).

https://CRAN.R-project.org/package=Rmpi

10 doCallWE

Details

See the vignette or references in simsalapar-package for how to use these functions.

For reasons to choose "MPI" as cluster type (if not on Windows), see the discussion starting at
https://stat.ethz.ch/pipermail/r-sig-hpc/2013-April/001647.html.

For doForeach(), precisely one of cluster or cores has to be not NULL. This will determine
whether the parallel computations are carried out on a cluster with multiple nodes or on a multi-
core processor.

Value

The result of applying subjob() to all subjobs, converted with saveSim().

Author(s)

Marius Hofert and Martin Maechler.

See Also

subjob() for computing a subjob. doCallWE() for the return value of doOne(). .Random.seed for
information about random number generators and seeds.

Examples

if(simsalapar:::doExtras()) { ## needs some CPU
demo(robust.mean) # 512 simulations, differing block sizes, ...

}

doCallWE Innermost Computation: Error Catching Version of do.call()

Description

doCallWE() performs the innermost computation of the simulation study at hand. It is a ver-
sion of do.call(f, argl, *), with care of catching and storing both error and warnings (via
tryCatch.W.E()) and measures user time. This is useful in large(r) simulation studies.

mkTimer() returns a function to be passed as timer to doCallWE().

Usage

doCallWE(f, argl,
timer = mkTimer(gcFirst=FALSE))

mkTimer(gcFirst)

https://stat.ethz.ch/pipermail/r-sig-hpc/2013-April/001647.html

doCallWE 11

Arguments

f a function which given data and parameters, computes the statistic we are sim-
ulating.

argl list of arguments for f().

timer a function similar to system.time(); by default, measure user time in mil-
liseconds.

gcFirst logical, passed to system.time(), as it is called from the resulting function
mkTimer().

Details

Note that gcFirst=FALSE is default for a good reason: if a call to doOne() is relatively fast, calling
gc() every time is unnecessarily expensive and may completely dominate the overall simulation
run time. For serious run time measurement, gcFirst=TRUE is preferable, as it ensures less variable
timings, see system.time.

Value

doCallWE() returns a list with components

value f(⟨argl⟩), if there was no error, NULL otherwise.

error error message (see simpleError or stop()), NULL otherwise.

warning warning message (see simpleWarning or warning()), NULL otherwise.

time time, as measured by timer(); defaults to milliseconds without garbage collec-
tion.

Author(s)

Marius Hofert and Martin Maechler.

See Also

do.call, tryCatch.W.E.

Examples

set.seed(61)
L <- log(abs(rt(n=100, df = 1.5)))
r <- doCallWE(quantile, list(L, probs= 0.95))
set timer for "no timing" :
u <- doCallWE(quantile, list(L, probs= 0.95), timer = function(E) { E; NULL })
stopifnot(is.null(r$error),

all.equal(r$value, quantile(L, 0.95)),
identical(r[1:3], u[1:3]), is.null(u[["time"]]))

12 expr2latex

doCheck Checking a User’s doOne

Description

doCheck() checks, if possible, a user’s doOne() function for return objects of correct sizes.

Usage

doCheck(doOne, vList, nChks = ng, verbose = TRUE)

Arguments

doOne a user-supplied function for computing one row of the (physical) grid.

vList a list of variable specifications. Each variable spec is itself a named list which
must contain a "value" component.

nChks number of rows randomly picked from the (physical) grid which are used for a
basic test of the evaluation and return value of doOne().

verbose logical indicating whether check output is displayed.

Value

None.

Author(s)

Marius Hofert and Martin Maechler.

Examples

definition
doCheck

expr2latex Translate ’plotmath’ expressions to LaTeX

Description

expr2latex() translates a “R graphics annotation” expression to the corresponding LaTeX one.

escapeLatex(), very similar to its original, escape_latex() from fortunes, escapes certain char-
acter combinations, such that the result can be used in LaTeX.

Usage

expr2latex(expr)
escapeLatex(x)

grid-stuff 13

Arguments

expr an R object of class expression or language, typically as from quote(...).

x a character vector.

Details

The expr2latex() function is recursively rendering (sub) expressions, until it uses the internal
renderAtom() for simple symbols (is.symbol).

We currently work with some tables of math annotation expressions, lifted from the correspond-
ing C source of R itself. (Hidden in simsalpar’s namespace, we have AccentTable, BinTable,
RelTable, Lgreek and Ugreek, currently.)

The current implementation is still incomplete.

Value

a character string with the LaTeX expression corresponding to “R graphics annotation” expression
expr.

Author(s)

Martin Maechler.

See Also

plotmath for mathematical expressions to annotate R graphics.

toLatex() and its ftable method, toLatex().

Examples

expr2latex(quote(N[sim]))
expr2latex(quote(N[sim] ~ O(n)))
expr2latex(quote(x %notin% N))
expr2latex(quote(x %+-% epsilon))
expr2latex(quote(N[s*m^2]))
expr2latex(quote(2^{N[sim] - 3} ~~~ O(n^{n^2})))

escapeLatex(c("#{positives}", "A | B"))

grid-stuff Tools For Working with Variable Specification Lists

14 grid-stuff

Description

From a variable specification list (varlist),

getEl() gets elements of a variable specification list that match the given variable type.

mkGrid() builds a grid, e.g., for parallel evaluation, basically by calling do.call(expand.grid,
<list>).

mkNms() builds a list of names, e.g., to be used as dimnames for a corresponding simulation
result array.

get.n.sim() extracts n.sim or returns 1 if it is not contained in vList.

set.n.sim() modifies or sets n.sim in vList.

get.nonGrids() extracts all variables not having type="grid" and returns n.sim the same as
get.n.sim().

Usage

getEl (vList, type = "ALL", comp = "value")
mkGrid (vList)
mkNms (vList, addNms = FALSE)
get.n.sim (vList)
set.n.sim (vList, n)
get.nonGrids(vList)

Arguments

vList a list of variable specifications, typically resulting from varlist(). Each
variable spec is itself a named list which must contain a "value" component.

type character vector of variable type or types to restrict the selection to. The de-
fault, "ALL" implies no restriction and hence returns all variables.

comp either a character string containing the component name to pick out or NA (in
which case all components are picked out).

addNms logical, specifying if the resulting names should be of the form <var>=<value>
instead of just <value>.

n for set.n.sim(): the value n.sim should be set to; an integer or NULL.

Details

These functions are useful when working with variable specification lists.

Value

For

getEl() a named list containing the selected components of those variables that match the pro-
vided type.

mkGrid() a data frame (data.frame).

mkNms() a named list of the same length() and with the same names() as vList.

LEseeds 15

get.n.sim() n.sim if it is contained in vList, 1 otherwise.

set.n.sim() the varlist vList with a modified n.sim.

get.nonGrids() list of length 2 containing the (possibly modified) n.sim and a list containing
all variables not having type="grid".

Author(s)

Marius Hofert and Martin Maechler.

See Also

varlist, for construction of variable lists. expand.grid, the “workhorse” of mkGrid().

Examples

vList <-
varlist(n.sim = list(type="N", expr = quote(N[sim]), value = 64),

n = list(type="grid",
value = c(20, 100, 500)), # sample sizes

p = list(type="grid",
value = c(3, 7, 15, 25)), # dimensions

meth = list(type="grid", expr = quote(italic(method)),
value = c("classical", "robust")))

getEl(vList, type="grid") # for those of type "grid", get all values
for those of type "grid", get all components :
str(getEl(vList, type="grid", comp=NA))
stopifnot(identical(as(vList, "list"),

getEl(vList, type=c("N","grid"), comp = NA)))

(grd <- mkGrid(vList))
stopifnot(nrow(grd) == 3*4*2, ncol(grd) == 3)

getEl(vList)# -> all "value"s: the same as lapply(., `[[`, "value") :
stopifnot(identical(lapply(vList, `[[`, "value"),

getEl(vList)))
mkNms(vList)
mkNms(vList, addNms=TRUE)

get.n.sim(vl. <- set.n.sim(vList, NULL)) # 1
vl.$n.sim # NULL
set.n.sim(vl., 12)

LEseeds Advancing .Random.seed for "L’Ecuyer-CMRG"

Description

LEseeds() creates a list of advanced .Random.seed’s for "L’Ecuyer-CMRG".

16 mayplot

Usage

LEseeds(n)

Arguments

n number of steps to advance .Random.seed.

Details

See, for example, Hofert and Mächler (2014) for how to use these functions.

Value

A list of length n containing the advanced .Random.seed’s.

Author(s)

Marius Hofert and Martin Maechler.

See Also

.Random.seed for information about random number generators and seeds.

mayplot Matrix-like Plot for Arrays up to Rank 5

Description

Produces a matrix-like plot for arrays up to rank 5, using grid and gridBase which allows traditional
graphics, optionally via a user specified panel function panel.

Usage

mayplot(x, vList, row.vars = NULL, col.vars = NULL,
xvar, method = if(has.n.sim) "boxplot" else "lines",
panel.first = NULL, panel.last = NULL,
type = "l", pch = NULL, ylim = "global",
log = "", do.legend = TRUE,
spc = c(0.04/max(1,n.x-1), 0.04/max(1,n.y-1)),
axlabspc=c(0.12, 0.08), labspc=c(0.04, 0.04),
n.sim.spc = 0.06, auxcol = c("gray40", "gray78", "gray90", "white"),
pcol = c("black", "blue", "red", "orange"), grid.lwd = 1.6, ax.lwd = 2,
tx.cex = 1.2, leg.cex = 1, xlab = NULL, ylab = NA,
do.n.sim = has.n.sim,
verbose = getOption("verbose"), show.layout = verbose, ...)

mayplot 17

Arguments

x numeric array of ‘rank’ 5, i.e., length(dim(x)) == 5, with named dimnames;
typically resulting from a call like getArray(doMclapply(..)).

vList a list of variable specifications, see varlist and mkGrid.

row.vars a dimension name of x, a string; this variable is plotted in the plot rows.

col.vars a dimension name of x, a string; this variable is plotted in the plot columns.

xvar dimension name of x, a string; this variable is plotted on the x axis of each
sub-plot.

method character string indicating the plot method used. Currently available are "boxplot"
(the default if vList has n.sim) or "lines" (otherwise; type adjusts the type
of lines used).

panel.first, panel.last
function or NULL (default). If specified, panel.first(x, y, col, ...) is
called before and panel.last(x, y, col, ...) is called after the main plot-
ting functions (think boxplot.matrix() and lines()) are called in each panel.

type character indicating the type of plotting in the non-boxplot case; actually any of
the types as in plot.default.

pch logical indicating whether a plot symbol is to be used in the legend (default
NULL determines this from type).

ylim either string "global", "local", or a numeric vector, as for plot.default.

log logical indicating if logarithmic scales should be used (in the individual plots).

do.legend logical indicating if a legend should be added.

spc dimensions (x, y) in “npc” for the space between sub-plots. The default uses a
simple adaption to the number of sub-plots in each direction.

axlabspc vector of length two containing the width of the y axis label and the height of
the x axis label in “npc”.

labspc vector of length two containing the width of the box of the row labels and the
height of the box of the column labels in “npc”.

n.sim.spc space for n.sim on the bottom right of the plot in “npc” (only if available).

auxcol auxiliary colors; vector with four components:

1. color of axes and ticks
2. background color for the row and column labels
3. background color for the plots
4. color of grid lines

pcol plot base colors. If more colors than the provided ones are required, colorRampPalette()
is used.

grid.lwd lwd for grid

ax.lwd lwd for axes

tx.cex cex for row and column labels

leg.cex cex of legend text and n.sim if appropriate

18 mayplot

xlab x axis label (spanned over all plot columns); when NULL, the default is vList[[xvar]]$expr;
to suppress, use NA.

ylab y axis label (spanned over all plot rows): Typically a label for the "value" of
the simulation.

do.n.sim logical indicating whether n.sim is displayed on the bottom right of the plot
(only if available).

verbose logical indicating whether more information is displayed during plotting.

show.layout logical indicating whether the grid layout is displayed.

... optional arguments passed to panel().

Value

the layout, invisibly.

Author(s)

Marius Hofert and Martin Maechler.

See Also

matplot unit and grid.layout from package grid.

Examples

vLis <-
varlist(d = list(type="grid", value = c(10, 100, 1000)),

family=list(type="grid", value = c("Clayton", "Gumbel")),
tau = list(type="grid", value = c(0.25, 0.5)),
alpha = list(type="inner", value = c(0.95, 0.99, 0.999)))

iP <- c(4, 1:3)# <- permutation, putting alpha first
dNms <- mkNms(vLis)[iP]
an array as from x <- getArray(doMclapply(vLis, ..)) :
x <- array(

c(6.1981, 8.0478, 8.4265, 46.883, 74.359, 86.4394, 432.585, 743.27, 859.35,
4.8508, 6.0286, 6.3965, 26.380, 35.132, 47.1517, 243.113, 311.36, 342.84,
7.8546, 8.9769, 9.2199, 78.235, 89.493, 92.2875, 785.674, 893.63, 923.62,
7.7164, 8.2866, 8.8169, 75.959, 82.806, 88.0626, 756.786, 831.65, 874.70),

dim = sapply(dNms, length), dimnames = dNms)

mayplot(x, vLis, row.vars="family", col.vars="tau", xvar="alpha", log="y",
ylab=bquote(widehat(VaR)[alpha]))

the same, but no xlab and no ylab :
mayplot(x, vLis, row.vars="family", col.vars="tau", xvar="alpha", log="y", xlab=NA)

subjob 19

subjob Subjob - Compute one Row of the Virtual Grid

Description

subjob() computes one row of the virtual grid in a simulation study, provides several seeding
methods, and sub-job monitoring (information about the sub-job just finished).

printInfo is a named list of functions optionally to be used as monitor in subjob() for printing
information at the end of each sub-job.

Usage

subjob(i, pGrid, nonGrids, n.sim, seed, keepSeed = FALSE,
repFirst = TRUE, doOne,
timer = mkTimer(gcFirst=FALSE), monitor = FALSE, ...)

printInfo # or
printInfo[["default"]]

Arguments

i row number of the virtual grid. i.sim and j together determine i.

pGrid “physical grid” of all combinations of variables of type "grid", as returned by
mkGrid(<varlist>).

nonGrids values of non-"grid"-variables (if provided, passed to doOne()), i.e., typically
get.nonGrids(<varlist>)[["nonGrids"]].

n.sim number of simulation replications.

seed one of:

NULL .Random.seed remains untouched. If it does not exist, generate it by
calling runif(1). This case typically leads to non-reproducible results.

numeric(n.sim) a numeric vector of length n.sim containing the seed for
each simulation replications (same seed for each row in the (physical) grid;
this ensures least variance across computations for the same replication).
This case leads to reproducible results.

vector("list", n.sim) a list of length n.sim containing seeds (typically
numeric vectors) for each of the n.sim simulation replications (same seed
for each row in the (physical) grid). The seeds are assigned to .Random.seed
in globalenv() and can thus be used for other random number genera-
tors such as "L'Ecuyer-CMRG", see set.seed(). This case leads to repro-
ducible results.

NA .Random.seed remains untouched. If it does not exist, so be it. No fifth
component is concatenated to the result of the doOne() call in this case
even when keepSeed=TRUE (where in all other cases, the seed is appended
as 5th component). This method typically leads to non-reproducible results.

20 subjob

character string a character string specifying a seeding method. Currently
only "seq" in which case the seeds 1 to n.sim for the n.sim simulation
replications are used. This is the default. Functionally, it is a special case
of the “numeric(n.sim)” specification above (with seed = 1:n.sim) and
hence leads to reproducible results.

keepSeed logical indicating if .Random.seed should be appended to each return value
of doCallWE() - unless seed = NA.

repFirst logical; if TRUE (the default), all n.sim replications are computed for a row in
the (physical) grid first, before the next row is considered; if FALSE, first all rows
of the (physical) grid are computed for a fixed replicate until the next replicate
is considered.

doOne function for computing one row in the (physical) grid; must return a numeric
vector, matrix, or array.

timer a function similar to system.time(), passed to doCallWE().

monitor logical or function indicating whether or how monitoring output is displayed.
TRUE defaults to the printInfo[["default"]] function.

... additional arguments passed to doOne().

Details

See the vignette or references in simsalapar-package for how to use these functions.

The case where seed is a numeric vector of length n.sim also leads to the same results no matter
which variables are of type “grid” or “inner”; see demo(robust.mean) where this is tested. This is
important to guarantee since one might want to change certain “inner” variables to “grid” variables
due to load-balancing while computing the desired statistics based on the same seed (or generated
data from this seed).

Value

printInfo is a named list of functions which produce output (cat(..)) containing information
about the sub-job which subjob() has just finished. Note that components "gfile" (“global
file”) and "fileEach" each direct the monitoring output to files.

subjob() returns a vector of length five if keepSeed is true and seed is not NA, otherwise (also by
default), of length four. The first four components contain the return value of doCallWE(). If
keepSeed is true, the fifth component contains .Random.seed before the call of doCallWE()
(for reproducibility).

Author(s)

Marius Hofert and Martin Maechler.

See Also

doCallWE(); .Random.seed for information about random number generators and seeds.

For examples of implicit use of subjob, see doLapply.

toLatex-ftable 21

Examples

names(printInfo)# currently "default", "gfile", "fileEach"

str(printInfo, give.attr=FALSE)
the functions in printInfo share a common environment() with utility functions:
ls.str(environment(printInfo$default))
if(FALSE) # show them all
as.list(environment(printInfo$default))

toLatex-ftable Convert Flat Contingency Table (ftable) and VarLists to LaTeX Table

Description

The ftable method of toLatex() converts an ftable to a LaTeX table via tablines().

Analogously, the varlist method of toLatex() converts an varlist to a LaTeX table.

fftable() essentially calls format.ftable() and adds attributes ncv and nrv to the return object.

tablines() computes ingredients for converting a character matrix with attributes to a LaTeX
table.

cattablines() is a small auxiliary function which creates rows of a LaTeX table from a given
matrix.

Usage

S3 method for class 'ftable'
toLatex(object, vList = NULL,

x.escape = FALSE, exprFUN = expr2latex, escapeFUN = escapeLatex,
align = NULL, booktabs = TRUE, head = NULL,

rsep = "\\\\", sp = if(booktabs) 3 else 1.25, rsep.sp = NULL,
csep = " & ", quote = FALSE, lsep=" \\textbar\\ ",
do.table = TRUE, placement = "htbp", center = TRUE,
fontsize = "normalsize", caption = NULL, label = NULL, ...)

S3 method for class 'varlist'
toLatex(object,
col.vars = c("Variable", "expression", "type", "value"),
exprFUN = expr2latex, escapeFUN = escapeLatex,
align = NULL, booktabs = TRUE, head = NULL,
rsep = "\\\\", sp = if(booktabs) 3 else 1.25, rsep.sp = NULL, csep = " & ",
do.table = TRUE, placement = "htbp", center = TRUE,
fontsize = "normalsize", caption = NULL, label = NULL, ...)

fftable(x, lsep = " | ", quote = FALSE, method = "compact", ...)

tablines(x, align = NULL, booktabs = TRUE, head = NULL,
rsep = "\\\\", sp = if(booktabs) 3 else 1.25, rsep.sp = NULL,

22 toLatex-ftable

csep = " & ", quote = FALSE)

cattablines(x, rsep = "\\\\", csep = " & ", include.rownames = TRUE)

Arguments

object an ftable to be converted to a LaTeX table. This is accomplished via formatting
it.

x for fftable() an ftable object; for tablines() a character matrix with
attributes nrv and ncv (as returned by fftable()) giving the number of row and
column variables, respectively; for cattablines() a numeric or character
matrix.

vList a variable specification list see varlist.

x.escape logical indicating if the “body” entries of the table should be escaped by espaceFUN();
if false, as by default, only the column and row variables are escaped.

exprFUN a function, by default expr2latex, for transforming plotmath expressions to
equivalent LaTeX strings.

escapeFUN a function, by default escapeLatex which “escapes” each of its input character
strings to valid LaTeX strings.

align either a character (e.g., "*{3}{c} S[table-format=1.2]") or character
vector (e.g., c("c", "c", "c", "S[table-format=1.2]")), or NULL (default).

booktabs logical indicating whether a LaTeX table in the format of the LaTeX booktabs
package is created (requires the LaTeX booktabs package loaded in the pream-
ble).

head either

character a vector containing the lines of the header.
NA do not construct a header.
NULL construct a default header.

rsep character to be inserted at the end of each row.

sp numeric scaling factor for separating blocks of rows if rsep.sp is NULL.

rsep.sp numeric of length equal to the number of different groups of rows minus one,
giving the spaces (interpreted as pt) between different groups of rows. If NULL,
a suitable default is constructed.

csep character string for separating different cells in a row.
quote, lsep, method

see format.ftable() (R-3.0.0 or later).

col.vars character vector of length 3 or 4 ("expression" can be omitted), specifying the
column names.

do.table logical indicating whether a LaTeX ‘table’ environment should be used at all.

placement (if do.table:) character string containing a LaTeX table placement string
such as "htbp".

center logical indicating whether centering should happen.

toLatex-ftable 23

fontsize character string giving a fontsize (such as "tiny", "scriptsize", "footnotesize",
"small", "normalsize", "large", "Large", "LARGE", "huge", or "Huge").

caption (if do.table:) character string containing the table caption or NULL for no
caption.

label (if do.table:) character string containing the table label or NULL for no label.
include.rownames

logical indicating whether row names are included in the first column.

... additional arguments passed to format.ftable().

Value

toLatex() returns an object as from wrapLaTable().

fftable() returns a formatted flat contingency table as returned by format.ftable() with added
attributes ncv (number of column variables) and nrv (number of row variables).

tablines() a list with components

body character vector of lines of the table body.

body.raw character matrix of cells of the table body.

head character vector of lines of the table head.

head.raw character matrix of cells of the table head..

align alignment string.

rsepcol character vector containing the row separators (last entries of each row).

cattablines() outputs the formatted lines for copy-and-paste into a LaTeX table.

Author(s)

Marius Hofert and Martin Maechler.

References

see simsalapar-package.

See Also

wrapLaTable() for how to wrap the lines of a LaTeX table created by tablines() in a LaTeX
table and tabular environment.

Examples

Different table layouts for the same content
(ft1 <- ftable(Titanic, col.vars = 1:4))
(ft2 <- ftable(Titanic, row.vars = 1))
(ft3 <- ftable(Titanic, row.vars = 1:2))
(ft4 <- ftable(Titanic, row.vars = 1:3))
(ft5 <- ftable(Titanic, row.vars = 1:4))

What tablines() returns

24 tryCatch.W.E

tablines(fftable(ft2))

LaTeX (booktabs/non-booktabs) versions
toLatex(ft1, do.table=FALSE)
toLatex(ft1, booktabs=FALSE)
toLatex(ft1, method="col.compact")
toLatex(ft1)
toLatex(ft2)
toLatex(ft3)
toLatex(ft4)
toLatex(ft5, booktabs=FALSE)
toLatex(ft5, method="col.compact")
toLatex(ft5)

``poor-man's approach'' for creating lines of a LaTeX table
set.seed(271)
tab <- matrix(runif(6), ncol=3)
ftab <- formatC(tab, digits=4, format="f")
cattablines(ftab)
rownames(ftab) <- LETTERS[1:nrow(ftab)]
cattablines(ftab)

tryCatch.W.E Catching and Storing Warnings and Errors Simultaneously

Description

Catches and saves both warnings (warning) and errors (stop) and in the case of a warning, also the
computed result.

Usage

tryCatch.W.E(expr)

Arguments

expr expression to be evaluated, typically a function call.

Details

This function is particularly useful in large(r) simulation studies to check all computations and
guarantee their correctness.

Value

list with components

value value of expr or error message (see simpleError or stop()).

warning warning message (see simpleWarning or warning()) or NULL.

varlist 25

Author(s)

Marius Hofert and Martin Maechler, based on hints from Luke Tierney and Bill Dunlap, see https:
//stat.ethz.ch/pipermail/r-help/2010-December/262626.html.

References

see simsalapar-package.

See Also

the base function tryCatch() and demo(error.catching). Also, doCallWE(), of which tryCatch.W.E()
is the “workhorse”.

Examples

Adapted from demo(error.catching) :
str(r1 <- tryCatch.W.E(log(2)))
str(r2 <- tryCatch.W.E(log(-1)))
str(r3 <- tryCatch.W.E(log("a")))
stopifnot(is.null(r1$warning),

is.na (r2$value), inherits(r2$warning, "warning"),
is.null(r3$warning), inherits(r3$value, "error"))

varlist Variable Specification List - Generation and Class

Description

Generate variable specification lists. These are objects of the formal (aka “S4”) class "varlist".
This class simply extends "namedList" and has a validity method (see validObject).

Usage

varlist(...)
dimnames2varlist(dmn)
S4 method for signature 'varlist'
show(object)

Arguments

... of the form

nam1 = list(....),
nam2 = list(....),
........
namk = list(....)
i.e, a “list” of variable specifications using “sub lists” list(....) = list(value
= <vv>, type = <tp>, expr = <e>), see the details and the examples below.

https://stat.ethz.ch/pipermail/r-help/2010-December/262626.html
https://stat.ethz.ch/pipermail/r-help/2010-December/262626.html

26 varlist

dmn named dimnames, a list.

object a "varlist" object.

Details

value is typically an atomic vector (is.atomic) or a list, e.g., of functions; in the latter case,
typically with names.

type can be one of "N", "frozen", "grid", or "inner". In short:

"N" This type is reserved for a (single) variable named n.sim which provides the simulation repli-
cations; if it is not given, n.sim is implicitly treated as 1.

"frozen" Variables of this type remain fixed (they do not vary) throughout the whole simultion
study. They affect the final result but do not appear as a dimension in the result array of the
simulation study. This is the default type (apart from n.sim which defaults to "N").

"grid" Variables of this type are used to build a (physical) grid (a data.frame) with number of
rows equal to the product of the lengths of all variables of this type. The simulation will
use this grid to iterate n.sim times over all of its rows for conducting the required compu-
tations. Conceptually, this corresponds to iterating over a virtual grid seen as n.sim copies
of the (physical) grid pasted together. The computations for one row in this virtual grid form
one sub-job. One can use one of doLapply(), doForeach(), doRmpi(), doMclapply(), or
doClusterApply() to iterate over all sub-jobs.

"inner" Variables of this type are all dealt with within a sub-job for reasons of convenience, speed,
load balancing etc.

The dimnames2varlist() functions creates a varlist from a named list of character vectors,
typically resulting from dimnames(tt) of a table tt, see the Titanic example below.

For more details, see Hofert and Mächler (2014), and also the examples in demo(package="simsalapar")
.

Value

an object of formal (aka “S4”) class "varlist".

Author(s)

Martin Maechler.

See Also

namedList; getEl for easy extraction of elements from a "varlist".

The toLatex method for varlists, toLatex.varlist.

doLapply(), doForeach(), doRmpi(), doMclapply(), doClusterApply() for the functions to
iterate over the virtual grid.

wrapLaTable 27

Examples

showClass("varlist")

vList <- varlist(
n.sim = list(value = 1000, expr = quote(N[sim])), # type = N
n = list(type="grid", value = c(20, 100, 500)), # sample sizes
meth = list(type="grid", expr = quote(italic(method)),

value = c("classical", "robust")),
alpha = list(value = 0.95)) # default type = "frozen"

str(vList)# note the default 'expr' for n and alpha; and type of alpha

For more extensive examples, see also
demo(package="simsalapar")

coerce to simple list .. and back :
lvl <- as(vList, "list")
stopifnot(identical(

do.call(varlist, lvl),
vList))

From a data.frame to a LaTeX table :
str(dimnames(Titanic))
vlTitan <- dimnames2varlist(dimnames(Titanic))
vlTitan # default 'type = "grid"' here
toLatex(vlTitan)

wrapLaTable Wrapper for a floating LaTeX Table

Description

wrapLaTable() wraps (a table and tabular environment) around the lines of the body of a LaTeX
table and utilizes writeLines() to write the LaTeX table.

Usage

wrapLaTable(x, align, do.table = TRUE, placement = "htbp", center = TRUE,
fontsize = "normalsize", booktabs = TRUE,
caption = NULL, label = NULL)

Arguments

x a character vector containing the lines of the body of the table (for “book-
tabs” tables, everything strictly between \midrule and \bottomrule). A table
header can be passed via attributes of x.

align table columns alignment string (e.g., "lcccS[table-format=1.2]", the nota-
tion of "S[...]" coming from the LaTeX package siunitx).

28 wrapLaTable

do.table logical indicating whether a LaTeX ‘table’ environment should be used at all.

placement (if do.table:) character string containing a LaTeX table placement string
such as "htbp".

center logical indicating whether centering should happen.

fontsize character string giving a fontsize (such as "tiny", "scriptsize", "footnotesize",
"small", "normalsize", "large", "Large", "LARGE", "huge", or "Huge").

booktabs logical indicating whether a LaTeX table in the format of the LaTeX booktabs
package is created.

caption (if do.table:) character string containing the table caption or NULL for no
caption.

label (if do.table:) character string containing the table label or NULL for no label.

Details

Note that necessary LaTeX packages (such as tabularx) have to be loaded in the preambel of the
corresponding .tex or .Rnw file.

Value

a “LaTeX table”, of class "Latex" (where the print method uses writeLines()).

Author(s)

Marius Hofert.

References

see simsalapar-package.

See Also

toLatex() where it is used to create a LaTeX table.

Examples

ftab <- ftable(Titanic, row.vars = 1:2)
fftab <- fftable(ftab)
tlist <- tablines(fftab)

wrapLaTable(structure(tlist$body, head = tlist$head), align = tlist$align,
caption="The Titanic data set.", label="tab:titanic")

Index

∗ classes
varlist, 25

∗ hplot
mayplot, 16

∗ package
simsalapar-package, 2

∗ programming
doCallWE, 10
tryCatch.W.E, 24

∗ utilities
array-stuff, 4
device, 7
doApply, 8
doCheck, 12
expr2latex, 12
grid-stuff, 13
LEseeds, 15
subjob, 19
toLatex-ftable, 21
varlist, 25
wrapLaTable, 27

.Random.seed, 10, 16, 19, 20

all.equal, 8, 9
array, 5, 6, 14, 17, 20
array-stuff, 4
array2df, 4
array2df (array-stuff), 4

cat, 20
cattablines (toLatex-ftable), 21
character, 7, 9, 13, 14, 17, 20–23, 26–28
class, 13
clusterApply, 3, 8, 9
clusterApplyLB, 9
coerce,varlist,list-method (varlist), 25
colorRampPalette, 17

data.frame, 4–6, 14, 26
dev.off, 7, 8

dev.off.pdf (device), 7
device, 7
dimnames, 6, 14, 17, 26
dimnames2varlist, 3
dimnames2varlist (varlist), 25
do.call, 10, 11
doApply, 8
doCallWE, 3, 5, 6, 10, 10, 20, 25
doCheck, 12
doClusterApply, 3, 9, 26
doClusterApply (doApply), 8
doForeach, 3, 9, 10, 26
doForeach (doApply), 8
doLapply, 3, 20, 26
doLapply (doApply), 8
doMclapply, 3, 17, 26
doMclapply (doApply), 8
doRes.equal, 3
doRes.equal (doApply), 8
doRmpi, 3, 9, 26
doRmpi (doApply), 8

embedFonts, 8
escapeLatex, 22
escapeLatex (expr2latex), 12
expand.grid, 14, 15
expr2latex, 12, 22

FALSE, 20
fftable, 4
fftable (toLatex-ftable), 21
foreach, 8
format, 22
format.ftable, 22, 23
ftable, 21, 22
function, 9, 11, 12, 17, 20, 26

gc, 11
get.n.sim, 3
get.n.sim (grid-stuff), 13

29

30 INDEX

get.nonGrids, 3, 19
get.nonGrids (grid-stuff), 13
getArray, 4, 17
getArray (array-stuff), 4
getEl, 3, 7, 26
getEl (grid-stuff), 13
globalenv, 19
grid-stuff, 13
grid.layout, 18

invisible, 7
is.atomic, 26
is.symbol, 13

lapply, 3, 8
length, 14
LEseeds, 3, 15
list, 4–6, 9, 11, 12, 14, 15, 17, 19, 20, 24, 26
logical, 5, 6, 9, 12, 17, 18, 20, 22, 23, 28

makeCluster, 9
matplot, 18
matrix, 20–23
maybeRead, 3
maybeRead (array-stuff), 4
mayplot, 4, 16
mclapply, 3, 8
mkAL, 3
mkAL (array-stuff), 4
mkGrid, 3, 17, 19
mkGrid (grid-stuff), 13
mkNms, 3, 7
mkNms (grid-stuff), 13
mkTimer, 3, 6
mkTimer (doCallWE), 10
mpi.apply, 8, 9
mpi.applyLB, 9
mpi.spawn.Rslaves, 9

NA, 14, 19, 22
namedList, 25, 26
names, 14, 26
NULL, 5–7, 11, 14, 19, 22–24, 28
numeric, 5, 6, 19, 20, 22

pdf.end, 8
plot.default, 17
plotmath, 13
print, 28

printInfo, 3, 9
printInfo (subjob), 19
proc.time, 6

quote, 13

readRDS, 4, 6, 7

saveRDS, 4, 7
saveSim, 3, 9, 10
saveSim (array-stuff), 4
set.n.sim (grid-stuff), 13
set.seed, 19
show,varlist-method (varlist), 25
simpleError, 11, 24
simpleWarning, 11, 24
simsalapar (simsalapar-package), 2
simsalapar-package, 2
stop, 11, 24
subjob, 3, 9, 10, 19
system.time, 11, 20

table, 26
tablines, 4
tablines (toLatex-ftable), 21
toLatex, 4, 13, 21, 26, 28
toLatex-ftable, 21
toLatex.ftable (toLatex-ftable), 21
toLatex.varlist, 26
toLatex.varlist (toLatex-ftable), 21
TRUE, 20
tryCatch, 6, 25
tryCatch.W.E, 3, 10, 11, 24, 25

ul (array-stuff), 4
unit, 18
unlist, 4, 6

validObject, 25
varlist, 3, 8, 14, 15, 17, 21, 22, 25
varlist-class (varlist), 25
vector, 19, 22, 23, 27

warning, 11, 24
wrapLaTable, 4, 23, 27
writeLines, 27, 28

	simsalapar-package
	array-stuff
	device
	doApply
	doCallWE
	doCheck
	expr2latex
	grid-stuff
	LEseeds
	mayplot
	subjob
	toLatex-ftable
	tryCatch.W.E
	varlist
	wrapLaTable
	Index

