
Package ‘skm’
July 23, 2025

Type Package

Title Selective k-Means

Version 0.1.5.4

Author Guang Yang

Maintainer Guang Yang <gyang274@gmail.com>

Description Algorithms for solving selective k-means problem,
which is defined as finding k rows in an m x n matrix such that
the sum of each column minimal is minimized.
In the scenario when m == n and each cell value in matrix is a
valid distance metric, this is equivalent to a k-means problem.
The selective k-means extends the k-means problem in the sense
that it is possible to have m != n, often the case m < n which
implies the search is limited within a small subset of rows.
Also, the selective k-means extends the k-means problem in the
sense that the instance in row set can be instance not seen in
the column set, e.g., select 2 from 3 internet service provider
(row) for 5 houses (column) such that minimize the overall cost
(cell value) - overall cost is the sum of the column minimal of
the selected 2 service provider.

License MIT + file LICENSE

LazyData TRUE

URL http://github.com/gyang274/skm

BugReports http://github.com/gyang274/skm/issues

RoxygenNote 5.0.1

Depends R (>= 3.0.0), magrittr, data.table

Imports methods, plyr, Rcpp (>= 0.12.5), RcppParallel

LinkingTo Rcpp, RcppArmadillo, RcppParallel

SystemRequirements GNU make

Suggests knitr, rmarkdown

VignetteBuilder knitr

1

http://github.com/gyang274/skm
http://github.com/gyang274/skm/issues

2 col_max_idx

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-01-23 08:22:33

Contents
col_max_idx . 2
col_max_val . 3
col_min_idx . 4
col_min_val . 4
col_rgn_val . 5
dist_wlatlng . 5
dist_wlatlng_cpp . 6
skmRpl_mlp_cpp . 7
skmSolution . 8
skm_gdp_cpp . 9
skm_minmax_cpp . 9
skm_mlp_cpp . 10
skm_mls . 11
skm_mls_cpp . 12
skm_rgi_cpp . 13
skm_rgs_cpp . 14
skm_sgl_cpp . 14
source_zip_list . 15
stratified_sampling . 16
zip2012 . 16

Index 18

col_max_idx col_max_idx

Description

calculate colvec max value index within limited range

Usage

col_max_idx(u, wlmt)

Arguments

u u: a numeric colvec

wlmt wlmt: limit search on colvec on indices within wlmt

col_max_val 3

Value

id an index of max value in u within wlmt w.r.t to original index

Note

cpp use index start from 0 vs r use index start from 1

in case of equal std:min/std:max take first index seen

See Also

Other matrix_minmax: col_max_val, col_min_idx, col_min_val, col_rgn_val

col_max_val col_max_val

Description

calculate colvec max value within limited range

Usage

col_max_val(u, wlmt)

Arguments

u u: a numeric colvec

wlmt wlmt: limit search on colvec on indices within wlmt

Value

vd min value in u within wlmt w.r.t to original index

See Also

Other matrix_minmax: col_max_idx, col_min_idx, col_min_val, col_rgn_val

4 col_min_val

col_min_idx col_min_idx

Description

calculate colvec min value index within limited range

Usage

col_min_idx(u, wlmt)

Arguments

u u: a numeric colvec

wlmt wlmt: limit search on colvec on indices within wlmt

Value

id an index of min value in u within wlmt w.r.t to original index

Note

cpp use index start from 0 vs r use index start from 1

in case of equal std:min/std:max take first index seen

See Also

Other matrix_minmax: col_max_idx, col_max_val, col_min_val, col_rgn_val

col_min_val col_min_val

Description

calculate colvec min value within limited range

Usage

col_min_val(u, wlmt)

Arguments

u u: a numeric colvec

wlmt wlmt: limit search on colvec on indices within wlmt

col_rgn_val 5

Value

vd min value in u within wlmt w.r.t to original index

See Also

Other matrix_minmax: col_max_idx, col_max_val, col_min_idx, col_rgn_val

col_rgn_val col_rgn_val

Description

calculate colvec range = max - min value within limited range

Usage

col_rgn_val(u, wlmt)

Arguments

u u: a numeric colvec

wlmt wlmt: limit search on colvec on indices within wlmt

Value

vd max - min value in u within wlmt w.r.t to original index

See Also

Other matrix_minmax: col_max_idx, col_max_val, col_min_idx, col_min_val

dist_wlatlng dist_wlatlng

Description

calculate distance btwn coordinate1<lat1, lng1> and coordinate2<lat2, lng2>

Usage

dist_wlatlng(.lat1, .lng1, .lat2, .lng2, .measure = "mi")

6 dist_wlatlng_cpp

Arguments

.lat1 latitude of coordinate1

.lng1 longitude of coordinate1

.lat2 latitude of coordinate2

.lng2 longitude of coordinate2

.measure - mi or km

Details

calculate the great circle distance between 2 points with Haversine formula, which deliberately
ignores elevation differences.

Haversine formula (from R.W. Sinnott, "Virtues of the Haversine", Sky and Telescope, vol. 68, no.
2, 1984, p. 159):

dlon = lon2 - lon1

dlat = lat2 - lat1

a = sin^2(dlat/2) + cos(lat1) * cos(lat2) * sin^2(dlon/2)

c = 2 * arcsin(min(1,sqrt(a)))

d = R * c

dist_wlatlng_cpp dist_wlatlng_cpp

Description

calculate distance between coordinate1<lat1, lng1> and coordinate2<lat2, lng2>

Usage

dist_wlatlng_mi_cpp(lat1, lng1, lat2, lng2)

dist_wlatlng_km_cpp(lat1, lng1, lat2, lng2)

distSgl_wlatlng_cpp(lat1, lng1, lat2, lng2, measure = "mi")

distRpl_wlatlng_cpp(lat1, lng1, lat2, lng2, measure = "mi",
distRpl_GS = 100L)

Arguments

lat1 latitude of coordinate1

lng1 longitude of coordinate1

lat2 latitude of coordinate2

lng2 longitude of coordinate2

skmRpl_mlp_cpp 7

measure "mi" (mile) or "km" (kilometer)

distRpl_GS The grain size of a parallel algorithm sets a minimum chunk size for paralleliza-
tion. In other words, at what point to stop processing input on separate threads
(as sometimes creating more threads can degrade the performance of an algo-
rithm by introducing excessive synchronization overhead). Default is 100.

Details

calculate the great circle distance between 2 points with Haversine formula, which deliberately
ignores elevation differences.

Haversine formula (from R.W. Sinnott, "Virtues of the Haversine", Sky and Telescope, vol. 68, no.
2, 1984, p. 159):

dlon = lon2 - lon1

dlat = lat2 - lat1

a = sin^2(dlat/2) + cos(lat1) * cos(lat2) * sin^2(dlon/2)

c = 2 * arcsin(min(1,sqrt(a)))

d = R * c

dist_wlatlng_mi_cpp:

calculate distance between coordinate1<lat1, lng1> and coordinate2<lat2, lng2> in mile

dist_wlatlng_km_cpp:

calculate distance between coordinate1<lat1, lng1> and coordinate2<lat2, lng2> in kilometer

distSgl_wlatlng_cpp:

calculate distance between coordinate1<lat1, lng1> and coordinate2<lat2, lng2> in mile (measure
= "mi") or kilometer (measure = "km"), default is mile.

implement as serial computing over vector of lat1, lng1, lat2, lng2

distRpl_wlatlng_cpp:

calculate distance between coordinate1<lat1, lng1> and coordinate2<lat2, lng2> in mile (measure
= "mi") or kilometer (measure = "km"), default is mile.

implement as parallel computing over vector of lat1, lng1, lat2, lng2 via RcppParallel

skmRpl_mlp_cpp skmRpl_mlp_cpp

Description

solve skm with multiple runs in parallel

Usage

skmRpl_mlp_cpp(x, k, s_must, max_it, max_at, skmRpl_GS = 100L)

8 skmSolution

Arguments

x an m x n matrix often m < n, as a convention index rows of x with s, and cols of
x with t so x(i, j) can be expressed as (s_i, t_j) equally.

k number of index to be selected from x row index start from 0.

s_must an index vector set should be selected before selecting other index.

max_it max number of iterations can run for optimizing result. max number of iterations
within a single initial run on optimal path.

max_at max number of attempts or repeats on running for optimial results, max number
of random initialization for finding optimial results.

skmRpl_GS skmRpl_GS: RcppParallel grain size when run skmRpl_mlp_cpp

Details

refer skm_sgl_cpp

Value

skmSolution skmSolution present in r list

skmSolution skmSolution

Description

class skmSolution, which often returned via skm solver implemented in cpp

Usage

skmSolution

Format

An object of class C++Class of length 1.

Details

an skmSolution instance has two member variable:

o: objective sum(min(x.subview(i in s, all j), min over all i), sum over all j)

s: selected index set of row index start from 0

skm_gdp_cpp 9

skm_gdp_cpp skm_gdp_cpp

Description

solve selective kmeans via a greedy propagation.

Usage

skm_gdp_cpp(x, k = 0L)

Arguments

x an m x n matrix of s - t - dist

k number of index to be selected from x row index start from 0.

Details

skm_gdp_cpp init with an input m x n matrix x and want to select an index set s of size k from x
row index started from 0 such that

minimize sum(min(x.subview(i in s, all j), min over all i), sum over all j)

skm_gdp_cpp solve the problem with greedy propagation via selecting the current best addon index
from the index set left, addon index is defined as such index when addon to the selected one can
bring the most improvement.

since skm_gbp_cpp would select index one by one, and no return, e.g., if select index A for k = 1,
then selection on k = 2 would build on k = 1, so index A is always present in the solution, so all
index can be ranked w.r.t when it would be considered as the best addon. as a result skm_gbp_cpp
a parameter k is not always required, so default k = 0 will resturn a vector of size m, and user can
select to top k as solution for k.

Value

s a ranked index 0 - m - 1 where the top k would minimize sum(min(x.subview(i in s(0..k-1), all j),
min over all i), sum over all j)

skm_minmax_cpp skm_minmax_cpp

Description

skm via min-max on in cpp - subroutine of skm_sgl_cpp calls

Usage

skm_minmax_cpp(x, s_must)

10 skm_mlp_cpp

Arguments

x an m x n matrix often m > n

s_must matrix x row index start from 0 that must be selected with priority

Details

skm_minmax_cpp init an input m x n matrix x, and a priority vector s_must would select n indicies
from m such that:

minimize sum(min(x(i, j) where i <1..n> and j <1..n> each use <1..n> once))

so in case m <= n it simply select all m - should always be apply on matrix with m > n - it is designed
as a expectation step in skm_cpp on updating s.

it select i in <1..m> such that i has the colwise_min_idx on column j where j has max difference of
(colwise_max_val - colwise_min_val), it then remove row i col j from matrix and repeat.

s_must presents the indices with priority so that the selection must select first indicies within s_must
and then select other indicies outside s_must.

an example skm_minmax_cpp is superior in bound worst case compare to greedy: x = [1 100; 4
200; 2 400; 9 900]: greedy 1 then 200, min-max 100 then 2, and greedy give [1 100; 4 200] with
201 and minmax give [1 100; 2 400] with 102.

skm_mlp_cpp skm_mlp_cpp

Description

solve skm with multiple runs in serial and return all w. optim

Usage

skm_mlp_cpp(x, k, s_must, max_it, max_at)

Arguments

x an m x n matrix often m < n, as a convention index rows of x with s, and cols of
x with t so x(i, j) can be expressed as (s_i, t_j) equally.

k number of index to be selected from x row index start from 0.

s_must an index vector set should be selected before selecting other index.

max_it max number of iterations can run for optimizing result. max number of iterations
within a single initial run on optimal path.

max_at max number of attempts or repeats on running for optimial results, max number
of random initialization for finding optimial results.

Details

refer skm_sgl_cpp

skm_mls 11

Value

skmSolution skmSolution present in r list

See Also

Other skm: skm_mls_cpp, skm_rgi_cpp, skm_rgs_cpp, skm_sgl_cpp

skm_mls skm_mls

Description

a selective k-means problem solver - wrapper over skm_mls_cpp

Usage

skm_mls(x, k = 1L, s_colname = "s", t_colname = "t", d_colname = "d",
w_colname = NULL, s_ggrp = integer(0L), s_must = integer(0L),
max_it = 100L, max_at = 100L, auto_create_ggrp = TRUE,
extra_immaculatism = TRUE, extra_at = 10L)

Arguments

x data.table with s - t - d(s, t): s<source> - t<target> - d<distance> where s<source>
and t<target> must characters and d<distance> must numeric. aware d<distance>
is not necessary as an euclidean or any distance and even necessary as symmet-
ric - d(s, t) can be unequal to d(t, s) - view d as such a measure of the cost of
assigning one to the other!

k number of centers

s_colname s<source>

t_colname t<target>

d_colname d<distance> - view d as cost of assigning t into s. also modify the input data
or build in the algorithm can solve problem with a different fixed cost on using
each s as source - i prefer to moddify data so that the algorithm is clean and clear
- i will show a how to in vignette

w_colname w<weighting> - optional: when not null will optimize toward objective to min-
imize d = d * w such as weighted cost of assigning t into s

s_ggrp s_init will be stratified sampling from s w.r.t s_ggrp.

s_must length <= k-1 s must in result: conditional optimizing.

max_it max number of iterations can run for optimizing result.

max_at max number of attempts/repeats on running for optimial.
auto_create_ggrp

boolean indicator of whether auto creating the group structure using the first
letter of s when s_ggrp is integer(0).

12 skm_mls_cpp

extra_immaculatism

boolean indicator of whether making extra runs for improving result consistency
when multiple successive k is specified, e.g., k = c(9L, 10L).

extra_at an integer specifying the number of extra runs when argument extra_immaculatism
is TRUE.

Details

a selective k-means problem is defined as finding a subset of k rows from a m x n matrix such that
the sum of each column minimial is minimized.

skm_mls would take data.table (data.frame) as inputs, rather than a matrix, assume that a data.table
of s - t - d(s, t) for all combination of s and t, choose k of s that minimizes sum(min(d(s, t) over
selected k of s) over t).

Value

data.table

o - objective - based on d_colname

w - weighting - based on w_colname

k - k<k-list> - based on k - input

s - s<source> - based on s_colname

d - weighed averge value of d_colname weighed by w_column when s are selected.

skm_mls_cpp skm_mls_cpp

Description

solve skm with multiple runs in serial and return all w. optim and s_init stratified sampled w.r.t g

Usage

skm_mls_cpp(x, k, g, s_must, max_it, max_at)

Arguments

x an m x n matrix often m < n, as a convention index rows of x with s, and cols of
x with t so x(i, j) can be expressed as (s_i, t_j) equally.

k number of index to be selected from x row index start from 0.
g stratify structure, often info on grouping of v so that algorithm should make

random initialization from stratified sample across groups.
s_must an index vector set should be selected before selecting other index.
max_it max number of iterations can run for optimizing result. max number of iterations

within a single initial run on optimal path.
max_at max number of attempts or repeats on running for optimial results, max number

of random initialization for finding optimial results.

skm_rgi_cpp 13

Details

refer skm_sgl_cpp

Value

skmSolution skmSolution present in r list

See Also

Other skm: skm_mlp_cpp, skm_rgi_cpp, skm_rgs_cpp, skm_sgl_cpp

skm_rgi_cpp skm_rgi_cpp

Description

solve skm with single and random size k s_init

Usage

skm_rgi_cpp(x, k, s_must, max_it)

Arguments

x an m x n matrix often m < n, as a convention index rows of x with s, and cols of
x with t so x(i, j) can be expressed as (s_i, t_j) equally.

k number of index to be selected from x row index start from 0.

s_must an index vector set should be selected before selecting other index.

max_it max number of iterations can run for optimizing result. max number of iterations
within a single initial run on optimal path.

Details

refer skm_sgl_cpp

Value

skmSolution

See Also

Other skm: skm_mlp_cpp, skm_mls_cpp, skm_rgs_cpp, skm_sgl_cpp

14 skm_sgl_cpp

skm_rgs_cpp skm_rgs_cpp

Description

solve skm with single and random size k s_init stratified sampled w.r.t g

Usage

skm_rgs_cpp(x, k, g, s_must, max_it)

Arguments

x an m x n matrix often m < n, as a convention index rows of x with s, and cols of
x with t so x(i, j) can be expressed as (s_i, t_j) equally.

k number of index to be selected from x row index start from 0.

g stratify structure, often info on grouping of v so that algorithm should make
random initialization from stratified sample across groups.

s_must an index vector set should be selected before selecting other index.

max_it max number of iterations can run for optimizing result. max number of iterations
within a single initial run on optimal path.

Details

refer skm_sgl_cpp

Value

skmSolution

See Also

Other skm: skm_mlp_cpp, skm_mls_cpp, skm_rgi_cpp, skm_sgl_cpp

skm_sgl_cpp skm_sgl_cpp

Description

solve skm with single and a fixed given s_init

Usage

skm_sgl_cpp(x, s_init, s_must, max_it)

source_zip_list 15

Arguments

x an m x n matrix often m < n, as a convention index rows of x with s, and cols of
x with t so x(i, j) can be expressed as (s_i, t_j) equally.

s_init an init vector of k index to start the search of optimal index set of k, length of
s_init also defined the number of index want to be select.

s_must an index vector set should be selected before selecting other index.

max_it max number of iterations can run for optimizing result. max number of iterations
within a single initial run on optimal path.

Details

a numeric m x n matrix x often m « n and want to select a subset of k from m such that it minimize
the sum(min(x(i, j) - minimum w.r.t each j over all i within selected index set), over all i)

if m == n and x(i, j) as euclidean distance then it is equivalent to kmeans

skm can select a combined set for deploying resource, for example, where to build 5 warehouses on
united states, which often different than build these warehouses via select the current best one by
one.

Value

skmSolution

See Also

Other skm: skm_mlp_cpp, skm_mls_cpp, skm_rgi_cpp, skm_rgs_cpp

source_zip_list source_zip_list

Description

a list of zip code used in skm package demonstration.

Usage

source_zip_list

Format

a character vector of length 51 includes one 5 digits zip code selected from each state, where the
most central zip code in each state selected.

16 zip2012

stratified_sampling stratified_sampling

Description

select k elements from vector v w.r.t stratify structure group g. TODO - implementing via template
so v is flexible as vec or uvec.

Usage

stratified_sampling(v, k, g)

Arguments

v <vector> v: a numeric candidate v from which draw sample.

k <integer> k: selection sample size.

g <vector> g: stratify structure g - info on grouping of v so that the selected sample
is stratified across groups.

Value

s <vector> s: a vector select from v length k stratified by g.

Note

v is required as an integer vector for using in skm

zip2012 zip2012

Description

a zip code database with latitude, longitude, population and income.

Usage

zip2012

zip2012 17

Format

A data table with 28844 rows and 9 variables:

zip zip code, 5 digits zip code in U.S.

lat latitude

lng longitude

pop population

ink income

city city

state state

p_pop percentage of population w.r.t total population

p_ink percentage of income w.r.t total income

Source

http://federalgovernmentzipcodes.us/

http://federalgovernmentzipcodes.us/

Index

∗ datasets
skmSolution, 8
source_zip_list, 15
zip2012, 16

col_max_idx, 2, 3–5
col_max_val, 3, 3, 4, 5
col_min_idx, 3, 4, 5
col_min_val, 3, 4, 4, 5
col_rgn_val, 3–5, 5

dist_wlatlng, 5
dist_wlatlng_cpp, 6
dist_wlatlng_km_cpp (dist_wlatlng_cpp),

6
dist_wlatlng_mi_cpp (dist_wlatlng_cpp),

6
distRpl_wlatlng_cpp (dist_wlatlng_cpp),

6
distSgl_wlatlng_cpp (dist_wlatlng_cpp),

6

Rcpp_skmSolution (skmSolution), 8
Rcpp_skmSolution-class (skmSolution), 8

skm_gdp_cpp, 9
skm_minmax_cpp, 9
skm_mlp_cpp, 10, 13–15
skm_mls, 11
skm_mls_cpp, 11, 12, 13–15
skm_rgi_cpp, 11, 13, 13, 14, 15
skm_rgs_cpp, 11, 13, 14, 15
skm_sgl_cpp, 11, 13, 14, 14
skmRpl_mlp_cpp, 7
skmSolution, 8
source_zip_list, 15
stratified_sampling, 16

zip2012, 16

18

	col_max_idx
	col_max_val
	col_min_idx
	col_min_val
	col_rgn_val
	dist_wlatlng
	dist_wlatlng_cpp
	skmRpl_mlp_cpp
	skmSolution
	skm_gdp_cpp
	skm_minmax_cpp
	skm_mlp_cpp
	skm_mls
	skm_mls_cpp
	skm_rgi_cpp
	skm_rgs_cpp
	skm_sgl_cpp
	source_zip_list
	stratified_sampling
	zip2012
	Index

