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bootCast Forecasting Function for ARMA Models via Bootstrap

Description

Point forecasts and the respective forecasting intervals for autoregressive-moving-average (ARMA)
models can be calculated, the latter via bootstrap, by means of this function.
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Usage

bootCast(
X,
p = NULL,
q = NULL,
include.mean = FALSE,
n.start = 1000,
h = 1,
it = 10000,
pb = TRUE,
cores = future::availableCores(),
alpha = 0.95,
export.error = FALSE,
plot = FALSE,
...

)

Arguments

X a numeric vector that contains the time series that is assumed to follow an
ARMA model ordered from past to present.

p an integer value ≥ 0 that defines the AR order p of the underlying ARMA(p, q)
model within X; is set to NULL by default; if no value is passed to p but one is
passed to q, p is set to 0; if both p and q are NULL, optimal orders following the
BIC for 0 ≤ p, q ≤ 5 are chosen; is set to NULL by default; decimal numbers
will be rounded off to integers.

q an integer value ≥ 0 that defines the MA order q of the underlying ARMA(p, q)
model within X; is set to NULL by default; if no value is passed to q but one is
passed to p, q is set to 0; if both p and q are NULL, optimal orders following the
BIC for 0 ≤ p, q ≤ 5 are chosen; is set to NULL by default; decimal numbers
will be rounded off to integers.

include.mean a logical value; if set to TRUE, the mean of the series is also also estimated; if set
to FALSE, E(Xt) = 0 is assumed; is set to FALSE by default.

n.start an integer that defines the ’burn-in’ number of observations for the simulated
ARMA series via bootstrap; is set to 1000 by default; decimal numbers will be
rounded off to integers.

h an integer that represents the forecasting horizon; if n is the number of ob-
servations, point forecasts and forecasting intervals will be obtained for the time
points n+1 to n+h; is set to h = 1 by default; decimal numbers will be rounded
off to integers.

it an integer that represents the total number of iterations, i.e., the number of sim-
ulated series; is set to 10000 by default; decimal numbers will be rounded off to
integers.

pb a logical value; for pb = TRUE, a progress bar will be shown in the console.
cores an integer value >0 that states the number of (logical) cores to use in the boot-

strap (or NULL); the default is the maximum number of available cores (via
future::availableCores); for cores = NULL, parallel computation is disabled.
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alpha a numeric vector of length 1 with 0 < alpha < 1; the forecasting intervals will
be obtained based on the confidence level (100alpha)-percent; is set to alpha =
0.95 by default, i.e., a 95-percent confidence level.

export.error a single logical value; if the argument is set to TRUE, a list is returned instead
of a matrix (FALSE); the first element of the list is the usual forecasting matrix,
whereas the second element is a matrix with h columns, where each column
represents the calculated forecasting errors for the respective future time point
n+ 1, n+ 2, ..., n+ h; is set to FALSE by default.

plot a logical value that controls the graphical output; for plot = TRUE, the original
series with the obtained point forecasts as well as the forecasting intervals will
be plotted; for the default plot = FALSE, no plot will be created.

... additional arguments for the standard plot function, e.g., xlim, type, ... ; ar-
guments with respect to plotted graphs, e.g., the argument col, only affect the
original series X; please note that in accordance with the argument x (lower case)
of the standard plot function, an additional numeric vector with time points can
be implemented via the argument x (lower case). x should be valid for the sam-
ple observations only, i.e. length(x) == length(X) should be TRUE, as future
time points will be calculated automatically.

Details

This function is part of the smoots package and was implemented under version 1.1.0. For a given
time series Xt, t = 1, 2, ..., n, the point forecasts and the respective forecasting intervals will be
calculated. It is assumed that the series follows an ARMA(p, q) model

Xt − µ = ϵt + β1(Xt−1 − µ) + ...+ βp(Xt−p − µ) + α1ϵt−1 + ...+ αqϵt−q,

where αj and βi are real numbers (for i = 1, 2, .., p and j = 1, 2, ..., q) and ϵt are i.i.d. (identically
and independently distributed) random variables with zero mean and constant variance. µ is equal
to E(Xt).

The point forecasts and forecasting intervals for the future periods n + 1, n + 2, ..., n + h will be
obtained. With respect to the point forecasts X̂n+k, where k = 1, 2, ..., h,

X̂n+k = µ̂+

p∑
i=1

β̂i(Xn+k−i − µ̂) +

q∑
j=1

α̂j ϵ̂n+k−j

with Xn+k−i = X̂n+k−i for n + k − i > n and ϵ̂n+k−j = E(ϵt) = 0 for n + k − j > n will be
applied.

The forecasting intervals on the other hand are obtained by a forward bootstrap method that was
introduced by Pan and Politis (2016) for autoregressive models and extended by Lu and Wang
(2020) for applications to autoregressive-moving-average models. For this purpose, let l be the
number of the current bootstrap iteration. Based on the demeaned residuals of the initial ARMA
estimation, different innovation series ϵsl,t will be sampled. The initial coefficient estimates and
the sampled innovation series are then used to simulate a variety of series Xs

l,t, from which again
coefficient estimates will be obtained. With these newly obtained estimates, proxy residual series
ϵ̂sl,t are calculated for the original series Xt. Subsequently, point forecasts for the time points n+ 1
to n + h are obtained for each iteration l based on the original series Xt, the newly obtained
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coefficient forecasts and the proxy residual series ϵsl,t. Simultaneously, "true" forecasts, i.e., true
future observations, are simulated. Within each iteration, the difference between the simulated true
forecast and the bootstrapped point forecast is calculated and saved for each future time point n+1
to n + h. The result for these time points are simulated empirical values of the forecasting error.
Denote by qk(.) the quantile of the empirical distribution for the future time point n + k. Given
a predefined confidence level alpha, define αs = (1− alpha)/2. The bootstrapped forecasting
interval is then

[X̂n+k + qk(αs), X̂n+k + qk(1− αs)],

i.e., the forecasting intervals are given by the sum of the respective point forecasts and quantiles of
the respective bootstrapped forecasting error distributions.

The function bootCast allows for different adjustments to the forecasting progress. At first, a
vector with the values of the observed time series ordered from past to present has to be passed to
the argument X. Orders p and q of the underlying ARMA process can be defined via the arguments
p and q. If only one of these orders is inserted by the user, the other order is automatically set to
0. If none of these arguments are defined, the function will choose orders based on the Bayesian
Information Criterion (BIC) for 0 ≤ p, q ≤ 5. Via the logical argument include.mean the user
can decide, whether to consider the mean of the series within the estimation process. By means of
n.start, the number of "burn-in" observations for the simulated ARMA processes can be regulated.
These observations are usually used for the processes to build up and then omitted. Furthermore,
the argument h allows for the definition of the maximum future time point n + h. Point forecasts
and forecasting intervals will be returned for the time points n + 1 to n + h. it corresponds
to the number of bootstrap iterations. We recommend a sufficiently high number of repetitions
for maximum accuracy of the results. Another argument is alpha, which is the equivalent of the
confidence level considered within the calculation of the forecasting intervals, i.e., the quantiles (1−
alpha)/2 and 1− (1− alpha)/2 of the bootstrapped forecasting error distribution will be obtained.

Since this bootstrap approach needs a lot of computation time, especially for series with high num-
bers of observations and when fitting models with many parameters, parallel computation of the
bootstrap iterations is enabled. With cores, the number of cores can be defined with an integer.
Nonetheless, for cores = NULL, no cluster is created and therefore the parallel computation is dis-
abled. Note that the bootstrapped results are fully reproducible for all cluster sizes. The progress of
the bootstrap can be observed in the R console, where a progress bar and the estimated remaining
time are displayed for pb = TRUE.

If the argument export.error is set to TRUE, the output of the function is a list instead of a ma-
trix with additional information on the simulated forecasting errors. For more information see the
section Value.

For simplicity, the function also incorporates the possibility to directly create a plot of the output, if
the argument plot is set to TRUE. By the additional and optional arguments ..., further arguments
of the standard plot function can be implemented to shape the returned plot.

NOTE:

Within this function, the arima function of the stats package with its method "CSS-ML" is used
throughout for the estimation of ARMA models. Furthermore, to increase the performance, C++
code via the Rcpp and RcppArmadillo packages was implemented. Also, the future and future.apply
packages are considered for parallel computation of bootstrap iterations. The progress of the boot-
strap is shown via the progressr package.
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Value

The function returns a 3 by h matrix with its columns representing the future time points and the
point forecasts, the lower bounds of the forecasting intervals and the upper bounds of the forecasting
intervals as the rows. If the argument plot is set to TRUE, a plot of the forecasting results is created.

If export.error = TRUE is selected, a list with the following elements is returned instead.

fcast the 3 by h matrix forecasting matrix with point forecasts and bounds of the forecasting inter-
vals.

error a it by h matrix, where each column represents a future time point n+ 1, n+ 2, ..., n+ h;
in each column the respective it simulated forecasting errors are saved.

Author(s)

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

References

Feng, Y., Gries, T. and Fritz, M. (2020). Data-driven local polynomial for the trend and its deriva-
tives in economic time series. Journal of Nonparametric Statistics, 32:2, 510-533.

Feng, Y., Gries, T., Letmathe, S. and Schulz, D. (2019). The smoots package in R for semiparamet-
ric modeling of trend stationary time series. Discussion Paper. Paderborn University. Unpublished.

Feng, Y., Gries, T., Fritz, M., Letmathe, S. and Schulz, D. (2020). Diagnosing the trend and boot-
strapping the forecasting intervals using a semiparametric ARMA. Discussion Paper. Paderborn
University. Unpublished.

Lu, X., and Wang, L. (2020). Bootstrap prediction interval for ARMA models with unknown orders.
REVSTAT–Statistical Journal, 18:3, 375-396.

Pan, L. and Politis, D. N. (2016). Bootstrap prediction intervals for linear, nonlinear and nonpara-
metric autoregressions. In: Journal of Statistical Planning and Inference 177, pp. 1-27.

Examples

### Example 1: Simulated ARMA process ###

# Function for drawing from a demeaned chi-squared distribution
rchisq0 <- function(n, df, npc = 0) {
rchisq(n, df, npc) - df
}

# Simulation of the underlying process
n <- 2000
n.start = 1000
set.seed(23)
X <- arima.sim(model = list(ar = c(1.2, -0.7), ma = 0.63), n = n,
rand.gen = rchisq0, n.start = n.start, df = 3) + 13.1

# Quick application with low number of iterations
# (not recommended in practice)
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result <- bootCast(X = X, p = 2, q = 1, include.mean = TRUE,
n.start = n.start, h = 5, it = 10, cores = 2, plot = TRUE,
lty = 3, col = "forestgreen", xlim = c(1950, 2005), type = "b",
main = "Exemplary title", pch = "*")

result

### Example 2: Application with more iterations ###
## Not run:
result2 <- bootCast(X = X, p = 2, q = 1, include.mean = TRUE,
n.start = n.start, h = 5, it = 10000, cores = 2, plot = TRUE,
lty = 3, col = "forestgreen", xlim = c(1950, 2005),
main = "Exemplary title")

result2

## End(Not run)

confBounds Asymptotically Unbiased Confidence Bounds

Description

Asymptotically Unbiased Confidence Bounds

Usage

confBounds(
obj,
alpha = 0.95,
p = c(0, 1, 2, 3),
plot = TRUE,
showPar = TRUE,
rescale = TRUE,
...

)

Arguments

obj an object returned by either msmooth, tsmooth or dsmooth.

alpha the confidence level; a single numeric value between 0 and 1; 0.95 is the default.

p the order of polynomial used for the parametric polynomial regression that is
conducted as a benchmark for the trend function; must satisfy 0 ≤ p ≤ 3; set to
1 by default; is irrelevant, if a derivative of the trend of order greater than zero
is being analyzed.

plot a logical value; for plot = TRUE, the default, a plot is created.

showPar set to TRUE, if the parametric fitted values are to be shown against the unbiased
estimates and the confidence bounds for plot = TRUE; the default is TRUE.
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rescale a single logical value; is set to TRUE by default; if the output of a derivative
estimation process is passed to obj and if rescale = TRUE, the estimates and
confidence bounds will be rescaled according to x for the plot (see also the
details on the parameter ...); the numerical output stays unchanged.

... further arguments that can be passed to the plot function; if an argument x with
time points is not given by the user, x = 1:length(obj$ye) is used per default
for the observation time points.

Details

This function is part of the smoots package and was implemented under version 1.1.0. The under-
lying theory is based on the additive nonparametric regression function

yt = m(xt) + ϵt,

where yt is the observed time series, xt is the rescaled time on the interval [0, 1], m(xt) is a smooth
trend function and ϵt are stationary errors with E(ϵt) = 0 and short-range dependence.

The purpose of this function is the estimation of reasonable confidence intervals for the nonpara-
metric trend function and its derivatives. The optimal bandwidth minimizes the Asymptotic Mean
Integrated Squared Error (AMISE) criterion, however, local polynomial estimates are (usually) bi-
ased. The bias is then (approximately)

hk−vm(k)(x)β(ν,k)

k!
,

where p is the order of the local polynomials, k = p + 1 is the order of the asymptotically equiva-
lent kernel, ν is the order of the of the trend function’s derivative, m(v) is the ν-th order derivative
of the trend function and β(ν,k) =

∫ 1

−1
ukK(ν,k)(u)du. K(ν,k)(u) is the k-th order asymptotically

equivalent kernel function for estimating m(ν). A renewed estimation with an adjusted bandwidth
hub = o(n−1/(2k+1)), i.e., a bandwidth with a smaller order than the optimal bandwidth, is con-
ducted. h = h

(2k+1)/(2k)
A , where hA is the optimal bandwidth, is implemented.

Following this idea, we have that
√
nh[m(ν)(x)− m̂(ν)(x)]

converges to
N(0, 2πcfR(x))

in distribution, where 2πcf is the sum of autocovariances. Consequently, the trend (or derivative)
estimates are asymptotically unbiased and normally distributed.

To make use of this function, an object of class smoots can be given as input that was created
by either msmooth, tsmooth or dsmooth. Based on the optimal bandwidth saved within obj, an
adjustment to the bandwidth is made so that the estimates following the adjusted bandwidth are
(relatively) unbiased.

Based on the input argument alpha, the level of confidence between 0 and 1, the respective confi-
dence bounds are calculated for each observation point.

From the input argument obj, the order of derivative is automatically obtained. By means of the
argument p, an order of polynomial is selected for a parametric regression of the trend function.
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This is only meaningful, if the trend (and not its derivatives) is analyzed. Otherwise, the argument
is automatically dropped by the function. Furthermore, if plot = TRUE, a plot of the unbiased trend
(or derivative) estimates alongside the confidence bounds is created. If also showPar = TRUE, the es-
timated parametric trend (or parametric constant value for the derivatives) is added to the confidence
bound plot for comparison.

NOTE:

The values that are returned by the function are obtained with respect to the rescaled time points
on the interval [0, 1]. While the plot can be adjusted and rescaled by means of a given vector with
the actual time points, the numeric output is not rescaled. For this purpose we refer the user to the
rescale function of the smoots package.

This function implements C++ code by means of the Rcpp and RcppArmadillo packages for better
performance.

Value

A plot is created in the plot window and a list with different components is returned.

alpha a numeric vector of length 1; the level of confidence; input argument.

b.ub a numeric vector with one element that represents the adjusted bandwidth for the unbiased
trend estimation.

p.estim a numeric vector with the estimates following the parametric regression defined by p that
is conducted as a benchmark for the trend function; for the trend’s derivatives or for p = 0,
a constant value is the benchmark; the values are obtained with respect to the rescaled time
points on the interval [0, 1].

n the number of observations.

np.estim a data frame with the three (numeric) columns ye.ub, lower and upper; in ye.ub the
unbiased trend estimates, in lower the lower confidence bound and in upper the upper confi-
dence bound can be found; the values are obtained with respect to the rescaled time points on
the interval [0, 1].

v the order of the trend’s derivative considered for the test.

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

References

Beran, J. and Feng, Y. (2002). Local polynomial fitting with long-memory, short-memory and
antipersistent errors. Annals of the Institute of Statistical Mathematics, 54(2), 291-311.

Feng, Y., Gries, T. and Fritz, M. (2020). Data-driven local polynomial for the trend and its deriva-
tives in economic time series. Journal of Nonparametric Statistics, 32:2, 510-533.

https://wiwi.uni-paderborn.de/en/dep4/feng/
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Feng, Y., Gries, T., Letmathe, S. and Schulz, D. (2019). The smoots package in R for semiparamet-
ric modeling of trend stationary time series. Discussion Paper. Paderborn University. Unpublished.

Feng, Y., Gries, T., Fritz, M., Letmathe, S. and Schulz, D. (2020). Diagnosing the trend and boot-
strapping the forecasting intervals using a semiparametric ARMA. Discussion Paper. Paderborn
University. Unpublished.

Examples

log_gdp <- log(smoots::gdpUS$GDP)
est <- msmooth(log_gdp)
confBounds(est)

critMatrix ARMA Order Selection Matrix

Description

An information criterion is calculated for different orders of an autoregressive-moving-average
(ARMA) model.

Usage

critMatrix(
X,
p.max = 5,
q.max = 5,
criterion = c("bic", "aic"),
include.mean = TRUE

)

Arguments

X a numeric vector that contains the observed time series ordered from past to
present; the series is assumed to follow an ARMA process.

p.max an integer value >= 0 that defines the maximum autoregressive order to calcu-
late the criterion for; is set to 5 by default; decimal numbers will be rounded off
to integers.

q.max an integer value >= 0 that defines the maximum moving-average order to to cal-
culate the criterion for; is set to 5 by default; decimal numbers will be rounded
off to integers.

criterion a character value that defines the information criterion that will be calculated;
the Bayesian Information Criterion ("bic") and Akaike Information Criterion
("aic") are the supported choices; is set to "bic" by default.

include.mean a logical value; this argument regulates whether to estimate the mean of the
series (TRUE) or not (FALSE); is set to TRUE by default.
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Details

This function is part of the smoots package and was implemented under version 1.1.0. The series
passed to X is assumed to follow an ARMA(p, q) model. A p.max + 1 by q.max + 1 matrix is calcu-
lated for this series. More precisely, the criterion chosen via the argument criterion is calculated
for all combinations of orders p = 0, 1, ..., pmax and q = 0, 1, ..., qmax.

Within the function, two information criteria are supported: the Bayesian Information Criterion
(BIC) and Akaike’s Information Criterion (AIC). The AIC is given by

AICp,q := ln(σ̂2
p,q) +

2(p+ q)

n
,

where ˆsigma
2

p,q is the estimated innovation variance, p and q are the ARMA orders and n is the
number of observations.

The BIC, on the other hand, is defined by

BICp,q := k ln(n)− 2 ln(L̂)

with k being the number of estimated parameters and L̂ being the estimated Log-Likelihood. Since
the parameter k only differs with respect to the orders p and q for all estimated models, the term
k ln(n) is reduced to (p + q) ln(n) within the function. Exemplarily, if the mean of the series
is estimated as well, it is usually considered within the parameter k when calculating the BIC.
However, since the mean is estimated for all models, not considering this estimated parameter within
the calculation of the BIC will reduce all BIC values by the same amount of ln(n). Therefore, the
selection via this simplified criterion is still valid, if the number of the estimated parameters only
differs with respect to p and q between the models that the BIC is obtained for.

The optimal orders are considered to be the ones which minimize either the BIC or the AIC. The
use of the BIC is however recommended, because the BIC is consistent, whereas the AIC is not.

NOTE:

Within this function, the arima function of the stats package with its method "CSS-ML" is used
throughout for the estimation of ARMA models.

Value

The function returns a p.max + 1 by q.max + 1 matrix, where the rows represent the AR orders from
p = 0 to p = pmax and the columns represent the MA orders from q = 0 to q = qmax. The values
within the matrix are the values of the previously selected information criterion for the different
combinations of p and q.

Author(s)

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

Examples

## Not run:
# Simulate an ARMA(2,1) process
set.seed(23)
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X.sim <- stats::arima.sim(model = list(ar = c(1.2, -0.71), ma = 0.46),
n = 1000) + 13.1

# Application of the function
critMatrix(X.sim)
# Result: Via the BIC, the orders p.opt = 2 and q.opt = 1 are selected.

## End(Not run)

dax German Stock Market Index (DAX) Financial Time Series Data

Description

A dataset that contains the daily financial data of the DAX from 1990 to July 2019 (currency in
EUR).

Usage

dax

Format

A data frame with 7475 rows and 9 variables:

Year the observation year

Month the observation month

Day the observation day

Open the opening price of the day

High the highest price of the day

Low the lowest price of the day

Close the closing price of the day

AdjClose the adjusted closing price of the day

Volume the traded volume

Source

The data was obtained from Yahoo Finance (accessed: 2019-08-22).

https://query1.finance.yahoo.com/v7/finance/download/^GDAXI?period1=631148400&period2=
1564524000&interval=1d&events=history&crumb=Iaq1EPZAQRb

https://query1.finance.yahoo.com/v7/finance/download/^GDAXI?period1=631148400&period2=1564524000&interval=1d&events=history&crumb=Iaq1EPZAQRb
https://query1.finance.yahoo.com/v7/finance/download/^GDAXI?period1=631148400&period2=1564524000&interval=1d&events=history&crumb=Iaq1EPZAQRb
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dsmooth Data-driven Local Polynomial for the Trend’s Derivatives in Equidis-
tant Time Series

Description

This function runs through an iterative process in order to find the optimal bandwidth for the non-
parametric estimation of the first or second derivative of the trend in an equidistant time series
(with short-memory errors) and subsequently employs the obtained bandwidth via local polynomial
regression.

Usage

dsmooth(
y,
d = c(1, 2),
mu = c(0, 1, 2, 3),
pp = c(1, 3),
bStart.p = 0.15,
bStart = 0.15

)

Arguments

y a numeric vector that contains the time series ordered from past to present.

d an integer 1 or 2 that defines the order of derivative; the default is d = 1.

mu an integer 0, ..., 3 that represents the smoothness parameter of the kernel weight-
ing function and thus defines the kernel function that will be used within the
local polynomial regression; is set to 1 by default.

Number Kernel
0 Uniform Kernel
1 Epanechnikov Kernel
2 Bisquare Kernel
3 Triweight Kernel

pp an integer 1 (local linear regression) or 3 (local cubic regression) that indicates
the order of polynomial upon which cf , i.e. the variance factor, will be calcu-
lated by msmooth; the default is pp = 1.

bStart.p a numeric object that indicates the starting value of the bandwidth for the itera-
tive process for the calculation of cf ; should be > 0; is set to 0.15 by default.

bStart a numeric object that indicates the starting value of the bandwidth for the itera-
tive process; should be > 0; is set to 0.15 by default.
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Details

The trend’s derivative is estimated based on the additive nonparametric regression model for an
equidistant time series

yt = m(xt) + ϵt,

where yt is the observed time series, xt is the rescaled time on the interval [0, 1], m(xt) is a smooth
and deterministic trend function and ϵt are stationary errors with E(ϵt) = 0 and short-range depen-
dence (see also Beran and Feng, 2002). With this function, the first or second derivative of m(xt)
can be estimated without a parametric model assumption for the error series.

The iterative-plug-in (IPI) algorithm, which numerically minimizes the Asymptotic Mean Squared
Error (AMISE), was proposed by Feng, Gries and Fritz (2020).

Define I[m(k)] =
∫ db

cb
[m(k)(x)]2dx, β(ν,k) =

∫ 1

−1
ukK(ν,k)(u)du and R(K) =

∫ 1

−1
K2

(ν,k)(u)du,
where p is the order of the polynomial, k = p + 1 is the order of the asymptotically equivalent
kernel, ν is the order of the trend function’s derivative, 0 ≤ cb < db ≤ 1, cf is the variance factor
and K(ν,k)(u) the k-th order equivalent kernel obtained for the estimation of m(ν) in the interior.
m(ν) is the ν-th order derivative (ν = 0, 1, 2, ...) of the nonparametric trend.

Furthermore, we define

C1 =
I[m(k)]β2

(ν,k)

(k!)2

and

C2 =
2πcf (db − cb)R(K)

nh2ν+1

with h being the bandwidth and n being the number of observations. The AMISE is then

AMISE(h) = h2(k−ν)C1 + C2.

The variance factor cf is first obtained from a pilot-estimation of the time series’ nonparametric
trend (ν = 0) with polynomial order pp. The estimate is then plugged into the iterative procedure
for estimating the first or second derivative (ν = 1 or ν = 2). For further details on the asymptotic
theory or the algorithm, we refer the user to Feng, Fritz and Gries (2020) and Feng et al. (2019).

The function itself is applicable in the following way: Based on a data input y, an order of poly-
nomial pp for the variance factor estimation procedure, a starting value for the relative bandwidth
bStart.p in the variance factor estimation procedure, a kernel function defined by the smoothness
parameter mu and a starting value for the relative bandwidth bStart in the bandwidth estimation
procedure, an optimal bandwidth is numerically calculated for the trend’s derivative of order d. In
fact, aside from the input vector y, every argument has a default setting that can be adjusted for the
individual case. However, it is recommended to initially use the default values for the estimation
of the first derivative and adjust the argument d to d = 2 for the estimation of the second derivative.
Following Feng, Gries and Fritz (2020), the initial bandwidth does not affect the resulting optimal
bandwidth in theory. However in practice, local minima of the AMISE can influence the results.
Therefore, the default starting bandwidth is set to 0.15, the suggested starting bandwidth by Feng,
Gries and Fritz (2020) for the data-driven estimation of the first derivative. The recommended ini-
tial bandwidth for the second derivative, however, is 0.2 and not 0.15. Thus, if the algorithm does
not give suitable results (especially for d = 2), the adjustment of the initial bandwidth might be a
good starting point. Analogously, the default starting bandwidth for the trend estimation for the
variance factor is bStart.p = 0.15, although according to Feng, Gries and Fritz (2020), bStart.p
= 0.1 is suggested for pp = 1 and bStart.p = 0.2 for pp = 3. The default is therefore a compromise
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between the two suggested values. For more specific information on the input arguments consult
the section Arguments.

After the bandwidth estimation, the nonparametric derivative of the series is calculated with respect
to the obtained optimal bandwidth by means of a local polynomial regression. The output object
is then a list that contains, among other components, the original time series, the estimates of the
derivative and the estimated optimal bandwidth.

The default print method for this function delivers key numbers such as the iteration steps and the
generated optimal bandwidth rounded to the fourth decimal. The exact numbers and results such
as the estimated nonparametric trend series are saved within the output object and can be addressed
via the $ sign.

NOTE:

The estimates are obtained for the rescaled time points on the interval [0, 1]. Therefore, the esti-
mated derivatives might not reflect the derivatives for the actual time points. To rescale them, we
refer the user to the rescale function of the smoots package.

With package version 1.1.0, this function implements C++ code by means of the Rcpp and RcppArmadillo
packages for better performance.

Value

The function returns a list with different components:

b0 the optimal bandwidth chosen by the IPI-algorithm.

bStart the starting bandwidth for the local polynomial regression based derivative estimation pro-
cedure; input argument.

bStart.p the starting bandwidth for the nonparametric trend estimation that leads to the variance
factor estimate; input argument.

bvc indicates whether an enlarged bandwidth was used for the variance factor estimation or not; it
is always set to "Y" (yes) for this function.

cf0 the estimated variance factor; in contrast to the definitions given in the Details section, this
object actually contains an estimated value of 2πcf , i.e. it corresponds to the estimated sum
of autocovariances.

InfR the inflation rate setting.

iterations the bandwidths of the single iterations steps

Mcf the estimation method for the variance factor estimation; it is always estimated nonparametri-
cally ("NP") within this function.

mu the smoothness parameter of the second order kernel; input argument.

n the number of observations.

niterations the total number of iterations until convergence.

orig the original input series; input argument.

p the order of polynomial for the local polynomial regression used within derivative estimation
procedure.

pp the order of polynomial for the local polynomial regression used in the variance factor estima-
tion; input argument.
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v the considered order of the trend’s derivative; input argument d.

ws the weighting system matrix used within the local polynomial regression; this matrix is a con-
densed version of a complete weighting system matrix; in each row of ws, the weights for
conducting the smoothing procedure at a specific observation time point can be found; the
first [nb + 0.5] rows, where n corresponds to the number of observations, b is the bandwidth
considered for smoothing and [.] denotes the integer part, contain the weights at the [nb+0.5]
left-hand boundary points; the weights in row [nb + 0.5] + 1 are representative for the es-
timation at all interior points and the remaining rows contain the weights for the right-hand
boundary points; each row has exactly 2[nb+0.5]+1 elements, more specifically the weights
for observations of the nearest 2[nb + 0.5] + 1 time points; moreover, the weights are nor-
malized, i.e. the weights are obtained under consideration of the time points xt = t/n, where
t = 1, 2, ..., n.

ye the nonparametric estimates of the derivative for the rescaled time points on the interval [0, 1].

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

References

Feng, Y., Gries, T. and Fritz, M. (2020). Data-driven local polynomial for the trend and its deriva-
tives in economic time series. Journal of Nonparametric Statistics, 32:2, 510-533.

Feng, Y., Gries, T., Letmathe, S. and Schulz, D. (2019). The smoots package in R for semiparamet-
ric modeling of trend stationary time series. Discussion Paper. Paderborn University. Unpublished.

Examples

# Logarithm of test data
test_data <- gdpUS
y <- log(test_data$GDP)
t <- seq(from = 1947, to = 2019.25, by = 0.25)

# Applied dsmooth function for the trend's first derivative
result_d <- dsmooth(y, d = 1, mu = 1, pp = 1, bStart.p = 0.1, bStart = 0.15)
estim <- result_d$ye

# Plot of the results
plot(t, estim, xlab = "Year", ylab = "First derivative", type = "l",
main = paste0("Estimated first derivative of the trend for log-quarterly ",
"US-GDP, Q1 1947 - Q2 2019"), cex.axis = 0.8, cex.main = 0.8,
cex.lab = 0.8, bty = "n")

# Print result
result_d

https://wiwi.uni-paderborn.de/en/dep4/feng/
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fitted.smoots Extract Model Fitted Values

Description

Generic function which extracts fitted values from a smoots class object. Both fitted and fitted.values
can be called.

Usage

## S3 method for class 'smoots'
fitted(object, ...)

Arguments

object an object from the smoots class.

... included for consistency with the generic function.

Value

Fitted values extracted from a smoots class object.

Author(s)

• Sebastian Letmathe (Scientific Employee) (Department of Economics, Paderborn University),

gdpUS Quarterly US GDP, Q1 1947 to Q2 2019

Description

A dataset that contains the (seasonally adjusted) Gross Domestic Product of the US from the first
quarter of 1947 to the second quarter of 2019

Usage

gdpUS

Format

A data frame with 290 rows and 3 variables:

Year the observation year

Quarter the observation quarter in the given year

GDP the Gross Domestic Product of the US in billions of chained 2012 US Dollars (annual rate)
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Source

The data was obtained from the Federal Reserve Bank of St. Louis (accessed: 2019-09-01).

https://fred.stlouisfed.org/series/GDPC1

gsmooth Estimation of Trends and their Derivatives via Local Polynomial Re-
gression

Description

This function is an R function for estimating the trend function and its derivatives in an equidistant
time series with local polynomial regression and a fixed bandwidth given beforehand.

Usage

gsmooth(y, v = 0, p = v + 1, mu = 1, b = 0.15, bb = c(0, 1))

Arguments

y a numeric vector that contains the time series data ordered from past to present.

v an integer 0, 1, ... that represents the order of derivative that will be estimated;
is set to v = 0 by default.

Number (v) Degree of derivative
0 The function f(x) itself
1 The first derivative f ’(x)
2 The second derivative f”(x)
... ...

p an integer >= ( v +1) that represents the order of polynomial; p - v must be an
odd number; is set to v + 1 by default.
Exemplary for v = 0:

Number (p) Polynomial p - v p - v odd? p usable?
1 Linear 1 Yes Yes
2 Quadratic 2 No No
3 Cubic 3 Yes Yes

... ... ... ... ...

mu an integer 0, 1, 2, ... that represents the smoothness parameter of the kernel
weighting function that will be used; is set to 1 by default.

Number (mu) Kernel
0 Uniform Kernel
1 Epanechnikov Kernel

https://fred.stlouisfed.org/series/GDPC1
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2 Bisquare Kernel
3 Triweight Kernel
... ...

b a real number 0 < b < 0.5; represents the relative bandwidth that will be used
for the smoothing process; is set to 0.15 by default.

bb can be set to 0 or 1; the parameter controlling the bandwidth used at the bound-
ary; is set to 1 by default.

Number (bb) Estimation procedure at boundary points
0 Fixed bandwidth on one side with possible large bandwidth on the other side at the boundary
1 The k-nearest neighbor method will be used

Details

The trend or its derivatives are estimated based on the additive nonparametric regression model for
an equidistant time series

yt = m(xt) + ϵt,

where yt is the observed time series, xt is the rescaled time on the interval [0, 1], m(xt) is a smooth
and deterministic trend function and ϵt are stationary errors with E(ϵt) = 0 (see also Beran and
Feng, 2002).

This function is part of the package smoots and is used in the field of analyzing equidistant time
series data. It applies the local polynomial regression method to the input data with an arbitrarily
selectable bandwidth. By these means, the trend as well as its derivatives can be estimated non-
parametrically, even though the result will strongly depend on the bandwidth given beforehand as
an input.

NOTE:

The estimates are obtained with regard to the rescaled time points on the interval [0, 1]. Thus, if
ν > 0, the estimates might not reflect the values for the actual time points. To rescale the estimates,
we refer the user to the rescale function of the smoots package.

With package version 1.1.0, this function implements C++ code by means of the Rcpp and RcppArmadillo
packages for better performance.

Value

The output object is a list with different components:

b the chosen (relative) bandwidth; input argument.

bb the chosen bandwidth option at the boundaries; input argument.

mu the chosen smoothness parameter for the second order kernel; input argument.

n the number of observations.

orig the original input series; input argument.

p the chosen order of polynomial; input argument.

res a vector with the estimated residual series; is set to NULL for v > 0.

v the order of derivative; input argument.
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ws the weighting system matrix used within the local polynomial regression; this matrix is a con-
densed version of a complete weighting system matrix; in each row of ws, the weights for
conducting the smoothing procedure at a specific observation time point can be found; the
first [nb + 0.5] rows, where n corresponds to the number of observations, b is the bandwidth
considered for smoothing and [.] denotes the integer part, contain the weights at the [nb+0.5]
left-hand boundary points; the weights in row [nb + 0.5] + 1 are representative for the es-
timation at all interior points and the remaining rows contain the weights for the right-hand
boundary points; each row has exactly 2[nb+0.5]+1 elements, more specifically the weights
for observations of the nearest 2[nb + 0.5] + 1 time points; moreover, the weights are nor-
malized, i.e. the weights are obtained under consideration of the time points xt = t/n, where
t = 1, 2, ..., n.

ye a vector with the estimates of the selected nonparametric order of derivative on the rescaled time
interval [0, 1].

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

References

Beran, J. and Feng, Y. (2002). Local polynomial fitting with long-memory, short-memory and
antipersistent errors. Annals of the Institute of Statistical Mathematics, 54(2), 291-311.

Feng, Y., Gries, T. and Fritz, M. (2020). Data-driven local polynomial for the trend and its deriva-
tives in economic time series. Journal of Nonparametric Statistics, 32:2, 510-533.

Feng, Y., Gries, T., Letmathe, S. and Schulz, D. (2019). The smoots package in R for semiparamet-
ric modeling of trend stationary time series. Discussion Paper. Paderborn University. Unpublished.

Examples

# Logarithm of test data
test_data <- gdpUS
y <- log(test_data$GDP)

# Applied gsmooth function for the trend with two different bandwidths
results1 <- gsmooth(y, v = 0, p = 1, mu = 1, b = 0.28, bb = 1)
results2 <- gsmooth(y, v = 0, p = 1, mu = 1, b = 0.11, bb = 1)
trend1 <- results1$ye
trend2 <- results2$ye

# Plot of the results
t <- seq(from = 1947, to = 2019.25, by = 0.25)
plot(t, y, type = "l", xlab = "Year", ylab = "log(US-GDP)", bty = "n",
lwd = 2,
main = "Estimated trend for log-quarterly US-GDP, Q1 1947 - Q2 2019")

points(t, trend1, type = "l", col = "red", lwd = 1)

https://wiwi.uni-paderborn.de/en/dep4/feng/
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points(t, trend2, type = "l", col = "blue", lwd = 1)
legend("bottomright", legend = c("Trend (b = 0.28)", "Trend (b = 0.11)"),
fill = c("red", "blue"), cex = 0.6)

title(sub = expression(italic("Figure 1")), col.sub = "gray47",
cex.sub = 0.6, adj = 0)

knsmooth Estimation of Nonparametric Trend Functions via Kernel Regression

Description

This function estimates the nonparametric trend function in an equidistant time series with Nadaraya-
Watson kernel regression.

Usage

knsmooth(y, mu = 1, b = 0.15, bb = c(0, 1))

Arguments

y a numeric vector that contains the time series data ordered from past to present.

mu an integer 0, 1, 2, ... that represents the smoothness parameter of the second
order kernel function that will be used; is set to 1 by default.

Number (mu) Kernel
0 Uniform Kernel
1 Epanechnikov Kernel
2 Bisquare Kernel
3 Triweight Kernel
... ...

b a real number 0 < b < 0.5; represents the relative bandwidth that will be used
for the smoothing process; is set to 0.15 by default.

bb can be set to 0 or 1; the parameter controlling the bandwidth used at the bound-
ary; is set to 0 by default.

Number (bb) Estimation procedure at boundary points
0 Fixed bandwidth on one side with possible large bandwidth on the other side at the boundary
1 The k-nearest neighbor method will be used
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Details

The trend is estimated based on the additive nonparametric regression model for an equidistant time
series

yt = m(xt) + ϵt,

where yt is the observed time series, xt is the rescaled time on the interval [0, 1], m(xt) is a smooth
and deterministic trend function and ϵt are stationary errors with E(ϵt) = 0.

This function is part of the package smoots and is used for the estimation of trends in equidistant
time series. The applied method is a kernel regression with arbitrarily selectable second order
kernel, relative bandwidth and boundary method. Especially the chosen bandwidth has a strong
impact on the final result and has thus to be selected carefully. This approach is not recommended
by the authors of this package.

Value

The output object is a list with different components:

b the chosen (relative) bandwidth; input argument.

bb the chosen bandwidth option at the boundaries; input argument.

mu the chosen smoothness parameter for the second order kernel; input argument.

n the number of observations.

orig the original input series; input argument.

res a vector with the estimated residual series.

ye a vector with the estimates of the nonparametric trend.

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

References

Feng, Y. (2009). Kernel and Locally Weighted Regression. Verlag für Wissenschaft und Forschung,
Berlin.

Examples

# Logarithm of test data
test_data <- gdpUS
y <- log(test_data$GDP)

#Applied knmooth function for the trend with two different bandwidths
trend1 <- knsmooth(y, mu = 1, b = 0.28, bb = 1)$ye
trend2 <- knsmooth(y, mu = 1, b = 0.05, bb = 1)$ye

https://wiwi.uni-paderborn.de/en/dep4/feng/
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# Plot of the results
t <- seq(from = 1947, to = 2019.25, by = 0.25)
plot(t, y, type = "l", xlab = "Year", ylab = "log(US-GDP)", bty = "n",
lwd = 2,
main = "Estimated trend for log-quarterly US-GDP, Q1 1947 - Q2 2019")

points(t, trend1, type = "l", col = "red", lwd = 1)
points(t, trend2, type = "l", col = "blue", lwd = 1)
legend("bottomright", legend = c("Trend (b = 0.28)", "Trend (b = 0.05)"),
fill = c("red", "blue"), cex = 0.6)

title(sub = expression(italic("Figure 1")), col.sub = "gray47",
cex.sub = 0.6, adj = 0)

modelCast Forecasting Function for Trend-Stationary Time Series

Description

Point forecasts and the respective forecasting intervals for trend-stationary time series are calcu-
lated.

Usage

modelCast(
obj,
p = NULL,
q = NULL,
h = 1,
method = c("norm", "boot"),
alpha = 0.95,
it = 10000,
n.start = 1000,
pb = TRUE,
cores = future::availableCores(),
np.fcast = c("lin", "const"),
export.error = FALSE,
plot = FALSE,
...

)

Arguments

obj an object of class smoots; must be the output of a trend estimation process and
not of a first or second derivative estimation process.

p an integer value >= 0 that defines the AR order p of the underlying ARMA(p, q)
model within the rest term (see the section Details for more information); is set
to NULL by default; if no value is passed to p but one is passed to q, p is set to
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0; if both p and q are NULL, optimal orders following the BIC for 0 ≤ p, q ≤ 5
are chosen; is set to NULL by default; decimal numbers will be rounded off to
integers.

q an integer value ≥ 0 that defines the MA order q of the underlying ARMA(p, q)
model within X; is set to NULL by default; if no value is passed to q but one is
passed to p, q is set to 0; if both p and q are NULL, optimal orders following the
BIC for 0 ≤ p, q ≤ 5 are chosen; is set to NULL by default; decimal numbers
will be rounded off to integers.

h an integer that represents the forecasting horizon; if n is the number of ob-
servations, point forecasts and forecasting intervals will be obtained for the time
points n+1 to n+h; is set to h = 1 by default; decimal numbers will be rounded
off to integers.

method a character object; defines the method used for the calculation of the forecast-
ing intervals; with "norm" the intervals are obtained under the assumption of
normally distributed innovations; with "boot" the intervals are obtained via a
bootstrap; is set to "norm" by default.

alpha a numeric vector of length 1 with 0 < alpha < 1; the forecasting intervals will
be obtained based on the confidence level (100alpha)-percent; is set to alpha =
0.95 by default, i.e., a 95-percent confidence level.

it an integer that represents the total number of iterations, i.e., the number of sim-
ulated series; is set to 10000 by default; only necessary, if method = "boot";
decimal numbers will be rounded off to integers.

n.start an integer that defines the ’burn-in’ number of observations for the simulated
ARMA series via bootstrap; is set to 1000 by default; only necessary, if method
= "boot";decimal numbers will be rounded off to integers.

pb a logical value; for pb = TRUE, a progress bar will be shown in the console, if
method = "boot".

cores an integer value >0 that states the number of (logical) cores to use in the boot-
strap (or NULL); the default is the maximum number of available cores (via
future::availableCores); for cores = NULL, parallel computation is disabled.

np.fcast a character object; defines the forecasting method used for the nonparametric
trend; for np.fcast = "lin" the trend is is extrapolated linearly based on the
last two trend estimates; for np.fcast = "const", the last trend estimate is used
as a constant estimate for future values; is set to "lin" by default.

export.error a single logical value; if the argument is set to TRUE and if also method = "boot",
a list is returned instead of a matrix (FALSE); the first element of the list is the
usual forecasting matrix whereas the second element is a matrix with h columns,
where each column represents the calculated forecasting errors for the respective
future time point n+ 1, n+ 2, ..., n+ h; is set to FALSE by default.

plot a logical value that controls the graphical output; for plot = TRUE, the original
series with the obtained point forecasts as well as the forecasting intervals will
be plotted; for the default plot = FALSE, no plot will be created.

... additional arguments for the standard plot function, e.g., xlim, type, ... ; ar-
guments with respect to plotted graphs, e.g., the argument col, only affect the
original series X; please note that in accordance with the argument x (lower case)
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of the standard plot function, an additional numeric vector with time points can
be implemented via the argument x (lower case). x should be valid for the sam-
ple observations only, i.e. length(x) == length(obj$orig) should be TRUE,
as future time points will be calculated automatically.

Details

This function is part of the smoots package and was implemented under version 1.1.0. The point
forecasts and forecasting intervals are obtained based on the additive nonparametric regression
model

yt = m(xt) + ϵt,

where yt is the observed time series with equidistant design, xt is the rescaled time on the interval
[0, 1], m(xt) is a smooth trend function and ϵt are stationary errors with E(ϵt) = 0 and short-range
dependence (see also Beran and Feng, 2002). Thus, we assume yt to be a trend-stationary time
series. Furthermore, we assume that the rest term ϵt follows an ARMA(p, q) model

ϵt = ζt + β1ϵt−1 + ...+ βpϵt−p + α1ζt−1 + ...+ αqζt−q,

where αj , j = 1, 2, ..., q, and βi, i = 1, 2, ..., p, are real numbers and the random variables ζt are
i.i.d. (identically and independently distributed) with zero mean and constant variance.

The point forecasts and forecasting intervals for the future periods n + 1, n + 2, ..., n + h will be
obtained. With respect to the point forecasts of ϵt, i.e., ϵ̂n+k, where k = 1, 2, ..., h,

ϵ̂n+k =

p∑
i=1

β̂iϵn+k−i +

q∑
j=1

α̂j ζ̂n+k−j

with ϵn+k−i = ϵ̂n+k−i for n + k − i > n and ζ̂n+k−j = E(ζt) = 0 for n + k − j > n will be
applied. In practice, this procedure will not be applied directly to ϵt but to yt − m̂(xt).

The point forecasts of the nonparametric trend are simply obtained following the proposal by Fritz
et al. (forthcoming) by

m̂(xn+k) = m̂(xn) +Dk(m̂(xn)− m̂(xn−1)),

where D is a dummy variable that is either equal to the constant value 1 or 0. Consequently, if
D = 0, m̂(xn), i.e., the last trend estimate, is used as a constant estimate for the future. However,
if D = 1, the trend is extrapolated linearly. The point forecast for the whole component model is
then given by

ŷn+k = m̂(xn+k) + ϵ̂n+k,

i.e., it is equal to the sum of the point forecasts of the individual components.

Equivalently to the point forecasts, the forecasting intervals are the sum of the forecasting intervals
of the individual components. To simplify the process, the forecasting error in m̂(xn+k), which
is of order O(−2/5), is not considered (see Fritz et al. (forthcoming)), i.e., only the forecasting
intervals with respect to the rest term ϵt will be calculated.

If the distribution of the innovations is non-normal or generally not further specified, bootstrapping
the forecasting intervals is recommended. If they are however normally distributed or if it is at least
assumed that they are, the forecasting errors are also approximately normally distributed with a
quickly obtainable variance. For further details on the bootstrapping method, we refer the readers to
bootCast, whereas more information on the calculation under normality can be found at normCast.
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In order to apply the function, a smoots object that was generated as the result of a trend estimation
process needs to be passed to the argument obj. The arguments p and q represent the orders of the of
the ARMA(p, q) model that the error term ϵt is assumed to follow. If both arguments are set to NULL,
which is the default setting, orders will be selected according to the Bayesian Information Criterion
(BIC) for all possible combinations of p, q = 0, 1, ..., 5. Furthermore, the forecasting horizon can
be adjusted by means of the argument h, so that point forecasts and forecasting intervals will be
obtained for all time points n+ 1, n+ 2, ..., n+ h.

The function also allows for two calculation approaches for the forecasting intervals. Via the ar-
gument method, intervals can be obtained under the assumption that the ARMA innovations are
normally distributed (method = "norm"). Alternatively, bootstrapped intervals can be obtained for
unknown innovation distributions that are clearly non-Gaussian (method = "boot").

Another argument is alpha. By passing a value to this argument, the (100alpha)-percent confidence
level for the forecasting intervals can be defined. If method = "boot" is selected, the additional ar-
guments it and n.start can be adjusted. More specifically, it regulates the number of iterations of
the bootstrap, whereas n.start sets the number of ’burn-in’ observations in the simulated ARMA
processes within the bootstrap that are omitted.

Since this bootstrap approach for method = "boot" generally needs a lot of computation time, espe-
cially for series with high numbers of observations and when fitting models with many parameters,
parallel computation of the bootstrap iterations is enabled. With cores, the number of cores can
be defined with an integer. Nonetheless, for cores = NULL, no cluster is created and therefore the
parallel computation is disabled. Note that the bootstrapped results are fully reproducible for all
cluster sizes. The progress of the bootstrap can be observed in the R console, where a progress bar
and the estimated remaining time are displayed for pb = TRUE.

Moreover, the argument np.fcast allows to set the forecasting method for the nonparametric trend
function. As previously discussed, the two options are a linear extrapolation of the trend (np.fcast
= "lin") and a constant continuation of the last estimated value of the trend (np.fcast = "const").

The function also implements the option to automatically create a plot of the forecasting results for
plot = TRUE. This includes the feature to pass additional arguments of the standard plot function to
modelCast (see also the section ’Examples’).

NOTE:

Within this function, the arima function of the stats package with its method "CSS-ML" is used
throughout for the estimation of ARMA models. Furthermore, to increase the performance, C++
code via the Rcpp and RcppArmadillo packages was implemented. Also, the future and future.apply
packages are considered for parallel computation of bootstrap iterations. The progress of the boot-
strap is shown via the progressr package.

Value

The function returns a 3 by h matrix with its columns representing the future time points and the
point forecasts, the lower bounds of the forecasting intervals and the upper bounds of the forecasting
intervals as the rows. If the argument plot is set to TRUE, a plot of the forecasting results is created.

#’If export.error = TRUE is selected, a list with the following elements is returned instead.

fcast the 3 by h forecasting matrix with point forecasts and bounds of the forecasting intervals.

error an it by h matrix, where each column represents a future time point n+1, n+2, ..., n+ h;
in each column the respective it simulated forecasting errors are saved.
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Examples

X <- log(smoots::gdpUS$GDP)
NPest <- smoots::msmooth(X)
modelCast(NPest, h = 5, plot = TRUE, xlim = c(261, 295), type = "b",
col = "deepskyblue4", lty = 3, pch = 20, main = "Exemplary title")

msmooth Data-driven Nonparametric Regression for the Trend in Equidistant
Time Series

Description

This function runs an iterative plug-in algorithm to find the optimal bandwidth for the estimation of
the nonparametric trend in equidistant time series (with short memory errors) and then employs the
resulting bandwidth via either local polynomial or kernel regression.

Usage

msmooth(
y,
p = c(1, 3),
mu = c(0, 1, 2, 3),

https://wiwi.uni-paderborn.de/en/dep4/feng/
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bStart = 0.15,
alg = c("A", "B", "N", "NA", "NAM", "NM", "O", "OA", "OAM", "OM"),
method = c("lpr", "kr")

)

Arguments

y a numeric vector that contains the input time series ordered from past to present.

p an integer 1 (local linear regression) or 3 (local cubic regression); represents
the order of polynomial within the local polynomial regression (see also the
’Details’ section); is set to 1 by default; is automatically set to 1 if method =
"kr".

mu an integer 0, ..., 3 that represents the smoothness parameter of the kernel weight-
ing function and thus defines the kernel function that will be used within the
local polynomial regression; is set to 1 by default.

Number Kernel
0 Uniform Kernel
1 Epanechnikov Kernel
2 Bisquare Kernel
3 Triweight Kernel

bStart a numeric object that indicates the starting value of the bandwidth for the itera-
tive process; should be > 0; is set to 0.15 by default.

alg a control parameter (as character) that indicates the corresponding algorithm
used (set to "A" by default for p = 1 and to "B" for p = 3).

Algorithm Description
"A" Nonparametric estimation of the variance factor with an enlarged bandwidth, optimal inflation rate
"B" Nonparametric estimation of the variance factor with an enlarged bandwidth, naive inflation rate
"O" Nonparametric estimation of the variance factor, optimal inflation rate
"N" Nonparametric estimation of the variance factor, naive inflation rate
"OAM" Estimation of the variance factor with ARMA(p, q)-models, optimal inflation rate
"NAM" Estimation of the variance factor with ARMA(p, q)-models, naive inflation rate
"OA" Estimation of the variance factor with AR(p)-models, optimal inflation rate
"NA" Estimation of the variance factor with AR(p)-models, naive inflation rate
"OM" Estimation of the variance factor with MA(q)-models, optimal inflation rate
"NM" Estimation of the variance factor with MA(q)-models, naive inflation rate

It is proposed to use alg = "A" in combination with p = 1. If the user finds that
the chosen bandwidth by algorithm "A" is too small, alg = "B" with preferably
p = 3 is suggested. For more information on the components of the different
algorithms, please consult tsmooth.

method the smoothing approach; "lpr" represents the local polynomial regression, whereas
"kr" implements a kernel regression; is set to "lpr" by default.
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Details

The trend is estimated based on the additive nonparametric regression model for an equidistant time
series

yt = m(xt) + ϵt,

where yt is the observed time series, xt is the rescaled time on the interval [0, 1], m(xt) is a smooth
and deterministic trend function and ϵt are stationary errors with E(ϵt) = 0 and short-range de-
pendence (see also Beran and Feng, 2002). With this function m(xt) can be estimated without a
parametric model assumption for the error series. Thus, after estimating and removing the trend,
any suitable parametric model, e.g. an ARMA(p, q) model, can be fitted to the residuals (see arima).

The iterative-plug-in (IPI) algorithm, which numerically minimizes the Asymptotic Mean Squared
Error (AMISE), was proposed by Feng, Gries and Fritz (2020).

Define I[m(k)] =
∫ db

cb
[m(k)(x)]2dx, β(ν,k) =

∫ 1

−1
ukK(ν,k)(u)du and R(K) =

∫ 1

−1
K2

(ν,k)(u)du,
where p is the order of the polynomial, k = p + 1 is the order of the asymptotically equivalent
kernel, ν is the order of the trend function’s derivative, 0 ≤ cb < db ≤ 1, cf is the variance factor
and K(ν,k)(u) the k-th order equivalent kernel obtained for the estimation of m(ν) in the interior.
m(ν) is the ν-th order derivative (ν = 0, 1, 2, ...) of the nonparametric trend.

Furthermore, we define

C1 =
I[m(k)]β2

(ν,k)

(k!)2

and

C2 =
2πcf (db − cb)R(K)

nh2ν+1

with h being the bandwidth and n being the number of observations. The AMISE is then

AMISE(h) = h2(k−ν)C1 + C2.

The function calculates suitable estimates for cf , the variance factor, and I[m(k)] over different
iterations. In each iteration, a bandwidth is obtained in accordance with the AMISE that once
more serves as an input for the following iteration. The process repeats until either convergence or
the 40th iteration is reached. For further details on the asymptotic theory or the algorithm, please
consult Feng, Gries and Fritz (2020) or Feng et al. (2019).

To apply the function, only few arguments are needed: a data input y, an order of polynomial p, a
kernel function defined by the smoothness parameter mu, a starting value for the relative bandwidth
bStart and a final smoothing method method. In fact, aside from the input vector y, every argument
has a default setting that can be adjusted for the individual case. It is recommended to initially use
the default values for p, alg and bStart and adjust them in the rare case of the resulting optimal
bandwidth being either too small or too large. Theoretically, the initial bandwidth does not affect
the selected optimal bandwidth. However, in practice local minima of the AMISE might exist and
influence the selected bandwidth. Therefore, the default setting is bStart = 0.15, which is a com-
promise between the starting values bStart = 0.1 for p = 1 and bStart = 0.2 for p = 3 that were
proposed by Feng, Gries and Fritz (2020). In the rare case of a clearly unsuitable optimal band-
width, a starting bandwidth that differs from the default value is a first possible approach to obtain
a better result. Other argument adjustments can be tried as well. For more specific information on
the input arguments consult the section Arguments.

When applying the function, an optimal bandwidth is obtained based on the IPI algorithm proposed
by Feng, Gries and Fritz (2020). In a second step, the nonparametric trend of the series is calculated
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with respect to the chosen bandwidth and the selected regression method (lpf or kr). It is notable
that p is automatically set to 1 for method = "kr". The output object is then a list that contains,
among other components, the original time series, the estimated trend values and the series without
the trend.

The default print method for this function delivers key numbers such as the iteration steps and the
generated optimal bandwidth rounded to the fourth decimal. The exact numbers and results such
as the estimated nonparametric trend series are saved within the output object and can be addressed
via the $ sign.

NOTE:

With package version 1.1.0, this function implements C++ code by means of the Rcpp and RcppArmadillo
packages for better performance.

Value

The function returns a list with different components:

AR.BIC the Bayesian Information Criterion of the optimal AR(p) model when estimating the
variance factor via autoregressive models (if calculated; calculated for alg = "OA" and alg
= "NA").

ARMA.BIC the Bayesian Information Criterion of the optimal ARMA(p, q) model when estimat-
ing the variance factor via autoregressive-moving-average models (if calculated; calculated
for alg = "OAM" and alg = "NAM").

cb the percentage of omitted observations on each side of the observation period; always equal to
0.05.

b0 the optimal bandwidth chosen by the IPI-algorithm.

bb the boundary bandwidth method used within the IPI; always equal to 1.

bStart the starting value of the (relative) bandwidth; input argument.

bvc indicates whether an enlarged bandwidth was used for the variance factor estimation or not;
depends on the chosen algorithm.

cf0 the estimated variance factor; in contrast to the definitions given in the Details section, this
object actually contains an estimated value of 2πcf , i.e. it corresponds to the estimated sum
of autocovariances.

cf0.AR the estimated variance factor obtained by estimation of autoregressive models (if calcu-
lated; alg = "OA" or "NA").

cf0.ARMA the estimated variance factor obtained by estimation of autoregressive-moving-average
models (if calculated; calculated for alg = "OAM" and alg = "NAM").

cf0.LW the estimated variance factor obtained by Lag-Window Spectral Density Estimation fol-
lowing Bühlmann (1996) (if calculated; calculated for algorithms "A", "B", "O" and "N").

cf0.MA the estimated variance factor obtained by estimation of moving-average models (if calcu-
lated; calculated for alg = "OM" and alg = "NM").

I2 the estimated value of I[m(k)].

InfR the setting for the inflation rate according to the chosen algorithm.

iterations the bandwidths of the single iterations steps
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L0.opt the optimal bandwidth for the lag-window spectral density estimation (if calculated; calcu-
lated for algorithms "A", "B", "O" and "N").

MA.BIC the Bayesian Information Criterion of the optimal MA(q) model when estimating the
variance factor via moving-average models (if calculated; calculated for alg = "OM" and alg
= "NM").

Mcf the estimation method for the variance factor estimation; depends on the chosen algorithm.

mu the smoothness parameter of the second order kernel; input argument.

n the number of observations.

niterations the total number of iterations until convergence.

orig the original input series; input argument.

p.BIC the order p of the optimal AR(p) or ARMA(p, q) model when estimating the variance factor
via autoregressive or autoregressive-moving average models (if calculated; calculated for alg
= "OA", alg = "NA", alg = "OAM" and alg = "NAM").

p the order of polynomial used in the IPI-algorithm; also used for the final smoothing, if method =
"lpr"; input argument.

q.BIC the order q of the optimal MA(q) or ARMA(p, q) model when estimating the variance factor
via moving-average or autoregressive-moving average models (if calculated; calculated for
alg = "OM", alg = "NM", alg = "OAM" and alg = "NAM").

res the estimated residual series.

v the considered order of derivative of the trend; is always zero for this function.

ws the weighting system matrix used within the local polynomial regression; this matrix is a con-
densed version of a complete weighting system matrix; in each row of ws, the weights for
conducting the smoothing procedure at a specific observation time point can be found; the
first [nb + 0.5] rows, where n corresponds to the number of observations, b is the bandwidth
considered for smoothing and [.] denotes the integer part, contain the weights at the [nb+0.5]
left-hand boundary points; the weights in row [nb + 0.5] + 1 are representative for the es-
timation at all interior points and the remaining rows contain the weights for the right-hand
boundary points; each row has exactly 2[nb+0.5]+1 elements, more specifically the weights
for observations of the nearest 2[nb + 0.5] + 1 time points; moreover, the weights are nor-
malized, i.e. the weights are obtained under consideration of the time points xt = t/n, where
t = 1, 2, ..., n.

ye the nonparametric estimates of the trend.

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer
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Examples

### Example 1: US-GDP ###

# Logarithm of test data
# -> the logarithm of the data is assumed to follow the additive model
test_data <- gdpUS
y <- log(test_data$GDP)

# Applied msmooth function for the trend
results <- msmooth(y, p = 1, mu = 1, bStart = 0.1, alg = "A", method = "lpr")
res <- results$res
ye <- results$ye

# Plot of the results
t <- seq(from = 1947, to = 2019.25, by = 0.25)
matplot(t, cbind(y, ye), type = "ll", lty = c(3, 1), col = c(1, "red"),
xlab = "Years", ylab = "Log-Quartlery US-GDP",
main = "Log-Quarterly US-GDP vs. Trend, Q1 1947 - Q2 2019")

legend("bottomright", legend = c("Original series", "Estimated trend"),
fill = c(1, "red"), cex = 0.7)

results

## Not run:
### Example 2: German Stock Index ###

# The following procedure can be considered, if (log-)returns are assumed
# to follow a model from the general class of semiparametric GARCH-type
# models (including Semi-GARCH, Semi-Log-GARCH and Semi-APARCH models among
# others) with a slowly changing variance over time due to a deterministic,
# nonparametric scale function.

# Obtain the logarithm of the squared returns
returns <- diff(log(dax$Close)) # (log-)returns
rt <- returns - mean(returns) # demeaned (log-)returns
yt <- log(rt^2) # logarithm of the squared returns

# Apply 'smoots' function to the log-data, because the logarithm of
# the squared returns follows an additive model with a nonparametric trend
# function, if the returns are assumed to follow a semiparametric GARCH-type
# model.

# In this case, the setting 'alg = "A"' is used in combination with p = 3, as
# the resulting estimates appear to be more suitable than for 'alg = "B"'.
est <- msmooth(yt, p = 3, alg = "A")
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m_xt <- est$ye # estimated trend values

# Obtain the standardized returns 'eps' and the scale function 'scale.f'
res <- est$res # the detrended log-data
C <- -log(mean(exp(res))) # an estimate of a constant value needed

# for the retransformation
scale.f <- exp((m_xt - C) / 2) # estimated values of the scale function in

# the returns
eps <- rt / scale.f # the estimated standardized returns

# -> 'eps' can now be analyzed by any suitable GARCH-type model.
# The total volatilities are then the product of the conditional
# volatilities obtained from 'eps' and the scale function 'scale.f'.

## End(Not run)

normCast Forecasting Function for ARMA Models under Normally Distributed
Innovations

Description

Point forecasts and the respective forecasting intervals for autoregressive- moving-average (ARMA)
models can be calculated, the latter under the assumption of normally distributed innovations, by
means of this function.

Usage

normCast(
X,
p = NULL,
q = NULL,
include.mean = FALSE,
h = 1,
alpha = 0.95,
plot = FALSE,
...

)

Arguments

X a numeric vector that contains the time series that is assumed to follow an
ARMA model ordered from past to present.

p an integer value >= 0 that defines the AR order p of the underlying ARMA(p, q)
model within X; is set to NULL by default; if no value is passed to p but one is
passed to q, p is set to 0; if both p and q are NULL, optimal orders following the
BIC for 0 ≤ p, q ≤ 5 are chosen; is set to NULL by default; decimal numbers
will be rounded off to integers.
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q an integer value >= 0 that defines the MA order q of the underlying ARMA(p, q)
model within X; is set to NULL by default; if no value is passed to q but one is
passed to p, q is set to 0; if both p and q are NULL, optimal orders following the
BIC for 0 ≤ p, q ≤ 5 are chosen; is set to NULL by default; decimal numbers
will be rounded off to integers.

include.mean a logical value; if set to TRUE, the mean of the series is also estimated; if set to
FALSE, E(Xt) = 0 is assumed; is set to FALSE by default.

h an integer that represents the forecasting horizon; if n is the number of obser-
vations, point forecasts and forecasting intervals will be obtained for the time
points n + 1 to n + h; is set to 1 by default; decimal numbers will be rounded
off to integers.

alpha a numeric vector of length 1 with 0 < alpha < 1; the forecasting intervals will
be obtained based on the confidence level (100alpha)-percent; is set to alpha =
0.95 by default, i.e., a 95-percent confidence level.

plot a logical value that controls the graphical output; for plot = TRUE, the original
series with the obtained point forecasts as well as the forecasting intervals will
be plotted; for the default plot = FALSE, no plot will be created.

... additional arguments for the standard plot function, e.g., xlim, type, ... ; ar-
guments with respect to plotted graphs, e.g., the argument col, only affect the
original series X; please note that in accordance with the argument x (lower case)
of the standard plot function, an additional numeric vector with time points can
be implemented via the argument x (lower case). x should be valid for the sam-
ple observations only, i.e. length(x) == length(X) should be TRUE, as future
time points will be calculated automatically.

Details

This function is part of the smoots package and was implemented under version 1.1.0. For a given
time series X[t], t = 1, 2, ..., n, the point forecasts and the respective forecasting intervals will be
calculated. It is assumed that the series follows an ARMA(p, q) model

Xt − µ = ϵt + β1(Xt−1 − µ) + ...+ βp(Xt−p − µ) + α1ϵt−1 + ...+ αqϵt−q,

where αj and βi are real numbers (for i = 1, 2, .., p and j = 1, 2, ..., q) and ϵt are i.i.d. (identically
and independently distributed) random variables with zero mean and constant variance. µ is equal
to E(Xt).

The point forecasts and forecasting intervals for the future periods n + 1, n + 2, ..., n + h will be
obtained. With respect to the point forecasts X̂n+k, where k = 1, 2, ..., h,

X̂n+k = µ̂+

p∑
i=1

β̂i(Xn+k−i − µ̂) +

q∑
j=1

α̂j ϵ̂n+k−j

with Xn+k−i = X̂n+k−i for n + k − i > n and ϵ̂n+k−j = E(ϵt) = 0 for n + k − j > n will be
applied.

The forecasting intervals on the other hand are obtained under the assumption of normally dis-
tributed innovations. Let q(c) be the 100c-percent quantile of the standard normal distribution. The
100a-percent forecasting interval at a point n+ k, where k = 1, 2, ..., h, is given by

[X̂n+k − q(ar)sk, X̂n+k + q(ar)sk]
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with sk being the standard deviation of the forecasting error at the time point n + k and with
ar = 1 − (1 − a)/2. For ARMA models with normal innovations, the variance of the forecasting
error can be derived from the MA(∞) representation of the model. It is

σ2
ϵ

k−1∑
i=0

d2i ,

where di are the coefficients of the MA(∞) representation and σ2
ϵ is the innovation variance.

The function normCast allows for different adjustments to the forecasting progress. At first, a
vector with the values of the observed time series ordered from past to present has to be passed to
the argument X. Orders p and q of the underlying ARMA process can be defined via the arguments
p and q. If only one of these orders is inserted by the user, the other order is automatically set to
0. If none of these arguments are defined, the function will choose orders based on the Bayesian
Information Criterion (BIC) for 0 ≤ p, q ≤ 5. Via the logical argument include.mean the user can
decide, whether to consider the mean of the series within the estimation process. Furthermore, the
argument h allows for the definition of the maximum future time point n + h. Point forecasts and
forecasting intervals will be returned for the time points n+1 to n+h. Another argument is alpha,
which is the equivalent of the confidence level considered within the calculation of the forecasting
intervals, i.e., the quantiles (1− alpha)/2 and 1 − (1− alpha)/2 of the forecasting intervals will
be obtained.

For simplicity, the function also incorporates the possibility to directly create a plot of the output, if
the argument plot is set to TRUE. By the additional and optional arguments ..., further arguments
of the standard plot function can be implemented to shape the returned plot.

NOTE: Within this function, the arima function of the stats package with its method "CSS-ML" is
used throughout for the estimation of ARMA models.

Value

The function returns a 3 by h matrix with its columns representing the future time points and the
point forecasts, the lower bounds of the forecasting intervals and the upper bounds of the forecasting
intervals as the rows. If the argument plot is set to TRUE, a plot of the forecasting results is created.

Author(s)

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer
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Examples

### Example 1: Simulated ARMA process ###

# Simulation of the underlying process
n <- 2000
n.start = 1000
set.seed(21)
X <- arima.sim(model = list(ar = c(1.2, -0.7), ma = 0.63), n = n,
rand.gen = rnorm, n.start = n.start) + 7.7

# Application of normCast()
result <- normCast(X = X, p = 2, q = 1, include.mean = TRUE, h = 5,
plot = TRUE, xlim = c(1971, 2005), col = "deepskyblue4",
type = "b", lty = 3, pch = 16, main = "Exemplary title")

result

optOrd Optimal Order Selection

Description

From a matrix with values of an information criterion for different orders p and q of an autoregressive-
moving-average (ARMA) model, the optimal orders are selected.

Usage

optOrd(mat, restr = NULL, sFUN = min)

Arguments

mat a numeric matrix, whose rows represent the AR orders p = 0, 1, ..., pmax and
whose columns represent the MA orders q = 0, 1, qmax; the elements of the
matrix are then the values of an information criterion calculated for ARMA
models with the different order combinations; a matrix returned by the function
critMatrix of the smoots package shares these characteristics.

restr a single expression (not a character object) that defines further restrictions; the
standard logical operators, e.g. >=, & or ==, can be used; refer to the rows with
p and to the columns with q; is set to NULL by default, i.e. no restrictions are
imposed.

sFUN the selection function; is set to min, i.e. the minimal value that meets the restric-
tions restr is selected and the corresponding orders p and q are returned.

Details

Given a matrix mat filled with the values of an information criterion for different estimated ARMA(p, q)
models, where the rows represent different orders p = 0, 1, ..., pmax and where the columns rep-
resent the orders q = 0, 1, ..., qmax, the function returns a vector with the optimal orders p and q.
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Further selection restrictions can be passed to the argument restr as an expression. To implement
a restriction, the rows and columns are addressed via p and q, respectively. Moreover, standard
boolean operators such as ==, >= or & can be used. See the Section Examples for examples of differ-
ent restrictions. In many cases, the minimum value of a criterion is considered to indicate the best
model. However, in some other cases a different selection approach might be appropriate. There-
fore, a selection function can be considered by means of the argument sFUN. The default is sFUN =
min, i.e. the function min is applied to select the optimal orders.

Value

The function returns a vector with two elements. The first element is the optimal order p, whereas
the second element is the selected optimal order q.

Author(s)

• Sebastian Letmathe (Scientific Employee) (Department of Economics, Paderborn University),

Examples

## Not run:
set.seed(21)
Xt <- arima.sim(model = list(ar = c(1.2, -0.5), ma = 0.7), n = 1000) + 7
mat <- smoots::critMatrix(Xt)
optOrd(mat) # without restrictions
optOrd(mat, p <= q) # with one restriction
optOrd(mat, p >= 1 & q >= 4) # with two restrictions

## End(Not run)

plot.smoots Plot Method for the Package ’smoots’

Description

This function regulates how objects created by the package smoots are plotted.

Usage

## S3 method for class 'smoots'
plot(x, t = NULL, rescale = TRUE, which = NULL, ...)

Arguments

x an input object of class smoots.

t an optional vector with time points that will be considered for the x-axis within
the plot; is set to NULL by default and uses a vector 1:length(x$ye) for time
points.
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rescale a single logical value; is set to TRUE by default; if the output of a derivative
estimation process is passed to x and if rescale = TRUE, the estimates will be
rescaled according to t.

which a selector for the plot type so that the interactive prompt is avoided; for the
default, which = NULL, the user will be asked interactively via the console which
plot to show; to avoid this behavior, set which to the corresponding number of
the plot you would like to create (1: original series, 2: trend series, 3: residual
series, 4: original series with trend series for trend estimation objects, 1: original
series, 2: derivative series for trend derivative estimation object).

... additional arguments of the standard plot method.

Value

None

Author(s)

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

print.smoots Print Method for the Package ’smoots’

Description

This function regulates how objects created by the package smoots are printed.

Usage

## S3 method for class 'smoots'
print(x, ...)

Arguments

x an input object of class smoots.

... included for compatibility; additional arguments will however not affect the out-
put.

Value

None

Author(s)

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer
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rescale Rescaling Derivative Estimates

Description

The estimation functions of the smoots package estimate the nonparametric trend function or its
derivatives on the rescaled time interval [0, 1]. With this function the derivative estimates can be
rescaled in accordance with a given vector with time points.

Usage

rescale(y, x = seq_along(y), v = 1)

Arguments

y a numeric vector or matrix with the derivative estimates obtained for time points
on the interval [0, 1]; pass the list element ye of the output of the functions
dsmooth or gsmooth (if the argument v > 0) to this argument.

x a numeric vector of length length(y) with the actual (equidistant) time points
ordered from past to present; the default is seq_along(y).

v the order of derivative that is implemented for y; the default is 1.

Details

The derivative estimation process is based on the additive time series model

yt = m(xt) + ϵt,

where yt is the observed time series with equidistant design, xt is the rescaled time on [0, 1], m(xt)
is a smooth and deterministic trend function and ϵt are stationary errors with E(eps_[t]) = 0 (see also
Beran and Feng, 2002). Since the estimates of the main smoothing functions in smoots are obtained
with regard to the rescaled time points xt, the derivative estimates returned by these functions are
valid for xt only. Thus, by passing the returned estimates to the argument y, a vector with the actual
time points to the argument x and the order of derivative of y to the argument v, a rescaled estimate
series is calculated and returned. The function can also be combined with the numeric output of
confBounds.

Note that the trend estimates, even though they are also obtained for the rescaled time points xt, are
still valid for the actual time points.

Value

A numeric vector with the rescaled derivative estimates is returned.

Author(s)

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer
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Examples

data <- smoots::gdpUS
Xt <- log(data$GDP)
time <- seq(from = 1947.25, to = 2019.5, by = 0.25)
d_est <- smoots::dsmooth(Xt)
ye_rescale <- smoots::rescale(d_est$ye, x = time, v = 1)
plot(time, ye_rescale, type = "l", main = "", ylab = "", xlab = "Year")

residuals.smoots Extract Model Residuals

Description

Generic function which extracts model residuals from a smoots class object. Both residuals and
its abbreviated form resid can be called.

Usage

## S3 method for class 'smoots'
residuals(object, ...)

Arguments

object an object from the smoots class.

... included for consistency with the generic function.

Value

Residuals extracted from a smoots class object.

Author(s)

• Sebastian Letmathe (Scientific Employee) (Department of Economics, Paderborn University),
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rollCast Backtesting Semi-ARMA Models with Rolling Forecasts

Description

A simple backtest of Semi-ARMA models via rolling forecasts can be implemented.

Usage

rollCast(
y,
p = NULL,
q = NULL,
K = 5,
method = c("norm", "boot"),
alpha = 0.95,
np.fcast = c("lin", "const"),
it = 10000,
n.start = 1000,
pb = TRUE,
cores = future::availableCores(),
argsSmoots = list(),
plot = TRUE,
argsPlot = list()

)

Arguments

y a numeric vector that represents the equidistant time series assumed to follow a
Semi-ARMA model; must be ordered from past to present.

p an integer value ≥ 0 that defines the AR order p of the underlying ARMA(p, q)
model within X; is set to NULL by default; if no value is passed to p but one is
passed to q, p is set to 0; if both p and q are NULL, optimal orders following the
BIC for 0 ≤ p, q ≤ 5 are chosen; is set to NULL by default; decimal numbers
will be rounded off to integers.

q an integer value ≥ 0 that defines the MA order q of the underlying ARMA(p, q)
model within X; is set to NULL by default; if no value is passed to q but one is
passed to p, q is set to 0; if both p and q are NULL, optimal orders following the
BIC for 0 ≤ p, q ≤ 5 are chosen; is set to NULL by default; decimal numbers
will be rounded off to integers.

K a single, positive integer value that defines the number of out-of-sample observa-
tions; the last K observations in y are treated as the out-of-sample observations,
whereas the rest of the observations in y are the in-sample values.

method a character object; defines the method used for the calculation of the forecast-
ing intervals; with "norm" the intervals are obtained under the assumption of
normally distributed innovations; with "boot" the intervals are obtained via a
bootstrap; is set to "norm" by default.
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alpha a numeric vector of length 1 with 0 < alpha < 1; the forecasting intervals will
be obtained based on the confidence level (100alpha)-percent; is set to alpha =
0.95 by default, i.e., a 95-percent confidence level.

np.fcast a character object; defines the forecasting method used for the nonparametric
trend; for np.fcast = "lin" the trend is is extrapolated linearly based on the
last two trend estimates; for np.fcast = "const", the last trend estimate is used
as a constant estimate for future values; is set to "lin" by default.

it an integer that represents the total number of iterations, i.e., the number of sim-
ulated series; is set to 10000 by default; only necessary, if method = "boot";
decimal numbers will be rounded off to integers.

n.start an integer that defines the ’burn-in’ number of observations for the simulated
ARMA series via bootstrap; is set to 1000 by default; only necessary, if method
= "boot";decimal numbers will be rounded off to integers.

pb a logical value; for pb = TRUE, a progress bar will be shown in the console, if
method = "boot".

cores an integer value >0 that states the number of (logical) cores to use in the boot-
strap (or NULL); the default is the maximum number of available cores (via
future::availableCores); for cores = NULL, parallel computation is disabled.

argsSmoots a list that contains arguments that will be passed to msmooth for the estimation
of the nonparametric trend function; by default, the default values of msmooth
are used.

plot a logical value that controls the graphical output; for the default (plot = TRUE),
the original series with the obtained point forecasts as well as the forecasting
intervals will be plotted; for plot = FALSE, no plot will be created.

argsPlot a list; additional arguments for the standard plot function, e.g., xlim, type, ...,
can be passed to it; arguments with respect to plotted graphs, e.g., the argument
col, only affect the original series y; please note that in accordance with the
argument x (lower case) of the standard plot function, an additional numeric
vector with time points can be implemented via the argument x (lower case).

Details

Define that an observed, equidistant time series yt, with t = 1, 2, ..., n, follows

yt = m(xt) + ϵt,

where xt = t/n is the rescaled time on the closed interval [0, 1] and m(xt) is a nonparametric and
deterministic trend function (see Beran and Feng, 2002, and Feng, Gries and Fritz, 2020). ϵt, on the
other hand, is a stationary process with E(ϵt) = 0 and short-range dependence. For the purpose of
this function, ϵt is assumed to follow an autoregressive-moving-average (ARMA) model with

ϵt = ζt + β1ϵt−1 + ...+ βpϵt−p + α1ζt−1 + ...+ αqζt−q.

Here, the random variables ζt are identically and independently distributed (i.i.d.) with zero-mean
and a constant variance and the coefficients αj and βi, i = 1, 2, ..., p and j = 1, 2, ..., q, are
real numbers. The combination of both previous formulas will be called a semiparametric ARMA
(Semi-ARMA) model.
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An explicit forecasting method of Semi-ARMA models is described in modelCast. To backtest a
selected model, a slightly adjusted procedure is used. The data is divided into in-sample and an out-
of-sample values (usually the last K = 5 observations in the data are reserved for the out-of-sample
observations). A model is fitted to the in-sample data, whereas one-step rolling point forecasts and
forecasting intervals are obtained for the out-of-sample time points. The proposed forecasts of the
trend are either a linear or a constant extrapolation of the trend with negligible forecasting intervals,
whereas the point forecasts of the stationary rest term are obtained via the selected ARMA(p, q)
model (see Fritz et al., 2020). The corresponding forecasting intervals are calculated under the
assumption that the innovations ζt are either normally distributed (see e.g. pp. 93-94 in Brockwell
and Davis, 2016) or via a forward bootstrap (see Lu and Wang, 2020). For a one-step forecast for
time point t, all observations until time point t− 1 are assumed to be known.

The function calculates three important values for backtesting: the number of breaches, i.e. the
number of true observations that lie outside of the forecasting intervals, the mean absolute scaled
error (MASE, see Hyndman and Koehler, 2006) and the root mean squared scaled error (RMSSE,
see Hyndman and Koehler, 2006) are obtained. For the MASE, a value < 1 indicates a better
average forecasting potential than a naive forecasting approach. Furthermore, it is independent
from the scale of the data and can thus be used to compare forecasts of different datasets. Closely
related is the RMSSE, however here, the mean of the squared forecasting errors is computed and
scaled by the mean of the squared naive forecasting approach. Then the root of that value is the
RMSSE. Due to the close relation, the interpretation of the RMSSE is similarly but not identically
to the interpretation of the MASE. Of course, a value close to zero is preferred in both cases.

To make use of the function, a numeric vector with the values of a time series that is assumed to
follow a Semi-ARMA model needs to be passed to the argument y. Moreover, the arguments p and
q represent the AR and MA orders, respectively, of the underlying ARMA process in the parametric
part of the model. If both values are set to NULL, an optimal order in accordance with the Bayesian
Information Criterion (BIC) will be selected. If only one of the values is NULL, it will be changed
to zero instead. K defines the number of the out-of-sample observations; these will be cut off the
end of y, while the remaining observations are treated as the in-sample observations. For the K
out-of-sample time points, rolling forecasts will be obtained. method describes the method to use
for the computation of the prediction intervals. Under the normality assumption for the innovations
ζt, intervals can be obtained via method = "norm". However, if the assumption does not hold, a
bootstrap can be implemented as well (method = "boot"). Both approaches are explained in more
detail in normCast and bootCast, respectively. With alpha, the confidence level of the forecasting
intervals can be adjusted, as the (100alpha)-percent forecasting intervals will be computed. By
means of the argument np.fcast, the forecasting method for the nonparametric trend function
can be defined. Selectable are a linear (np.fcast = "lin") and a constant (np.fcast = "const")
extrapolation. For more information on these methods, we refer the reader to trendCast.

it, n.start, pb and cores are only relevant for method = "boot". With it the total number
of bootstrap iterations is defined, whereas n.start regulates, how many ’burn-in’ observations
are generated for each simulated ARMA process in the bootstrap. Since a bootstrap may take a
longer computation time, with the argument cores the number of cores for parallel computation
of the bootstrap iterations can be defined. Nonetheless, for cores = NULL, no cluster is created
and therefore the parallel computation is disabled. Note that the bootstrapped results are fully
reproducible for all cluster sizes. Moreover, for pb = TRUE, the progress of the bootstrap approach
can be observed in the R console via a progress bar. Additional information on these four function
arguments can be found in bootCast.

The argument argsSmoots is a list. In this list, different arguments of the function msmooth can
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be implemented to adjust the estimation of the nonparametric part of the complete model. The
arguments of the smoothing function are described in msmooth.

rollCast allows for a quick plot of the results. If the logical argument plot is set to TRUE, a graphic
with default settings is created. Nevertheless, users are allowed to implement further arguments of
the standard plot function in the list argsPlot. For example, the limits of the plot can be adjusted by
xlim and ylim. Furthermore, an argument x can be included in argsPlot with the actual equidistant
time points of the whole series (in-sample & out-of-sample observations). Otherwise, simply 1:n
is used as the in-sample time points by default.

NOTE:

Within this function, the arima function of the stats package with its method "CSS-ML" is used
throughout for the estimation of ARMA models. Furthermore, to increase the performance, C++
code via the Rcpp and RcppArmadillo packages was implemented. Also, the future and future.apply
packages are considered for parallel computation of bootstrap iterations. The progress of the boot-
strap is shown via the progressr package.

Value

A list with different elements is returned. The elements are as follows.

alpha a single numeric value; it describes, what confidence level (100alpha)-percent has been
considered for the forecasting intervals.

breach a logical vector that states whether the K true out-of-sample observations lie outside of the
forecasting intervals, respectively; a breach is denoted by TRUE.

breach.val a numeric vector that contains the margin of the breaches (in absolute terms) for the K
out-of-sample time points; if a breach did not occur, the respective element is set to zero.

error a numeric vector that contains the simulated empirical values of the forecasting error for
method = "boot"; otherwise, it is set to NULL.

fcast.rest a numeric vector that contains the K point forecasts of the parametric part of the model.

fcast.roll a numeric matrix that contains the K rolling point forecasts as well as the values of the
bounds of the respective forecasting intervals for the complete model; the first row contains
the point forecasts, the lower bounds of the forecasting intervals are in the second row and the
upper bounds can be found in the third row.

fcast.trend a numeric vector that contains the K obtained trend forecasts.

K a positive integer; states the number of out-of-sample observations as well as the number of
forecasts for the out-of-sample time points.

MASE the obtained value of the mean average scaled error for the selected model.

method a character object that states, whether the forecasting intervals were obtained via a boot-
strap (method = "boot") or under the normality assumption for the innovations (method =
"norm").

model.nonpar the output (usually a list) of the nonparametric trend estimation via msmooth.

model.par the output (usually a list) of the parametric ARMA estimation of the detrended series
via arima.

n the number of observations (in-sample & out-of-sample observations).

n.in the number of in-sample observations (n - n.out).
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n.out the number of out-of-sample observations (equals K).

np.fcast a character object that states the applied forecasting method for the nonparametric trend
function; either a linear ( np.fcast = "lin") or a constant np.fcast = "const" are possible.

quants a numeric vector of length 2 with the [100(1− alpha)/2]-percent and {100[1−(1− alpha)/2]}-
percent quantiles of the forecasting error distribution.

RMSSE the obtained value of the root mean squared scaled error for the selected model.

y a numeric vector that contains all true observations (in-sample & out-of-sample observations).

y.in a numeric vector that contains all in-sample observations.

y.out a numeric vector that contains the K out-of-sample observations.

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

References
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Examples

lgdp <- log(smoots::gdpUS$GDP)
time <- seq(from = 1947.25, to = 2019.5, by = 0.25)
backtest <- rollCast(lgdp, K = 5,
argsPlot = list(x = time, xlim = c(2012, 2019.5), col = "forestgreen",
type = "b", pch = 20, lty = 2, main = "Example"))
backtest

https://wiwi.uni-paderborn.de/en/dep4/feng/
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smoots smoots: A package for data-driven nonparametric estimation of the
trend and its derivatives in equidistant time series.

Description

The smoots package provides different applicable functions for the estimation of the trend or its
derivatives in equidistant time series. The main functions include an automated bandwidth selection
method for time series with short-memory errors. With package version 1.1.0 several functions for
forecasting as well as linearity tests were added.

Functions (version 1.0.0)

The smoots functions are either meant for calculating nonparametric estimates of the trend of a
time series or its derivatives.

msmooth is the central function of the package. It allows the user to conduct a local polynomial
regression of the trend based on an optimal bandwidth that is obtained by an iterative plug-in al-
gorithm. There are also different algorithms implemented concerning the inflation rate and other
factors that can be chosen from (see also: msmooth).

dsmooth is a function that calculates the derivatives of the trend after obtaining the optimal band-
width by an iterative plug-in algorithm. The estimates are obtained for rescaled time points on the
interval [0, 1] (see also: dsmooth).

tsmooth is similar to msmooth as it also calculates the trend of the series. Instead of using the
name of a predefined algorithm that settles the inflation rate (and other factors), these factors can be
manually and individually adjusted as arguments in the function (see also: tsmooth).

gsmooth is a standard smoothing function that applies the local polynomial regression method. A
bandwidth can be chosen freely. The estimates are obtained for rescaled time points on the interval
[0, 1] (see also: gsmooth).

knsmooth is a standard smoothing function that applies the kernel regression method. A bandwidth
can be chosen freely (see also: knsmooth).

Added Functions (version 1.1.0)

With the publication of the package version 1.1.0, new functions were added. These include func-
tions for forecasting and functions for testing linearity of the deterministic trend.

rescale helps rescaling the estimates of the derivatives of the nonparametric trend function, be-
cause the estimates are obtained for rescaled time points on the interval [0, 1] and not for the actual
time points (see also: rescale).

critMatrix is a quick tool for the calculation of information criteria for ARMA(p, q) models with
different order combinations p and q. The function returns a matrix with the obtained values of the
selected criterion for the different combinations of p and q (see also: critMatrix).

optOrd is useful in combination with critMatrix. It reads a matrix equal in structure to the ones
returned by critMatrix and returns the optimal orders p and q. Furthermore, additional restrictions
for the selection can be imposed (see also: optOrd).
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normCast provides means to obtain point forecasts as well as forecasting intervals for a given series
under the assumption that it follows an ARMA(p, q) model and that its innovations are normally
distributed (see also: normCast).

bootCast can also be used to calculate point forecasts and forecasting intervals, if the series of
interest follows an ARMA(p, q) model. However, the main difference is that this function should
be applied, if the distribution of the innovations is unknown or explicitly non-Gaussian, because the
underlying bootstrap process does not need a distribution assumption. In spite of this advantage,
it also needs significantly more computation time. Therefore, with version 1.1.1, the bootstrap can
now be conducted in parallel for an improved performance (see also: bootCast).

trendCast uses a smoots object that is the output of a trend estimation and calculates point fore-
casts of the trend. Forecasting intervals are omitted for reasons that are explained within the func-
tion’s documentation (see also: trendCast).

modelCast calculates the point forecasts and forecasting intervals of a trend-stationary series.
Based on a smoots object that is the output of a trend estimation, trendCast is applied to the esti-
mated trend, whereas either normCast or bootCast is applied to the residuals (see also: modelCast).

rollCast is a backtesting function for Semi-ARMA models. A given series is divided into in-
sample and out-of-sample observations, where the in-sample is used to fit a Semi-ARMA model.
One-step rolling forecasts and the corresponding forecasting intervals are then obtained for the
out-of-sample observations. The quality of the model is then assessed via a comparison of the
true out-of-sample observations with the point forecasts and forecasting intervals. Different quality
criteria are calculated and returned (see also: modelCast).

confBounds calculates the confidence bounds of the estimated trend or of the estimated derivative
of the trend at a predefined confidence level. A graphic of the confidence bounds alongside a
previously chosen constant or parametric illustration of the estimated series is created. With this
plot it can be tested graphically if the deterministic trend is constant or if it follows a parametric
polynomial model. Furthermore, it can also be tested, if the derivatives of the trend are constant
(see also: confBounds).

Datasets

The package includes four datasets: gdpUS (see also: gdpUS) that has data concerning the quarterly
US GDP between Q1 1947-01 and Q2 2019, tempNH (see also: tempNH) with mean monthly North-
ern Hemisphere temperature changes from 1880 to 2018, dax (see also: dax) with daily financial
time series data of the German stock index (DAX) from 1990 to July 2019 and vix (see also: vix)
with daily financial time series data of the CBOE Volatility Index (VIX) from 1990 to July 2019.

License

The package is distributed under the General Public License v3 ([GPL-3](https://tldrlegal.com/license/gnu-
general-public-license-v3-(gpl-3))).

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer

https://wiwi.uni-paderborn.de/en/dep4/feng/
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tempNH Mean Monthly Northern Hemisphere Temperature Changes

Description

A dataset that contains mean monthly Northern Hemisphere temperature changes from 1880 to
2018. The base period is 1951 to 1980.

Usage

tempNH

Format

A data frame with 1668 rows and 3 variables:

Year the observation year

Month the observation month

Change the observed mean monthly temperature changes in degrees Celsius

Source

The data was obtained from the Goddard Institute for Space Studies (part of the National Aeronau-
tics and Space Administration [NASA]) (accessed: 2019-09-25).

https://data.giss.nasa.gov/gistemp/tabledata_v4/NH.Ts+dSST.txt

trendCast Forecasting Function for Nonparametric Trend Functions

Description

Forecasting Function for Nonparametric Trend Functions

Usage

trendCast(object, h = 1, np.fcast = c("lin", "const"), plot = FALSE, ...)

https://data.giss.nasa.gov/gistemp/tabledata_v4/NH.Ts+dSST.txt
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Arguments

object an object returned by either msmooth, tsmooth, gsmooth (with v = 0) or knsmooth.

h the forecasting horizon; the values m(n + 1) to m(n + h) will be predicted; is
set to h = 1 by default; decimal numbers will be rounded off to integers.

np.fcast the forecasting method; np.fcast = "lin" uses a linear extrapolation, whereas
np.fcast = "const" uses the last fitted value of m(xt) as a forecast; is set to
"lin" by default.

plot a logical value; if set to TRUE, a simple plot of the original time series, the local
polynomial trend estimates as well as the predicted values is generated.

... additional arguments for the standard plot function, e.g., xlim, type, ... ; ar-
guments with respect to plotted graphs, e.g., the argument col, only affect the
original series X; please note that in accordance with the argument x (lower case)
of the standard plot function, an additional numeric vector with time points can
be implemented via the argument x (lower case). x should be valid for the sam-
ple observations only, i.e. length(x) == length(obj$orig) should be TRUE,
as future time points will be calculated automatically.

Details

This function is part of the smoots package and was implemented under version 1.1.0. The under-
lying theory is based on the additive nonparametric regression function

yt = m(xt) + ϵt,

where yt is the observed time series with equidistant design, xt is the rescaled time on the interval
[0, 1], m(xt) is a smooth and deterministic trend function and ϵt are stationary errors with E(ϵt) =
0.

The purpose of this function is the forecasting of future values based on a nonparametric regres-
sion model. Following the proposition in Fritz et al. (2020), point predictions can be conducted
separately for the nonparametric trend function m(xt) and the stationary part ϵt. The sum of both
forecasts is then the forecast of yt. With this function, only the forecast with respect to m(xt) is
computable. Now assume that the variance of the error in the local polynomial forecasts is neg-
ligible when calculating the forecasting intervals. We define the forecast for time point n + k,
k = 1, 2, ..., h, by

m̂(xn+k) = m̂(xn) +Dkδm,

where δm is equal to m̂(xn)−m̂(xn−1) and D is a dummy variable. If D = 1, a linear extrapolation
is applied. For D = 0, m̂(xn) is the predicted value.

To make use of this function, an object of class smoots can be given as input. However, since the
discussed approach is only valid for the estimated trend function, only objects created by msmooth,
tsmooth, knsmooth and link{gsmooth}, if the trend was estimated, will be appropriate input ob-
jects.

With the input argument h, a positive integer can be given to the function that represents the fore-
casting horizon, i.e. how many future values are to be estimated. Via the argument np.fcast the
value of the dummy variable D can be specified and thus the forecasting method. For np.fcast =
"lin", D = 1 is applied, whereas for np.fcast = "const", D is set to 0.



50 trendCast

By means of the argument plot that can be either set to the logical values TRUE or FALSE, a simple
plot of the original series alongside the local polynomial estimates as well as the forecasted values
can be either generated or suppressed.

The function always returns a vector of forecasted values ordered from n+ 1 to n+ h. Depending
on the setting of the argument plot, a generic plot of the results may be generated. Furthermore,
additional arguments of the standard plot function can be passed to this function as well to adjust
the generated plot.

Value

A numeric vector is always returned with the forecasted values. Depending on the setting for the
argument plot, a generic plot might be created.

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer
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Examples

log_gdp <- log(smoots::gdpUS$GDP)
est <- msmooth(log_gdp)
forecasts <- trendCast(est, h = 5, plot = TRUE)
forecasts

https://wiwi.uni-paderborn.de/en/dep4/feng/
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tsmooth Advanced Data-driven Nonparametric Regression for the Trend in
Equidistant Time Series

Description

This function runs an iterative plug-in algorithm to find the optimal bandwidth for the estimation of
the nonparametric trend in equidistant time series (with short-memory errors) and then employs the
resulting bandwidth via either local polynomial or kernel regression. This function allows for more
flexibility in its arguments than msmooth.

Usage

tsmooth(
y,
p = c(1, 3),
mu = c(0, 1, 2, 3),
Mcf = c("NP", "ARMA", "AR", "MA"),
InfR = c("Opt", "Nai", "Var"),
bStart = 0.15,
bvc = c("Y", "N"),
bb = c(0, 1),
cb = 0.05,
method = c("lpr", "kr")

)

Arguments

y a numeric vector that contains the time series ordered from past to present.

p an integer 1 (local linear regression) or 3 (local cubic regression); represents
the order of polynomial within the local polynomial regression (see also the
’Details’ section); is set to 1 by default; is automatically set to 1 if method =
"kr".

mu an integer 0, ..., 3 that represents the smoothness parameter of the kernel weight-
ing function and thus defines the kernel function that will be used within the
local polynomial regression; is set to 1 by default.

Number Kernel
0 Uniform Kernel
1 Epanechnikov Kernel
2 Bisquare Kernel
3 Triweight Kernel

Mcf method for estimating the variance factor cf by the IPI (see also the ’Details’
section); is set to NP by default.
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Method Explanation
"NP" Nonparametric estimation using the Bartlett window

"ARMA" Estimation on the assumption that the residuals follow an ARMA model
"AR" Estimation on the assumption that the residuals follow an AR model
"MA" Estimation on the assumption that the residuals follow an MA model

InfR a character object that represents the inflation rate in the form hd = ha for the
bandwidth in the estimation of I[m(k)] (see also the ’Details’ section); is set to
"Opt" by default.

Inflation rate Description
"Opt" Optimal inflation rate ap,O (5/7 for p = 1; 9/11 for p = 3)
"Nai" Naive inflation rate ap,N (5/9 for p = 1; 9/13 for p = 3)
"Var" Stable inflation rate ap,S (1/2 for p = 1 and p = 3)

bStart a numeric object that indicates the starting value of the bandwidth for the itera-
tive process; should be > 0; is set to 0.15 by default.

bvc a character object that indicates whether an enlarged bandwidth is being used for
the estimation of the variance factor cf (see also the ’Details’ section) or not; is
set to "Y" by default.

Bandwidth Description
"Y" Using an enlarged bandwidth
"N" Using a bandwidth without enlargement

bb can be set to 0 or 1; the parameter controlling the bandwidth used at the bound-
ary; is set to 1 by default.

Number (bb) Estimation procedure at boundary points
0 Fixed bandwidth on one side with possible large bandwidth on the other side at the boundary
1 The k-nearest neighbor method will be used

cb a numeric value that indicates the percentage of omitted observations on each
side of the observation period for the automated bandwidth selection; is set to
0.05 by default.

method the final smoothing approach; "lpr" represents the local polynomial regression,
whereas "kr" implements a kernel regression; is set to "lpr" by default.

Details

The trend is estimated based on the additive nonparametric regression model for an equidistant time
series

yt = m(xt) + ϵt,

where yt is the observed time series, xt is the rescaled time on the interval [0, 1], m(xt) is a smooth
and deterministic trend function and ϵt are stationary errors with E(ϵt) = 0 and short-range de-
pendence (see also Beran and Feng, 2002). With this function m(xt) can be estimated without a
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parametric model assumption for the error series. Thus, after estimating and removing the trend,
any suitable parametric model, e.g. an ARMA(p, q) model, can be fitted to the residuals (see arima).

The iterative-plug-in (IPI) algorithm, which numerically minimizes the Asymptotic Mean Squared
Error (AMISE), was proposed by Feng, Gries and Fritz (2020).

Define I[m(k)] =
∫ db

cb
[m(k)(x)]2dx, β(ν,k) =

∫ 1

−1
ukK(ν,k)(u)du and R(K) =

∫ 1

−1
K2

(ν,k)(u)du,
where p is the order of the polynomial, k = p + 1 is the order of the asymptotically equivalent
kernel, ν is the order of the trend function’s derivative, 0 ≤ cb < db ≤ 1, cf is the variance factor
and K(ν,k)(u) the k-th order equivalent kernel obtained for the estimation of m(ν) in the interior.
m(ν) is the ν-th order derivative (ν = 0, 1, 2, ...) of the nonparametric trend.

Furthermore, we define

C1 =
I[m(k)]β2

(ν,k)

(k!)2

and

C2 =
2πcf (db − cb)R(K)

nh2ν+1

with h being the bandwidth and n being the number of observations. The AMISE is then

AMISE(h) = h2(k−ν)C1 + C2.

The function calculates suitable estimates for cf , the variance factor, and I[m(k)] over different
iterations. In each iteration, a bandwidth is obtained in accordance with the AMISE that once
more serves as an input for the following iteration. The process repeats until either convergence or
the 40th iteration is reached. For further details on the asymptotic theory or the algorithm, please
consult Feng, Gries and Fritz (2020) or Feng et al. (2019).

To apply the function, more arguments are needed compared to the similar function msmooth: a data
input y, an order of polynomial p, a kernel weighting function defined by the smoothness parameter
mu, a variance factor estimation method Mcf, an inflation rate setting InfR (see also Beran and Feng,
2002), a starting value for the relative bandwidth bStart, an inflation setting for the variance factor
estimation bvc, a boundary method bb, a boundary cut-off percentage cb and a final smoothing
method method. In fact, aside from the input vector y, every argument has a default setting that can
be adjusted for the individual case. Theoretically, the initial bandwidth does not affect the selected
optimal bandwidth. However, in practice local minima of the AMISE might exist and influence
the selected bandwidth. Therefore, the default setting is bStart = 0.15, which is a compromise
between the starting values bStart = 0.1 for p = 1 and bStart = 0.2 for p = 3 that were proposed
by Feng, Gries and Fritz (2020). In the rare case of a clearly unsuitable optimal bandwidth, a
starting bandwidth that differs from the default value is a first possible approach to obtain a better
result. Other argument adjustments can be tried as well. For more specific information on the input
arguments consult the section Arguments.

When applying the function, an optimal bandwidth is obtained based on the IPI algorithm proposed
by Feng, Gries and Fritz (2020). In a second step, the nonparametric trend of the series is calculated
with respect to the chosen bandwidth and the selected regression method (lpf or kr). Please note
that method = "lpf" is strongly recommended by the authors. Moreover, it is notable that p is
automatically set to 1 for method = "kr". The output object is then a list that contains, among other
components, the original time series, the estimated trend values and the series without the trend.

The default print method for this function delivers only key numbers such as the iteration steps and
the generated optimal bandwidth rounded to the fourth decimal. The exact numbers and results such



54 tsmooth

as the estimated nonparametric trend series are saved within the output object and can be addressed
via the $ sign.

NOTE:

With package version 1.1.0, this function implements C++ code by means of the Rcpp and RcppArmadillo
packages for better performance.

Value

The function returns a list with different components:

AR.BIC the Bayesian Information Criterion of the optimal AR(p) model when estimating the
variance factor via autoregressive models (if calculated; calculated for alg = "OA" and alg
= "NA").

ARMA.BIC the Bayesian Information Criterion of the optimal ARMA(p, q) model when estimat-
ing the variance factor via autoregressive-moving-average models (if calculated; calculated
for alg = "OAM" and alg = "NAM").

cb the percentage of omitted observations on each side of the observation period.

b0 the optimal bandwidth chosen by the IPI-algorithm.

bb the boundary bandwidth method used within the IPI; always equal to 1.

bStart the starting value of the (relative) bandwidth; input argument.

bvc indicates whether an enlarged bandwidth was used for the variance factor estimation or not;
depends on the chosen algorithm.

cf0 the estimated variance factor; in contrast to the definitions given in the Details section, this
object actually contains an estimated value of 2πcf , i.e. it corresponds to the estimated sum
of autocovariances.

cf0.AR the estimated variance factor obtained by estimation of autoregressive models (if calcu-
lated; alg = "OA" or "NA").

cf0.ARMA the estimated variance factor obtained by estimation of autoregressive-moving-average
models (if calculated; calculated for alg = "OAM" and alg = "NAM").

cf0.LW the estimated variance factor obtained by Lag-Window Spectral Density Estimation fol-
lowing Bühlmann (1996) (if calculated; calculated for algorithms "A", "B", "O" and "N").

cf0.MA the estimated variance factor obtained by estimation of moving-average models (if calcu-
lated; calculated for alg = "OM" and alg = "NM").

I2 the estimated value of I[m(k)].

InfR the setting for the inflation rate according to the chosen algorithm.

iterations the bandwidths of the single iterations steps

L0.opt the optimal bandwidth for the lag-window spectral density estimation (if calculated; calcu-
lated for algorithms "A", "B", "O" and "N").

MA.BIC the Bayesian Information Criterion of the optimal MA(q) model when estimating the
variance factor via moving-average models (if calculated; calculated for alg = "OM" and alg
= "NM").

Mcf the estimation method for the variance factor estimation; depends on the chosen algorithm.

mu the smoothness parameter of the second order kernel; input argument.
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n the number of observations.

niterations the total number of iterations until convergence.

orig the original input series; input argument.

p.BIC the order p of the optimal AR(p) or ARMA(p, q) model when estimating the variance factor
via autoregressive or autoregressive-moving average models (if calculated; calculated for alg
= "OA", alg = "NA", alg = "OAM" and alg = "NAM").

p the order of polynomial used in the IPI-algorithm; also used for the final smoothing, if method =
"lpr"; input argument.

q.BIC the order q of the optimal MA(q) or ARMA(p, q) model when estimating the variance factor
via moving-average or autoregressive-moving average models (if calculated; calculated for
alg = "OM", alg = "NM", alg = "OAM" and alg = "NAM").

res the estimated residual series.

v the considered order of derivative of the trend; is always zero for this function.

ws the weighting system matrix used within the local polynomial regression; this matrix is a con-
densed version of a complete weighting system matrix; in each row of ws, the weights for
conducting the smoothing procedure at a specific observation time point can be found; the
first [nb + 0.5] rows, where n corresponds to the number of observations, b is the bandwidth
considered for smoothing and [.] denotes the integer part, contain the weights at the [nb+0.5]
left-hand boundary points; the weights in row [nb + 0.5] + 1 are representative for the es-
timation at all interior points and the remaining rows contain the weights for the right-hand
boundary points; each row has exactly 2[nb+0.5]+1 elements, more specifically the weights
for observations of the nearest 2[nb + 0.5] + 1 time points; moreover, the weights are nor-
malized, i.e. the weights are obtained under consideration of the time points xt = t/n, where
t = 1, 2, ..., n.

ye the nonparametric estimates of the trend.

Author(s)

• Yuanhua Feng (Department of Economics, Paderborn University),
Author of the Algorithms
Website: https://wiwi.uni-paderborn.de/en/dep4/feng/

• Dominik Schulz (Research Assistant) (Department of Economics, Paderborn University),
Package Creator and Maintainer
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Examples

### Example 1: US-GDP ###

# Logarithm of test data
# -> the logarithm of the data is assumed to follow the additive model
test_data <- gdpUS
y <- log(test_data$GDP)

# Applied tsmooth function for the trend
result <- tsmooth(y, p = 1, mu = 1, Mcf = "NP", InfR = "Opt",
bStart = 0.1, bvc = "Y")

trend1 <- result$ye

# Plot of the results
t <- seq(from = 1947, to = 2019.25, by = 0.25)
plot(t, y, type = "l", xlab = "Year", ylab = "log(US-GDP)", bty = "n",
lwd = 1, lty = 3,
main = "Estimated trend for log-quarterly US-GDP, Q1 1947 - Q2 2019")

points(t, trend1, type = "l", col = "red", lwd = 1)
title(sub = expression(italic("Figure 1")), col.sub = "gray47",
cex.sub = 0.6, adj = 0)

result

## Not run:
### Example 2: German Stock Index ###

# The following procedure can be considered, if (log-)returns are assumed
# to follow a model from the general class of semiparametric GARCH-type
# models (including Semi-GARCH, Semi-Log-GARCH and Semi-APARCH models among
# others) with a slowly changing variance over time due to a deterministic,
# nonparametric scale function.

# Obtain the logarithm of the squared returns
returns <- diff(log(dax$Close)) # (log-)returns
rt <- returns - mean(returns) # demeaned (log-)returns
yt <- log(rt^2) # logarithm of the squared returns

# Apply 'smoots' function to the log-data, because the logarithm of
# the squared returns follows an additive model with a nonparametric trend
# function, if the returns are assumed to follow a semiparametric GARCH-type
# model.

# In this case, the optimal inflation rate is used for p = 3.
est <- tsmooth(yt, p = 3, InfR = "Opt")
m_xt <- est$ye # estimated trend values

# Obtain the standardized returns 'eps' and the scale function 'scale.f'
res <- est$res # the detrended log-data
C <- -log(mean(exp(res))) # an estimate of a constant value needed

# for the retransformation
scale.f <- exp((m_xt - C) / 2) # estimated values of the scale function in

# the returns
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eps <- rt / scale.f # the estimated standardized returns

# -> 'eps' can now be analyzed by any suitable GARCH-type model.
# The total volatilities are then the product of the conditional
# volatilities obtained from 'eps' and the scale function 'scale.f'.

## End(Not run)

vix CBOE Volatility Index (VIX) Financial Time Series Data

Description

A dataset that contains the daily financial data of the VIX from 1990 to July 2019 (currency in
USD).

Usage

vix

Format

A data frame with 7452 rows and 9 variables:

Year the observation year

Month the observation month

Day the observation day

Open the opening price of the day

High the highest price of the day

Low the lowest price of the day

Close the closing price of the day

AdjClose the adjusted closing price of the day

Volume the traded volume

Source

The data was obtained from Yahoo Finance (accessed: 2019-08-22).

https://query1.finance.yahoo.com/v7/finance/download/^VIX?period1=631148400&period2=
1564524000&interval=1d&events=history&crumb=Iaq1EPZAQRb

https://query1.finance.yahoo.com/v7/finance/download/^VIX?period1=631148400&period2=1564524000&interval=1d&events=history&crumb=Iaq1EPZAQRb
https://query1.finance.yahoo.com/v7/finance/download/^VIX?period1=631148400&period2=1564524000&interval=1d&events=history&crumb=Iaq1EPZAQRb
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