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auc Area under the ROC curve

Description

Computes the area under the ROC curve in models with binary responses.

Usage

auc(o, p)

Arguments

o Numeric vector with observations, must have the same length as p.

p Numeric vector with predictions, must have the same length as o.

Value

Numeric, AUC value.
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Examples

if(interactive()){

out <- auc(
o = c(0, 0, 1, 1),
p = c(0.1, 0.6, 0.4, 0.8)
)

}

auto_cor Multicollinearity reduction via Pearson correlation

Description

Computes the correlation matrix among a set of predictors, orders the correlation matrix accord-
ing to a user-defined preference order, and removes variables one by one, taking into account
the preference order, until the remaining ones are below a given Pearson correlation threshold.
Warning: variables in preference.order not in colnames(x), and non-numeric columns are re-
moved silently from x and preference.order. The same happens with rows having NA values
(na.omit() is applied). The function issues a warning if zero-variance columns are found.

Usage

auto_cor(
x = NULL,
preference.order = NULL,
cor.threshold = 0.5,
verbose = TRUE

)

Arguments

x A data frame with predictors, or the result of auto_vif() Default: NULL.
preference.order

Character vector indicating the user’s order of preference to keep variables.
Doesn’t need to contain If not provided, variables in x are prioritised by their
column order. Default: NULL.

cor.threshold Numeric between 0 and 1, with recommended values between 0.5 and 0.9. Max-
imum Pearson correlation between any pair of the selected variables. Default:
0.50

verbose Logical. if TRUE, describes the function operations to the user. Default:: TRUE

Details

Can be chained together with auto_vif() through pipes, see the examples below.
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Value

List with three slots:

• cor: correlation matrix of the selected variables.

• selected.variables: character vector with the names of the selected variables.

• selected.variables.df: data frame with the selected variables.

See Also

auto_vif()

Examples

if(interactive()){

#load data
data(plant_richness_df)

#on a data frame
out <- auto_cor(x = plant_richness_df[, 5:21])

#getting the correlation matrix
out$cor

#getting the names of the selected variables
out$selected.variables

#getting the data frame of selected variables
out$selected.variables.df

#on the result of auto_vif
out <- auto_vif(x = plant_richness_df[, 5:21])
out <- auto_cor(x = out)

#with pipes
out <- plant_richness_df[, 5:21] %>%
auto_vif() %>%
auto_cor()

}

auto_vif Multicollinearity reduction via Variance Inflation Factor
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Description

Selects predictors that are not linear combinations of other predictors by using computing their
variance inflation factors (VIF). Allows the user to define an order of preference for the selection
of predictors. Warning: variables in preference.order not in colnames(x), and non-numeric
columns are removed silently from x and preference.order. The same happens with rows having
NA values (na.omit() is applied). The function issues a warning if zero-variance columns are
found.

Usage

auto_vif(
x = NULL,
preference.order = NULL,
vif.threshold = 5,
verbose = TRUE

)

Arguments

x A data frame with predictors or the result of auto_cor(). Default: NULL.
preference.order

a character vector with columns names of x ordered by the user preference,
Default: NULL.

vif.threshold Numeric between 2.5 and 10 defining the selection threshold for the VIF analy-
sis. Higher numbers result in a more relaxed variable selection. Default: 5.

verbose Logical. if TRUE, describes the function operations to the user. Default:: TRUE

Details

This function has two modes of operation:

• 1. When the argument preference.order is NULL, the function removes on each iteration the
variable with the highest VIF until all VIF values are lower than vif.threshold.

• 2. When preference.order is provided, the variables are selected by giving them priority ac-
cording to their order in preference.order. If there are variables not in preference.order,
these are selected as in option 1. Once both groups of variables have been processed, all vari-
ables are put together and selected by giving priority to the ones in preference.order. This
method preserves the variables desired by the user as much as possible.

Can be chained together with auto_cor() through pipes, see the examples below.

Value

List with three slots:

• vif: data frame with the names of the selected variables and their respective VIF scores.

• selected.variables: character vector with the names of the selected variables.

• selected.variables.df: data frame with the selected variables.
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See Also

auto_cor()

Examples

if(interactive()){

#loading data
data(plant_richness_df)

#on a data frame
out <- auto_vif(x = plant_richness_df[, 5:21])

#getting out the vif data frame
out$vif

#getting the names of the selected variables
out$selected.variables

#getting the data frame of selected variables
out$selected.variables.df

#on the result of auto_cor
out <- auto_cor(x = plant_richness_df[, 5:21])
out <- auto_vif(x = out)

#with pipes
out <- plant_richness_df[, 5:21] %>%
auto_cor() %>%
auto_vif()

}

beowulf_cluster Defines a beowulf cluster

Description

Defines a Beowulf cluster from the IPs of the machines in the cluster, the number of cores of each
machine, and the user name. The returned cluster has to be registered with doParallel::registerDoParallel().

Usage

beowulf_cluster(
cluster.ips = NULL,
cluster.cores = NULL,
cluster.user = Sys.info()[["user"]],
cluster.port = "11000",
outfile = NULL

)
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Arguments

cluster.ips Character vector with the IPs of the machines in the cluster. The first machine
will be considered the main node of the cluster, and will generally be the ma-
chine on which the R code is being executed. Default: NULL.

cluster.cores Numeric integer vector, number of cores on each machine. Default: NULL.

cluster.user Character string, name of the user (should be the same throughout machines),
Defaults to the current system user.

cluster.port Character, port used by the machines in the cluster to communicate. The firewall
in all computers must allow traffic from and to such port. Default: "11000"

outfile Where to direct the messages provided by the workers. When working on a local
computer, "" prints the worker’s messages in the console. A text file path will
append worker’s messages on the given file. Default: /dev/null en Linux and
nul: on windows.

Value

A list ready to be used as input for the spec argument of the function makeCluster.

Examples

if(interactive()){

beowulf.cluster <- beowulf_cluster(
cluster.ips = c(
"10.42.0.1",
"10.42.0.34",
"10.42.0.104"
),

cluster.cores = c(7, 4, 4),
cluster.user = "blas",
cluster.port = "11000"
)

doParallel::registerDoParallel(cl = beowulf.cluster)

#PARALLELIZED foreach LOOP HERE

parallel::stopCluster(cl = beowulf.cluster)

}
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case_weights Generates case weights for binary data

Description

When the data is binary, setting the ranager argument case.weights helps to minimize the issues
produced by class imbalance. This function takes a binary response variable and returns a vector
of weights populated with the values 1/#zeros and 1/#ones. It is used internally by the function
rf().

Usage

case_weights(data = NULL, dependent.variable.name = NULL)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL

dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

Value

A vector with a length equal to nrow(data) with the respective weights of the cases.

Examples

if(interactive()){

data <- data.frame(
response = c(0, 0, 0, 1, 1)

)

case_weights(
data = data,
dependent.variable.name = "response"

)

}
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default_distance_thresholds

Default distance thresholds to generate spatial predictors

Description

Generates four distance thresholds, from 0 to max(distance.matrix)/2.

Usage

default_distance_thresholds(distance.matrix = NULL)

Arguments

distance.matrix

Distance matrix. Default: NULL.

Value

A numeric vector with distance thresholds.

Examples

if(interactive()){

#loading example distance matrix
data(distance_matrix)

#computing set of default distance thresholds
default_distance_thresholds(distance_matrix)

}

distance_matrix Matrix of distances among ecoregion edges.

Description

Distance matrix (in km) among the edges of the American ecoregions described in the plant_richness_df
dataset.

Usage

data(distance_matrix)
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Format

A numeric matrix with 227 rows and columns.

See Also

plant_richness_df

double_center_distance_matrix

Double centers a distance matrix

Description

Generates a double-centered matrix (row and column means are zero) from the weights of a distance
matrix (see weights_from_distance_matrix()) and a distance threshold. This is a required step
before the computation of Moran’s Eigenvector Maps.

Usage

double_center_distance_matrix (
distance.matrix = NULL,
distance.threshold = 0

)

Arguments

distance.matrix

Distance matrix. Default: NULL.
distance.threshold

Numeric, positive, in the range of values of x. Distances below this value in the
distance matrix are set to 0. Default: 0.

Value

A double-centered matrix of the same dimensions as x.

See Also

weights_from_distance_matrix(), mem(), mem_multithreshold()

Examples

if(interactive()){

#loading the distance matrix
data(distance_matrix)

x <- double_center_distance_matrix(
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distance.matrix = distance_matrix
)
x

}

filter_spatial_predictors

Removes redundant spatial predictors

Description

Removes spatial predictors that are pair-wise correlated with other spatial predictors (which happens
when there are several close distance thresholds), and spatial predictors correlated with non-spatial
predictors.

Usage

filter_spatial_predictors(
data = NULL,
predictor.variable.names = NULL,
spatial.predictors.df = NULL,
cor.threshold = 0.5

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

spatial.predictors.df

Data frame of spatial predictors.

cor.threshold Numeric between 0 and 1, maximum Pearson correlation between any pair of
the selected variables. Default: 0.50

Value

A data frame with non-redundant spatial predictors.

Examples

if(interactive()){

#loading data
data("distance_matrix")
data("plant_richness_df")
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#computing Moran's Eigenvector Maps
spatial.predictors.df <- mem_multithreshold(

distance_matrix = distance_matrix,
distance.thresholds = c(0, 1000)
)

#filtering spatial predictors
spatial.predictors.df <- filter_spatial_predictors(

data = plant_richness_df,
predictor.variable.names = colnames(plant_richness_df)[5:21],
spatial.predictors.df = spatial.predictors.df,
cor.threshold = 0.50
)

}

get_evaluation Gets performance data frame from a cross-validated model

Description

Returns performance metrics produced by rf_evaluate().

Usage

get_evaluation(model)

Arguments

model A model fitted with rf_evaluate().

Value

A data frame with evaluation scores. The following columns are shown:

• model: Identifies the given model. The values are "Full", (original model introduced into
rf_evaluate()), "Training" (model trained on an independent training spatial fold), and
"Testing" (predictive performance of the training model on an independent testing spatial
fold). The performance values of the "Testing" model represent the model performance on
unseen data, and hence its ability to generalize.

• metric: Four values representing different evaluation metrics, "rmse", "nrmse", "r.squared",
and "pseudo.r.squared".

• mean, sd, min, and max: Average, standard deviation, minimum, and maximum of each metric
across the evaluation (cross-validation) iterations.

See Also

rf_evaluate(), plot_evaluation(), print_evaluation()
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Examples

if(interactive()){

#loading data
data(plant_richness_df)
data(distance_matrix)

#fitting a random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#evaluating the model with spatial cross-validation
rf.model <- rf_evaluate(

model = rf.model,
xy = plant_richness_df[, c("x", "y")],
n.cores = 1,
verbose = FALSE

)

#getting evaluation results from the model
x <- get_evaluation(rf.model)
x

}

get_importance Gets the global importance data frame from a model

Description

Gets variable importance scores from rf(), rf_repeat(), and rf_spatial() models.

Usage

get_importance(model)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial(). Default: NULL

Value

A data frame with variable names and importance scores.
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See Also

rf(), rf_repeat(), rf_spatial(), plot_importance(), print_importance().

Examples

if(interactive()){

data(plant_richness_df)
data(distance_matrix)

rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

x <- get_importance(rf.model)
x

}

get_importance_local Gets the local importance data frame from a model

Description

Gets local importance scores from rf(), rf_repeat(), and rf_spatial() models.

Usage

get_importance_local(model)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial(). Default: NULL

Value

A data frame with variable names and local importance scores.

See Also

rf(), rf_repeat(), rf_spatial(), plot_importance(), print_importance().
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Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fittinga random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#getting importance scores
x <- get_importance_local(rf.model)
x

}

get_moran Gets Moran’s I test of model residuals

Description

Returns the Moran’s I test on the residuals of a model produced by rf(), rf_repeat(), or rf_spatial().

Usage

get_moran(model)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial()

Value

A data frame with Moran’s I test results produced by moran_multithreshold().

See Also

moran(), moran_multithreshold(), plot_moran(), print_moran().
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Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fitting a random forest model
rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = c(0, 1000, 2000),
n.cores = 1,
verbose = FALSE

)

#getting Moran's I of the residuals
x <- get_moran(rf.model)

}

get_performance Gets out-of-bag performance scores from a model

Description

Returns the performance slot of an rf(), rf_repeat(), or rf_spatial() model computed on the
out-of-bag data.

Usage

get_performance(model)

Arguments

model Model fitted with rf(), rf_repeat(), or rf_spatial().

Value

A data frame with four columns:

• metric Name of the performance metric.

• median Value of the performance metric. Truly a median only if the model is fitted with
rf_repeat().

• median_absolute_deviation median absolute deviation (MAD), only if the model is fitted
with rf_repeat(), and NA otherwise.
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See Also

print_performance()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance.matrix)

#fitting random forest model
rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#getting model performance
x <- get_performance(rf.model)
x

}

get_predictions Gets model predictions

Description

Returns model predictions from a model fitted with rf(), rf_repeat(), or rf_spatial().

Usage

get_predictions(model)

Arguments

model A model produced by rf(), rf_repeat(), or rf_spatial().

Value

A vector with predictions, or median of the predictions across repetitions if the model was fitted
with rf_repeat().
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Examples

if(interactive()){

#loading example data
data(plant_richness_df)

#fitting a random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
n.cores = 1,
verbose = FALSE

)

#get vector of predictions
x <- get_predictions(rf.model)
x

}

get_residuals Gets model residuals

Description

Returns the residuals of models fitted with rf(), rf_repeat(), or rf_spatial().

Usage

get_residuals(model)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial().

Value

A vector with model residuals, or the median of model residuals across repetitions if the model was
fitted with rf_repeat().

Examples

if(interactive()){

#load example data
data(plant_richness_df)

#fit random forest model
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rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
n.cores = 1,
verbose = FALSE

)

#getting vector with residuals
x <- get_residuals(rf.model)
x

}

get_response_curves Gets data to allow custom plotting of response curves

Description

Generates and returns the data required to plot the response curves of a model fitted with rf(),
rf_repeat(), or rf_spatial().

Usage

get_response_curves(
model = NULL,
variables = NULL,
quantiles = c(0.1, 0.5, 0.9),
grid.resolution = 200,
verbose = TRUE

)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial().

variables Character vector, names of predictors to plot. If NULL, the most important vari-
ables (importance higher than the median) in model are selected. Default: NULL.

quantiles Numeric vector with values between 0 and 1, argument probs of quantile. Quan-
tiles to set the other variables to. Default: c(0.1, 0.5, 0.9)

grid.resolution

Integer between 20 and 500. Resolution of the plotted curve Default: 100

verbose Logical, if TRUE the plot is printed. Default: TRUE

Details

All variables that are not plotted in a particular response curve are set to the values of their respective
quantiles, and the response curve for each one of these quantiles is shown in the plot.
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Value

A data frame with the following columns:

• response: Predicted values of the response, obtained with stats::predict().

• predictor: Values of the given predictor.

• quantile: Grouping column, values of the quantiles at which the other predictors are set to
generate the response curve.

• model: Model number, only relevant if the model was produced with rf_repeat().

• predictor.name: Grouping variable, name of the predictor.

• response.name: Grouping variable, name of the response variable.

See Also

plot_response_curves()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)

#fitting random forest model
out <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
n.cores = 1,
verbose = FALSE

)

#getting data frame with response curves
p <- get_response_curves(out)
head(p)

}

get_spatial_predictors

Gets the spatial predictors of a spatial model

Description

Returns spatial predictors from a model fitted with rf_spatial() in order of importance.

Usage

get_spatial_predictors(model)
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Arguments

model A model fitted with rf_spatial().

Value

A data frame with the spatial predictors included in the model.

Examples

if(interactive()){

#loading example data
data(distance_matrix)
data(plant_richness_df)

#fittind spatial model
model <- rf_spatial(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = c(0, 1000),
n.cores = 1,
method = "mem.moran.sequential"

)

#getting data frame with the selected spatial predictors
spatial.predictors <- get_spatial_predictors(model)
head(spatial.predictors)

}

is_binary Checks if dependent variable is binary with values 1 and 0

Description

Returns TRUE if dependent.variable.name is a binary variable with the values 1 and 0.

Usage

is_binary(data = NULL, dependent.variable.name = NULL)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL
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Value

Logical.

Examples

if(interactive()){

#dummy data frame
data <- data.frame(
response = c(0, 0, 0, 1, 1)

)

#checking if response is binary
is_binary(

data = data,
dependent.variable.name = "response"

)

}

make_spatial_fold Makes one training and one testing spatial folds

Description

Used internally by make_spatial_folds() and rf_evaluate(). Uses the coordinates of a point
xy.i to generate two spatially independent data folds from the data frame xy. It does so by growing
a rectangular buffer from xy.i until a number of records defined by training.fraction is inside
the buffer. The indices of these records are then stored as "training" in the output list. The indices
of the remaining records outside of the buffer are stored as "testing". These training and testing
records can be then used to evaluate a model on independent data via cross-validation.

Usage

make_spatial_fold(
data = NULL,
dependent.variable.name = NULL,
xy.i = NULL,
xy = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
training.fraction = 0.8

)
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Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

xy.i One row data frame with at least three columns: "x" (longitude), "y" (latitude),
and "id" (integer, id of the record). Can be a row of xy. Default: NULL.

xy A data frame with at least three columns: "x" (longitude), "y" (latitude), and
"id" (integer, index of the record). Default: NULL.

distance.step.x

Numeric, distance step used during the growth in the x axis of the buffers defin-
ing the training folds. Default: NULL (1/1000th the range of the x coordinates).

distance.step.y

Numeric, distance step used during the growth in the y axis of the buffers defin-
ing the training folds. Default: NULL (1/1000th the range of the y coordinates).

training.fraction

Numeric, fraction of the data to be included in the training fold, Default: 0.8.

Value

A list with two slots named training and testing with the former having the indices of the
training records selected from xy, and the latter having the indices of the testing records.

See Also

make_spatial_folds(), rf_evaluate()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)

#getting case coordinates
xy <- plant_richness_df[, 1:3]
colnames(xy) <- c("id", "x", "y")

#building a spatial fold centered in the first pair of coordinates
out <- make_spatial_fold(
xy.i = xy[1, ],
xy = xy,
training.fraction = 0.6

)

#indices of the training and testing folds
out$training
out$testing
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#plotting the data
plot(xy[ c("x", "y")], type = "n", xlab = "", ylab = "")
#plots training points
points(xy[out$training, c("x", "y")], col = "red4", pch = 15)
#plots testing points
points(xy[out$testing, c("x", "y")], col = "blue4", pch = 15)
#plots xy.i
points(xy[1, c("x", "y")], col = "black", pch = 15, cex = 2)

}

make_spatial_folds Makes training and testing spatial folds

Description

Applies make_spatial_fold() to every record in a data frame xy.selected to generate as many
spatially independent folds over the dataset xy as rows are in xy.selected.

Usage

make_spatial_folds(
data = NULL,
dependent.variable.name = NULL,
xy.selected = NULL,
xy = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
training.fraction = 0.75,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

xy.selected Data frame with at least three columns: "x" (longitude), "y" (latitude), and "id"
(integer, id of the record). Usually a subset of xy. Usually the result of applying
thinning() or thinning_til_n() to ’xy’ Default: NULL.

xy data frame with at least three columns: "x" (longitude), "y" (latitude), and "id"
(integer, index of the record). Default: NULL.

distance.step.x

Numeric, distance step used during the growth in the x axis of the buffers defin-
ing the training folds. Default: NULL (1/1000th the range of the x coordinates).
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distance.step.y

Numeric, distance step used during the growth in the y axis of the buffers defin-
ing the training folds. Default: NULL (1/1000th the range of the y coordinates).

training.fraction

numeric, fraction of the data to be included in the growing buffer as training
data, Default: 0.75

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A list with as many slots as rows are in xy.selected. Each slot has two slots named training and
testing, with the former having the indices of the training records selected from xy, and the latter
having the indices of the testing records.

See Also

make_spatial_fold(), rf_evaluate()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)

#getting case coordinates
xy <- plant_richness_df[, 1:3]
colnames(xy) <- c("id", "x", "y")

#thining til 20 cases
xy.selected <- thinning_til_n(
xy = xy,
n = 20
)

#making spatial folds centered on these 20 cases
out <- make_spatial_folds(

xy.selected = xy.selected,
xy = xy,
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distance.step = 0.05, #degrees
training.fraction = 0.6,
n.cores = 1

)

#plotting training and testing folds
plot(xy[ c("x", "y")], type = "n", xlab = "", ylab = "")
#plots training points
points(xy[out[[10]]$training, c("x", "y")], col = "red4", pch = 15)
#plots testing points
points(xy[out[[10]]$testing, c("x", "y")], col = "blue4", pch = 15)
#plots xy.i
points(xy[10, c("x", "y")], col = "black", pch = 15, cex = 2)

}

mem Moran’s Eigenvector Maps of a distance matrix

Description

Computes the positive Moran’s Eigenvector Maps of a distance matrix.

Usage

mem(
distance.matrix = NULL,
distance.threshold = 0,
colnames.prefix = "mem"

)

Arguments

distance.matrix

Distance matrix. Default: NULL.
distance.threshold

Numeric vector with distance thresholds defining different neighborhood extents
within the distance matrix, Default: 0

colnames.prefix

Character, name prefix for the output columns. Default: "mem"

Details

Takes the distance matrix x, double-centers it with double_center_distance_matrix(), applies
eigen, and returns eigenvectors with positive normalized eigenvalues (a.k.a Moran’s Eigenvector
Maps, or MEMs). These MEMs are later used as spatial predictors by rf_spatial().

Value

A data frame with positive Moran’s Eigenvector Maps.
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See Also

mem_multithreshold(), rf_spatial()

Examples

if(interactive()){

#loading example distance matrix
data(distance_matrix)

#Moran's Eigenvector Maps of the distance matrix
mem <- mem(x = distance_matrix)

}

mem_multithreshold Moran’s Eigenvector Maps for different distance thresholds

Description

Computes Moran’s Eigenvector Maps of a distance matrix (using mem()) over different distance
thresholds.

Usage

mem_multithreshold(
distance.matrix = NULL,
distance.thresholds = NULL,
max.spatial.predictors = NULL

)

Arguments

distance.matrix

Distance matrix. Default: NULL.
distance.thresholds

Numeric vector with distance thresholds defining neighborhood in the distance
matrix, Default: NULL.

max.spatial.predictors

Maximum number of spatial predictors to generate. Only useful to save memory
when the distance matrix x is very large. Default: NULL.

Details

The function takes the distance matrix x, computes its weights at difference distance thresholds,
double-centers the resulting weight matrices with double_center_distance_matrix(), applies
eigen to each double-centered matrix, and returns eigenvectors with positive normalized eigenvalues
for different distance thresholds.
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Value

A data frame with as many rows as the distance matrix x containing positive Moran’s Eigenvec-
tor Maps. The data frame columns are named "spatial_predictor_DISTANCE_COLUMN", where
DISTANCE is the given distance threshold, and COLUMN is the column index of the given spatial
predictor.

Examples

if(interactive()){

#loading example data
data(distance_matrix)

#computing Moran's eigenvector maps for 0, 1000, and 2000 km
mem.df <- mem_multithreshold(
distance.matrix = distance_matrix,
distance.thresholds = c(0, 1000, 2000)
)

head(mem.df)

}

moran Moran’s I test

Description

Computes the spatial correlation coefficient (Moran’s I) of a vector given a distance matrix, and a
distance threshold used to define "neighborhood".

Usage

moran(
x = NULL,
distance.matrix = NULL,
distance.threshold = NULL,
verbose = TRUE

)

Arguments

x Numeric vector, generally model residuals, Default: NULL
distance.matrix

Distance matrix among cases in x. The number of rows of this matrix must be
equal to the length of x. Default: NULL

distance.threshold

numeric value in the range of values available in distance.matrix. Distances
below such threshold are set to 0. Default: NULL (which defaults to 0).

verbose Logical, if TRUE, prints a Moran’s I plot. Default: TRUE
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Details

Inspired in the Moran.I() function of the ape package.

Value

A list with three named slots:

• test: Data frame with observed and expected Moran’s I values, p-value, and interpretation.

• plot: Moran’s plot of the vector x against the spatial lags of x.

• plot.df: Data used in the Moran’s plot.

See Also

moran_multithreshold()

Examples

if(interactive()){

#loading example data
data(distance_matrix)
data(plant_richness)

#Moran's I of the response variable
out <- moran(

x = plant_richness$richness_species_vascular,
distance.matrix = distance_matrix
)

out

}

moran_multithreshold Moran’s I test on a numeric vector for different neighborhoods

Description

Applies moran() to different distance thresholds at the same time.

Usage

moran_multithreshold(
x = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
verbose = TRUE

)

https://cran.r-project.org/package=ape
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Arguments

x Numeric vector, generally model residuals, Default: NULL
distance.matrix

Distance matrix among cases in x. The number of rows of this matrix must be
equal to the length of x. Default: NULL

distance.thresholds

Numeric vector, distances below each value are set to 0 on separated copies
of the distance matrix for the computation of Moran’s I at different neigh-
borhood distances. If NULL, it defaults to seq(0, max(distance.matrix)/4,
length.out = 2). Default: NULL

verbose Logical, if TRUE, plots Moran’s I values for each distance threshold. Default:
TRUE

Details

Using different distance thresholds helps to take into account the uncertainty about what "neigh-
borhood" means in ecological systems (1000km in geological time means little, but 100m might be
quite a long distance for a tree to disperse seeds over), and allows to explore spatial autocorrelation
of model residuals for several minimum-distance criteria at once.

Value

A named list with the slots:

• df: Data frame with the results of moran per distance threshold.

• plot: A plot of Moran’s I across distance thresholds.

• max.moran: Maximum value of Moran’s I across thresholds.

• max.moran.distance.threshold: Distance threshold with the maximum Moran’s I value.

See Also

moran()

Examples

if(interactive()){

#loading example data
data(distance_matrix)
data(plant_richness)

#computing Moran's I for the response variable at several reference distances
out <- moran_multithreshold(
x = plant_richness$richness_species_vascular,
distance.matrix = distance_matrix,
distance.thresholds = c(0, 100, 1000, 10000),
plot = TRUE
)

out
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}

objects_size Shows size of objects in the R environment

Description

Shows the size of the objects currently in the R environment. Helps to locate large objects cluttering
the R environment and/or causing memory problems during the execution of large workflows.

Usage

objects_size(n = 10)

Arguments

n Number of objects to show, Default: 10

Value

A data frame with the row names indicating the object name, the field ’Type’ indicating the object
type, ’Size’ indicating the object size, and the columns ’Length/Rows’ and ’Columns’ indicating
the object dimensions if applicable.

Examples

if(interactive()){

#creating dummy objects
x <- matrix(runif(100), 10, 10)
y <- matrix(runif(10000), 100, 100)

#reading their in-memory size
objects_size()

}
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optimization_function Optimization equation to select spatial predictors

Description

Optimizes the selection of spatial predictors using two different methods: "moran.i", and "p.value".

Usage

optimization_function(
x = NULL,
weight.r.squared = NULL,
weight.penalization.n.predictors = NULL,
optimization.method = "moran.i"

)

Arguments

x Optimization data frame generated internally by select_spatial_predictors_sequential()
or select_spatial_predictors_recursive(). Default: NULL

weight.r.squared

Numeric between 0 and 1, weight of R-squared in the optimization process.
Default: NULL

weight.penalization.n.predictors

Numeric between 0 and 1, weight of the penalization on the number of added
spatial predictors. Default: NULL

optimization.method

Character, one of "moran.i", and "p.value". Default: "moran.i"

Details

The method "moran.i" tries to maximize 1 - Moran's I while taking into account the R-squared of
the model and a penalization on the number of introduced spatial predictors through the expression

(1 - Moran’s I) + w1 * r.squared - w2 * penalization

The method "p.value" uses a binary version of the p-values of Moran’s I (1 if >= 0.05, 0 otherwise),
and uses the expression

max(1 - Moran’s I, binary p-value) + w1 * r.squared - w2 * penalization

The "moran.i" method generally selects more spatial predictors than the "p.value" method.

Value

A numeric vector with the optimization criteria.

See Also

select_spatial_predictors_recursive(), select_spatial_predictors_sequential()
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pca Principal Components Analysis

Description

Extracts all factors of a principal component analysis of a matrix or data frame. Just a convenient
wrapper for prcomp.

Usage

pca(
x = NULL,
colnames.prefix = "pca_factor"

)

Arguments

x numeric matrix or data frame, Default: NULL
colnames.prefix

character, name prefix for the output columns, Default: ’pca_factor’

Details

Columns in x with zero variance are removed before computing the PCA.

Value

A data frame with the PCA factors of x.

See Also

pca_multithreshold()

Examples

if(interactive()){

#load example distance matrix
data(distance_matrix)

#PCA of the distance matrix
out <- pca(x = distance_matrix)
out

}
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pca_multithreshold PCA of a distance matrix over distance thresholds

Description

Computes PCA factors of a distance matrix over different distance thresholds to generate spatial
predictors for a model fitted with rf_spatial().

Usage

pca_multithreshold(
distance.matrix = NULL,
distance.thresholds = NULL,
max.spatial.predictors = NULL

)

Arguments

distance.matrix

Distance matrix. Default: NULL
distance.thresholds

Numeric vector with distance thresholds defining neighborhood in the distance
matrix, Default: 0

max.spatial.predictors

Integer, maximum number of spatial predictors to generate. Only useful when
the distance matrix x is very large. Default: NULL

Details

The distance matrix is converted into weights with weights_from_distance_matrix() before
computing the PCA. This produces more meaningful spatial predictors than using the distance ma-
trix as is.

Value

A data frame with the PCA factors of the thresholded matrix. The data frame columns are named
"spatial_predictor_DISTANCE_COLUMN", where DISTANCE is the given distance threshold,
and COLUMN is the column index of the given predictor.

See Also

pca()
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Examples

if(interactive()){

#loading example distance matrix
load(distance_matrix)

#PCA factors of the distance matrix for two reference distances
x <- pca_multithreshold(
distance.matrix = distance_matrix,
distance.thresholds = c(0, 1000)
)

head(x)

}

plant_richness_df Plant richness and predictors of American ecoregions

Description

Richness of vascular plants of the American ecoregions as defined in Ecoregions 2017.

Usage

data(plant_richness_df)

Format

A data frame with 227 rows and 22 columns:

• ecoregion_id: Id of the ecoregion).

• x: Longitude in degrees (WGS84).

• y: Latitude in degrees (WGS84).

• richness_species_vascular: Number of vascular species found in the ecoregion. Re-
sponse variable.

• bias_area_km2: Area of the ecoregion in squared kilometers.

• bias_species_per_record: Number of species divided by the number of spatial GBIF
records available in the ecoregion as a measure of sampling bias.

• climate_aridity_index_average: Average of the ecoregion.

• climate_hypervolume: Volume of the climatic envelope of the ecoregion, computed with the
hypervolume package.

• climate_velocity_lgm_average: Average climate velocity of the ecoregion since the Last
Glacial Maximum.

• neighbors_count: Number of immediate neighbors of the ecoregion as a measure of con-
nectivity/isolation.

https://ecoregions2017.appspot.com/
https://cran.r-project.org/package=hypervolume
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• neighbors_percent_shared_edge: Percentage of shared edge with the neighbors as a mea-
sure of connectivity/isolation.

• human_population_density: Population density of the ecoregion.

• topography_elevation_average: Average elevation of the ecoregion.

• landcover_herbs_percent_average: Average cover percentage of herbs extracted from
MODIS Vegetation Continuous Fields.

• fragmentation_cohesion: Geographic fragmentation index of the ecoregion as computed
with the R package landscapemetrics.

• fragmentation_division: Another fragmentation index.

• neighbors_area: Total area of the ecoregions’s immediate neighbors.

• human_population: Human population in the ecoregion.

• human_footprint_average: Average human footprint in the ecoregion.

• climate_bio1_average: Average mean annual temperature.

• climate_bio15_minimum: Average precipitation seasonality.

See Also

distance_matrix

plot_evaluation Plots the results of a spatial cross-validation

Description

Plots the results of an spatial cross-validation performed with rf_evaluate().

Usage

plot_evaluation(
model,
fill.color = viridis::viridis(
3,
option = "F",
alpha = 0.8,
direction = -1
),

line.color = "gray30",
verbose = TRUE,
notch = TRUE

)

https://CRAN.R-project.org/package=landscapemetrics
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Arguments

model A model resulting from rf_evaluate().

fill.color Character vector with three hexadecimal codes (e.g. "#440154FF" "#21908CFF"
"#FDE725FF"), or function generating a palette (e.g. viridis::viridis(3)).
Default: viridis::viridis(3, option = "F", alpha = 0.8, direction = -1)

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

verbose Logical, if TRUE the plot is printed. Default: TRUE

notch Logical, if TRUE, boxplot notches are plotted. Default: TRUE

Value

A ggplot.

See Also

rf_evaluate(), get_evaluation(), print_evaluation().

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fitting a random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#evaluating the model with spatial cross-validation
rf.model <- rf_evaluate(

model = rf.model,
xy = plant_richness_df[, c("x", "y")],
n.cores = 1

)

#plotting the evaluation results
plot_evaluation(rf.model)

}
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plot_importance Plots the variable importance of a model

Description

Plots variable importance scores of rf(), rf_repeat(), and rf_spatial() models. Distribu-
tions of importance scores produced with rf_repeat() are plotted using ggplot2::geom_violin,
which shows the median of the density estimate rather than the actual median of the data. How-
ever, the violin plots are ordered from top to bottom by the real median of the data to make
small differences in median importance easier to spot. Ths function does not plot the result of
rf_importance() yet, but you can find it under model$importance$cv.per.variable.plot.

Usage

plot_importance(
model,
fill.color = viridis::viridis(
100,
option = "F",
direction = -1,
alpha = 1,
end = 0.9

),
line.color = "white",
verbose = TRUE

)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial(), or a data frame with
variable importance scores (only for internal use within the package functions).

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1, alpha = 0.8, end = 0.9)

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "white"

verbose Logical, if TRUE, the plot is printed. Default: TRUE

Value

A ggplot.

See Also

print_importance(), get_importance()
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Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fitting a random forest model
rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#plotting variable importance scores
plot_importance(model = rf.model)

}

plot_moran Plots a Moran’s I test of model residuals

Description

Plots the results of spatial autocorrelation tests for a variety of functions within the package. The
x axis represents the Moran’s I estimate, the y axis contains the values of the distance thresholds,
the dot sizes represent the p-values of the Moran’s I estimate, and the red dashed line represents the
theoretical null value of the Moran’s I estimate.

Usage

plot_moran(
model,
point.color = viridis::viridis(
100,
option = "F",
direction = -1

),
line.color = "gray30",
option = 1,
ncol = 1,
verbose = TRUE

)
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Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial(), or a data frame
generated by moran(). Default: NULL

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

option Integer, type of plot. If 1 (default) a line plot with Moran’s I and p-values across
distance thresholds is returned. If 2, scatterplots of residuals versus lagged resid-
uals per distance threshold and their corresponding slopes are returned. In mod-
els fitted with rf_repeat(), the residuals and lags of the residuals are computed
from the median residuals across repetitions. Option 2 is disabled if x is a data
frame generated by moran().

ncol Number of columns of the plot. Only relevant when option = 2. Argument
ncol of wrap_plots.

verbose Logical, if TRUE, the resulting plot is printed, Default: TRUE

Value

A ggplot.

See Also

moran(), moran_multithreshold()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance.matrix)

#fitting a random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = c(0, 1000, 2000),
n.cores = 1,
verbose = FALSE

)

#Incremental/multiscale Moran's I
plot_moran(rf.model)
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#Moran's scatterplot
plot_moran(rf.model, option = 2)

}

plot_optimization Optimization plot of a selection of spatial predictors

Description

Plots optimization data frames produced by select_spatial_predictors_sequential() and
select_spatial_predictors_recursive().

Usage

plot_optimization(
model,
point.color = viridis::viridis(
100,
option = "F",
direction = -1

),
verbose = TRUE

)

Arguments

model A model produced by rf_spatial(), or an optimization data frame produced
by select_spatial_predictors_sequential() or select_spatial_predictors_recursive().

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1)

verbose Logical, if TRUE the plot is printed. Default: TRUE

Details

If the method used to fit a model with rf_spatial() is "hengl", the function returns nothing, as
this method does not require optimization.

Value

A ggplot.
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Examples

if(interactive()){

#loading example data
data(distance_matrix)
data(plant_richness_df)

#names of the response and predictors
dependent.variable.name <- "richness_species_vascular"
predictor.variable.names <- colnames(plant_richness_df)[5:21]

#spatial model
model <- rf_spatial(
data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
distance.matrix = distance_matrix,
distance.thresholds = 0,
method = "mem.moran.sequential",
n.cores = 1,
seed = 1

)

#plotting selection of spatial predictors
plot_optimization(model = model)

}

plot_residuals_diagnostics

Plot residuals diagnostics

Description

Plots normality and autocorrelation tests of model residuals.

Usage

plot_residuals_diagnostics(
model,
point.color = viridis::viridis(100, option = "F"),
line.color = "gray10",
fill.color = viridis::viridis(4, option = "F", alpha = 0.95)[2],
option = 1,
ncol = 1,
verbose = TRUE

)
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Arguments

model A model produced by rf(), rf_repeat(), or rf_spatial().

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

fill.color Character string, fill color of the bars produced by ggplot2::geom_histogram().
Default: viridis::viridis(4, option = "F", alpha = 0.95 )[2]

option (argument of plot_moran()) Integer, type of plot. If 1 (default) a line plot with
Moran’s I and p-values across distance thresholds is returned. If 2, scatterplots
of residuals versus lagged residuals per distance threshold and their correspond-
ing slopes are returned. In models fitted with rf_repeat(), the residuals and
lags of the residuals are computed from the median residuals across repetitions.
Option 2 is disabled if x is a data frame generated by moran().

ncol (argument of plot_moran()) Number of columns of the Moran’s I plot if option
= 2.

verbose Logical, if TRUE, the resulting plot is printed, Default: TRUE

Value

A patchwork object.

Examples

if(interactive()){

#load example data
data(plant_richness_df)
data(distance_matrix)

#fit a random forest model
x <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
n.cores = 1

)

#residuals diagnostics
plot_residuals_diagnostics(x)

}
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plot_response_curves Plots the response curves of a model.

Description

Plots the response curves of models fitted with rf(), rf_repeat(), or rf_spatial().

Usage

plot_response_curves(
model = NULL,
variables = NULL,
quantiles = c(0.1, 0.5, 0.9),
grid.resolution = 200,
line.color = viridis::viridis(length(quantiles), option = "F", end = 0.9),
ncol = 2,
show.data = FALSE,
verbose = TRUE

)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial().
variables Character vector, names of predictors to plot. If NULL, the most important vari-

ables (importance higher than the median) in x are selected. Default: NULL.
quantiles Numeric vector with values between 0 and 1, argument probs of quantile. Quan-

tiles to set the other variables to. Default: c(0.1, 0.5, 0.9)
grid.resolution

Integer between 20 and 500. Resolution of the plotted curve Default: 100
line.color Character vector with colors, or function to generate colors for the lines repre-

senting quantiles. Must have the same number of colors as quantiles are de-
fined. Default: viridis::viridis(length(quantiles), option = "F", end
= 0.9)

ncol Integer, argument of wrap_plots. Defaults to the rounded squared root of the
number of plots. Default: 2

show.data Logical, if TRUE, the observed data is plotted along with the response curves.
Default: FALSE

verbose Logical, if TRUE the plot is printed. Default: TRUE

Details

All variables that are not plotted in a particular response curve are set to the values of their respective
quantiles, and the response curve for each one of these quantiles is shown in the plot. When the input
model was fitted with rf_repeat() with keep.models = TRUE, then the plot shows the median of
all model runs, and each model run separately as a thinner line. The output list can be plotted all at
once with patchwork::wrap_plots(p) or cowplot::plot_grid(plotlist = p), or one by one
by extracting each plot from the list.
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Value

A list with slots named after the selected variables, with one ggplot each.

See Also

plot_response_surface()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)

#fitting a random forest model
m <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
n.cores = 1,
verbose = FALSE

)

#response curves of most important predictors
plot_response_curves(model = m)

}

plot_response_surface Plots the response surfaces of a random forest model

Description

Plots response surfaces for any given pair of predictors in a rf(), rf_repeat(), or rf_spatial()
model.

Usage

plot_response_surface(
model = NULL,
a = NULL,
b = NULL,
quantiles = 0.5,
grid.resolution = 100,
point.size.range = c(0.5, 2.5),
point.alpha = 1,
fill.color = viridis::viridis(100, option = "F", direction = -1, alpha = 0.9),
point.color = "gray30",
verbose = TRUE

)
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Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial(). Default NULL

a Character string, name of a model predictor. If NULL, the most important variable
in model is selected. Default: NULL

b Character string, name of a model predictor. If NULL, the second most important
variable in model is selected. Default: NULL

quantiles Numeric vector between 0 and 1. Argument probs of the function quantile.
Quantiles to set the other variables to. Default: 0.5

grid.resolution

Integer between 20 and 500. Resolution of the plotted surface Default: 100
point.size.range

Numeric vector of length 2 with the range of point sizes used by geom_point.
Using c(-1, -1) removes the points. Default: c(0.5, 2.5)

point.alpha Numeric between 0 and 1, transparency of the points. Setting it to 0 removes all
points. Default: 1.

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1, alpha = 0.9)

point.color Character vector with a color name (e.g. "red4"). Default: gray30

verbose Logical, if TRUE the plot is printed. Default: TRUE

Details

All variables that are not a or b in a response curve are set to the values of their respective quantiles
to plot the response surfaces. The output list can be plotted all at once with patchwork::wrap_plots(p)
or cowplot::plot_grid(plotlist = p), or one by one by extracting each plot from the list.

Value

A list with slots named after the selected quantiles, each one with a ggplot.

See Also

plot_response_curves()

Examples

if(interactive()){

#load example data
data(plant_richness_df)

#fit random forest model
out <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
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n.cores = 1,
verbose = FALSE

)

#plot interactions between most important predictors
plot_response_surfaces(x = out)

}

plot_training_df Scatterplots of a training data frame

Description

Plots the dependent variable against each predictor.

Usage

plot_training_df(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
ncol = 4,
method = "loess",
point.color = viridis::viridis(100, option = "F"),
line.color = "gray30"

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Optionally, the result of
auto_cor() or auto_vif() Default: NULL

ncol Number of columns of the plot. Argument ncol of wrap_plots.
method Method for geom_smooth, one of: "lm", "glm", "gam", "loess", or a function,

for example mgcv::gam Default: ’loess’
point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character

vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")
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line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

Value

A wrap_plots object.

Examples

if(interactive()){

#load example data
data(plant_richness_df)

#scatterplot of the training data
plot_training_data(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21]
)

}

plot_training_df_moran

Moran’s I plots of a training data frame

Description

Plots the the Moran’s I test of the response and the predictors in a training data frame.

Usage

plot_training_df_moran(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
fill.color = viridis::viridis(100, option = "F", direction = -1),
point.color = "gray30"

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
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dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Optionally, the result of
auto_cor() or auto_vif() Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector, distances below each value are set to 0 on separated copies
of the distance matrix for the computation of Moran’s I at different neigh-
borhood distances. If NULL, it defaults to seq(0, max(distance.matrix)/4,
length.out = 2). Default: NULL

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1)

point.color Character vector with a color name (e.g. "red4"). Default: gray30

Value

A ggplot2 object.

Examples

if(interactive()){

#load example data
data(plant_richness_df)
data(distance_matrix)

#plot Moran's I of training data
plot_moran_training_data(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = c(

0,
2000,
4000,
6000,
8000
)

)
}
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plot_tuning Plots a tuning object produced by rf_tuning()

Description

Plots the tuning of the hyperparameters num.trees, mtry, and min.node.size performed by
rf_tuning().

Usage

plot_tuning(
model,
point.color = viridis::viridis(
100,
option = "F"

),
verbose = TRUE

)

Arguments

model A model fitted with rf_tuning(). Default: NULL

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")

verbose Logical, if TRUE, the plot is printed. Default: TRUE

Value

A ggplot.

See Also

rf_tuning()

Examples

if(interactive()){

#load example data
data(plant_richness_df)

#fit random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],



52 prepare_importance_spatial

distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#tune random forest model
rf.model <- rf_tuning(
model = rf.model,
xy = plant_richness_df[, c("x", "y")],
n.cores = 1,
verbose = FALSE

)

#generate tuning plot
plot_tuning(model = rf.model)

}

prepare_importance_spatial

Prepares variable importance objects for spatial models

Description

Prepares variable importance data frames and plots for models fitted with rf_spatial().

Usage

prepare_importance_spatial(model)

Arguments

model An importance data frame with spatial predictors, or a model fitted with rf_spatial().

Value

A list with importance data frames in different formats depending on whether the model was fitted
with rf() or rf_repeat().

Examples

if(interactive()){

#loading example data
data(distance_matrix)
data(plant_richness_df)

#fittind spatial model
model <- rf_spatial(
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data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1

)

#preparing the importance data frame
importance <- prepare_importance_spatial(model)
names(importance)

}

print.rf Custom print method for random forest models

Description

Custom print method for models fitted with rf(), rf_repeat(), and rf_spatial().

Usage

## S3 method for class 'rf'
print(x, ...)

Arguments

x A model fitted with rf(), rf_repeat(), or rf_spatial().

... Additional arguments for print methods.

Value

Prints model details to the console.

See Also

print_evaluation(), print_importance(), print_moran(), print_performance()

Examples

if(interactive()){

#loading example data
data("plant_richness_df")
data("distance_matrix")

#fitting random forest model
rf.model <- rf(
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data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1

)

#printing model summary
print(rf.model)

}

print_evaluation Prints cross-validation results

Description

Prints the results of an spatial cross-validation performed with rf_evaluate().

Usage

print_evaluation(model)

Arguments

model A model resulting from rf_evaluate().

Value

A table printed to the standard output.

See Also

plot_evaluation(), get_evaluation()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fitting random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
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n.cores = 1,
verbose = FALSE

)

#evaluation with spatial cross-validation
rf.model <- rf_evaluate(

model = rf.model,
xy = plant_richness_df[, c("x", "y")],
n.cores = 1

)

#checking evaluation results
print_evaluation(rf.model)

}

print_importance Prints variable importance

Description

Prints variable importance scores from rf, rf_repeat, and rf_spatial models.

Usage

print_importance(
model,
verbose = TRUE

)

Arguments

model A model fitted with rf, rf_repeat, or rf_spatial.

verbose Logical, if TRUE, variable importance is returned. Default: TRUE

Value

A table printed to the standard output.

See Also

plot_importance(), get_importance()
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Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance.matrix)

#fitting a random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#printing variable importance scores
print_importance(model = rf.model)

}

print_moran Prints results of a Moran’s I test

Description

Prints the results of a Moran’s I test on the residuals of a model.

Usage

print_moran(
model,
caption = NULL,
verbose = TRUE

)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial().

caption Character, caption of the output table, Default: NULL

verbose Logical, if TRUE, the resulting table is printed into the console, Default: TRUE

Value

Prints a table in the console using the huxtable package.
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See Also

moran(), moran_multithreshold(), get_moran(), plot_moran()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance.matrix)

#fitting random forest model
rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = c(0, 1000, 2000),
n.cores = 1,
verbose = FALSE

)

#printing Moran's I of model's residuals
print_moran(rf.model)

}

print_performance print_performance

Description

Prints the performance slot of a model fitted with rf(), rf_repeat(), or rf_spatial(). For
models fitted with rf_repeat() it shows the median and the median absolute deviation of each
performance measure.

Usage

print_performance(model)

Arguments

model Model fitted with rf(), rf_repeat(), or rf_spatial().

Value

Prints model performance scores to the console.
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See Also

print_performance(), get_performance()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance.matrix)

#fitting a random forest model
rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#printing performance scores
print_performance(rf.model)

}

rank_spatial_predictors

Ranks spatial predictors

Description

Ranks spatial predictors generated by mem_multithreshold() or pca_multithreshold() by their
effect in reducing the Moran’s I of the model residuals (ranking.method = "effect"), or by their
own Moran’s I (ranking.method = "moran").

In the former case, one model of the type y ~ predictors + spatial_predictor_X is fitted per
spatial predictor, and the Moran’s I of this model’s residuals is compared with the one of the model
without spatial predictors (y ~ predictors), to finally rank the spatial predictor from maximum to
minimum difference in Moran’s I.

In the latter case, the spatial predictors are ordered by their Moran’s I alone (this is the faster option).

In both cases, spatial predictors that are redundant with others at a Pearson correlation > 0.5 and
spatial predictors with no effect (no reduction of Moran’s I or Moran’s I of the spatial predictor
equal or lower than 0) are removed.

This function has been designed to be used internally by rf_spatial() rather than directly by a
user.
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Usage

rank_spatial_predictors(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
ranger.arguments = NULL,
spatial.predictors.df = NULL,
ranking.method = c("moran", "effect"),
reference.moran.i = 1,
verbose = FALSE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

ranger.arguments

List with ranger arguments. See rf or rf_repeat for further details.
spatial.predictors.df

Data frame of spatial predictors.

ranking.method Character, method used by to rank spatial predictors. The method "effect" ranks
spatial predictors according how much each predictor reduces Moran’s I of the
model residuals, while the method "moran" ranks them by their own Moran’s I.
Default: "moran".

reference.moran.i

Moran’s I of the residuals of the model without spatial predictors. Default: 1

verbose Logical, ff TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE
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n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A list with four slots:

• method: Character, name of the method used to rank the spatial predictors.

• criteria: Data frame with two different configurations depending on the ranking method. If
ranking.method = "effect", the columns contain the names of the spatial predictors, the r-
squared of the model, the Moran’s I of the model residuals, the difference between the Moran’s
I of the model including the given spatial predictor, and the Moran’s I of the model fitted
without spatial predictors, and the interpretation of the Moran’s I value. If ranking.method =
"moran", only the name of the spatial predictor and it’s Moran’s I are in the output data frame.

• ranking: Ordered character vector with the names of the spatial predictors selected.

• spatial.predictors.df: data frame with the selected spatial predictors in the order of the
ranking.

Examples

if(interactive()){

#loading distance matrix
data(distance_matrix)

#computing Moran's Eigenvector Maps
mem.df <- mem(
distance.matrix = distance_matrix[1:50, 1:50],
distance.threshold = 0
)

#ranking by the Moran's I of the spatial predictor
rank <- rank_spatial_predictors(
distance.matrix = distance_matrix[1:50, 1:50],
distance.thresholds = 0,
spatial.predictors.df = mem.df,
ranking.method = "moran",
n.cores = 1
)
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#checking Moran's I of MEMs
rank$criteria

#checking rank of MEMs
rank$ranking

}

rescale_vector Rescales a numeric vector into a new range

Description

Rescales a numeric vector to a new range.

Usage

rescale_vector(
x = NULL,
new.min = 0,
new.max = 1,
integer = FALSE

)

Arguments

x Numeric vector. Default: NULL

new.min New minimum value. Default: 0

new.max New maximum value. Default: 1

integer Logical, if TRUE, coerces the output to integer. Default: FALSE

Value

A numeric vector of the same length as x, but with its values rescaled between new.min and
new.max.

Examples

if(interactive()){

out <- rescale_vector(
x = rnorm(100),
new.min = 0,
new.max = 100,
integer = TRUE
)
out

}
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residuals_diagnostics Normality test of a numeric vector

Description

Applies a Shapiro-Wilks test to a numeric vector, and plots the qq plot and the histogram.

Usage

residuals_diagnostics(residuals, predictions)

Arguments

residuals Numeric vector, model residuals.

predictions Numeric vector, model predictions.

Details

The function shapiro.test() has a hard limit of 5000 cases. If the model residuals have more than
5000 cases, then sample(x = residuals, size = 5000) is applied to the model residuals before the
test.

Value

A list with four slots:
/item w W statistic returned by shapiro.test(). /item p.value p-value of the Shapiro test.
/item interpretation Character vector, one of "x is normal", "x is not normal". /item plot
A patchwork plot with the qq plot and the histogram of x.

See Also

ggplot,aes,geom_qq_line,ggtheme,labs,geom_freqpoly,geom_abline plot_annotation

Examples

if(interactive()){

residuals_diagnostics(
residuals = runif(100),
predictions = runif(100)

)

}
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residuals_test Normality test of a numeric vector

Description

Applies a Shapiro-Wilks test to a numeric vector, and returns a list with the statistic W, its p-value,
and a character string with the interpretation.

Usage

residuals_test(residuals)

Arguments

residuals Numeric vector, model residuals.

Value

A list with four slots:
/item w W statistic returned by shapiro.test(). /item p.value p-value of the Shapiro test.
/item interpretation Character vector, one of "x is normal", "x is not normal". /item plot
A patchwork plot with the qq plot and the histogram of x.

See Also

ggplot,aes,geom_qq_line,ggtheme,labs,geom_freqpoly,geom_abline plot_annotation

Examples

if(interactive()){

residuals_test(residuals = runif(100))

}

rf Random forest models with Moran’s I test of the residuals

Description

A convenient wrapper for ranger that completes its output by providing the Moran’s I of the residuals
for different distance thresholds, the rmse and nrmse (as computed by root_mean_squared_error()),
and variable importance scores based on a scaled version of the data generated by scale.
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Usage

rf(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
xy = NULL,
ranger.arguments = NULL,
scaled.importance = FALSE,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Optionally, the result of
auto_cor() or auto_vif(). Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

xy (optional) Data frame or matrix with two columns containing coordinates and
named "x" and "y". It is not used by this function, but it is stored in the slot
ranger.arguments$xy of the model, so it can be used by rf_evaluate() and
rf_tuning(). Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. The ranger arguments x,
y, and formula are disabled. Please, consult the help file of ranger if you are
not familiar with the arguments of this function.
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scaled.importance

Logical, if TRUE, the function scales data with scale and fits a new model to
compute scaled variable importance scores. This makes variable importance
scores of different models somewhat comparable. Default: FALSE

seed Integer, random seed to facilitate reproducibility. If set to a given number, the
returned model is always the same. Default: 1

verbose Boolean. If TRUE, messages and plots generated during the execution of the
function are displayed. Default: TRUE

n.cores Integer, number of cores to use. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). This function
does not use the cluster, but can pass it on to other functions when using the %>%
pipe. It will be stored in the slot cluster of the output list. Default: NULL

Details

Please read the help file of ranger for further details. Notice that the formula interface of ranger
is supported through ranger.arguments, but variable interactions are not allowed (but check
the_feature_engineer()).

Value

A ranger model with several extra slots:

• ranger.arguments: Stores the values of the arguments used to fit the ranger model.

• importance: A list containing a data frame with the predictors ordered by their importance,
a ggplot showing the importance values, and local importance scores (difference in accuracy
between permuted and non permuted variables for every case, computed on the out-of-bag
data).

• performance: performance scores: R squared on out-of-bag data, R squared (cor(observed,
predicted) ^ 2), pseudo R squared (cor(observed, predicted)), RMSE, and normalized RMSE
(NRMSE).

• residuals: residuals, normality test of the residuals computed with residuals_test(), and
spatial autocorrelation of the residuals computed with moran_multithreshold().

Examples

if(interactive()){

#loading example data
data("plant_richness_df")
data("distance_matrix")

#fittind random forest model
out <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
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n.cores = 1
)

class(out)

#data frame with ordered variable importance
out$importance$per.variable

#variable importance plot
out$importance$per.variable.plot

#performance
out$performance

#spatial correlation of the residuals
out$spatial.correlation.residuals$per.distance

#plot of the Moran's I of the residuals for different distance thresholds
out$spatial.correlation.residuals$plot

#predictions for new data as done with ranger models:
predicted <- stats::predict(
object = out,
data = plant_richness_df,
type = "response"

)$predictions

#alternative data input methods
###############################

#ranger.arguments can contain ranger arguments and any other rf argument
my.ranger.arguments <- list(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[8:21],
distance.matrix = distance_matrix,
distance.thresholds = c(0, 1000)
)

#fitting model with these ranger arguments
out <- rf(

ranger.arguments = my.ranger.arguments,
n.cores = 1
)

}

rf_compare Compares models via spatial cross-validation
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Description

Uses rf_evaluate() to compare the performance of several models on independent spatial folds
via spatial cross-validation.

Usage

rf_compare(
models = NULL,
xy = NULL,
repetitions = 30,
training.fraction = 0.75,
metrics = c("r.squared", "pseudo.r.squared", "rmse", "nrmse", "auc"),
distance.step = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
fill.color = viridis::viridis(100, option = "F", direction = -1, alpha = 0.8),
line.color = "gray30",
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

models Named list with models resulting from rf(), rf_spatial(), rf_tuning(), or
rf_evaluate(). Example: models = list(a = model.a, b = model.b). De-
fault: NULL

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". Default: NULL

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

metrics Character vector, names of the performance metrics selected. The possible
values are: "r.squared" (cor(obs, pred) ^ 2), "pseudo.r.squared" (cor(obs,
pred)), "rmse" (sqrt(sum((obs - pred)^2)/length(obs))), "nrmse" (rmse/(quantile(obs,
0.75) - quantile(obs, 0.25))). Default: c("r.squared", "pseudo.r.squared",
"rmse", "nrmse")

distance.step Numeric, argument distance.step of thinning_til_n(). distance step used
during the selection of the centers of the training folds. These fold centers
are selected by thinning the data until a number of folds equal or lower than
repetitions is reached. Its default value is 1/1000th the maximum distance
within records in xy. Reduce it if the number of training folds is lower than
expected.
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distance.step.x

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the x axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the x coordinates).

distance.step.y

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the y axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the y coordinates).

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1)

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A list with three slots:

• comparison.df: Data frame with one performance value per spatial fold, metric, and model.

• spatial.folds: List with the indices of the training and testing records for each evaluation
repetition.

• plot: Violin-plot of comparison.df.

See Also

rf_evaluate()

Examples

if(interactive()){
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#loading example data
data(distance_matrix)
data(plant_richness_df)

#fitting random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1

)

#fitting a spatial model with Moran's Eigenvector Maps
rf.spatial <- rf_spatial(
model = rf.model,
n.cores = 1
)

#comparing the spatial and non spatial models
comparison <- rf_compare(
models = list(
`Non spatial` = rf.model,
Spatial = rf.spatial

),
xy = plant_richness_df[, c("x", "y")],
metrics = c("r.squared", "rmse"),
n.cores = 1
)

}

rf_evaluate Evaluates random forest models with spatial cross-validation

Description

Evaluates the performance of random forest on unseen data over independent spatial folds.

Usage

rf_evaluate(
model = NULL,
xy = NULL,
repetitions = 30,
training.fraction = 0.75,
metrics = c("r.squared", "pseudo.r.squared", "rmse", "nrmse", "auc"),
distance.step = NULL,
distance.step.x = NULL,
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distance.step.y = NULL,
grow.testing.folds = FALSE,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model Model fitted with rf(), rf_repeat(), or rf_spatial().

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If NULL, the function will throw an error. Default: NULL

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

metrics Character vector, names of the performance metrics selected. The possible
values are: "r.squared" (cor(obs, pred) ^ 2), "pseudo.r.squared" (cor(obs,
pred)), "rmse" (sqrt(sum((obs - pred)^2)/length(obs))), "nrmse" (rmse/(quantile(obs,
0.75) - quantile(obs, 0.25))), and "auc" (only for binary responses with
values 1 and 0). Default: c("r.squared", "pseudo.r.squared", "rmse",
"nrmse")

distance.step Numeric, argument distance.step of thinning_til_n(). distance step used
during the selection of the centers of the training folds. These fold centers
are selected by thinning the data until a number of folds equal or lower than
repetitions is reached. Its default value is 1/1000th the maximum distance
within records in xy. Reduce it if the number of training folds is lower than
expected.

distance.step.x

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the x axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the x coordinates).

distance.step.y

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the y axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the y coordinates).

grow.testing.folds

Logic. By default, this function grows contiguous training folds to keep the spa-
tial structure of the data as intact as possible. However, when setting grow.testing.folds
= TRUE, the argument training.fraction is set to 1 - training.fraction,
and the training and testing folds are switched. This option might be useful
when the training data has a spatial structure that does not match well with the
default behavior of the function. Default: FALSE

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.



rf_evaluate 71

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Details

The evaluation algorithm works as follows: the number of repetitions and the input dataset
(stored in model$ranger.arguments$data) are used as inputs for the function thinning_til_n(),
that applies thinning() to the input data until as many cases as repetitions are left, and as sepa-
rated as possible. Each of these remaining records will be used as a "fold center". From that point,
the fold grows, until a number of points equal (or close) to training.fraction is reached. The
indices of the records within the grown spatial fold are stored as "training" in the output list, and the
remaining ones as "testing". Then, for each spatial fold, a "training model" is fitted using the cases
corresponding with the training indices, and predicted over the cases corresponding with the testing
indices. The model predictions on the "unseen" data are compared with the observations, and the
performance measures (R squared, pseudo R squared, RMSE and NRMSE) computed.

Value

A model of the class "rf_evaluate" with a new slot named "evaluation", that is a list with the follow-
ing slots:

• training.fraction: Value of the argument training.fraction.

• spatial.folds: Result of applying make_spatial_folds() on the data coordinates. It is
a list with as many slots as repetitions are indicated by the user. Each slot has two slots
named "training" and "testing", each one having the indices of the cases used on the training
and testing models.

• per.fold: Data frame with the evaluation results per spatial fold (or repetition). It contains
the ID of each fold, it’s central coordinates, the number of training and testing cases, and
the training and testing performance measures: R squared, pseudo R squared (cor(observed,
predicted)), rmse, and normalized rmse.

• per.model: Same data as above, but organized per fold and model ("Training", "Testing", and
"Full").

• aggregated: Same data, but aggregated by model and performance measure.
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Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fitting random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)

#evaluation with spatial cross-validation
rf.model <- rf_evaluate(

model = rf.model,
xy = plant_richness_df[, c("x", "y")],
n.cores = 1

)

#checking evaluation results
plot_evaluation(rf.model)
print_evaluation(rf.model)
x <- get_evaluation(rf.model)

}

rf_importance Contribution of each predictor to model transferability

Description

Evaluates the contribution of the predictors to model transferability via spatial cross-validation.
The function returns the median increase or decrease in a given evaluation metric (R2, pseudo R2,
RMSE, nRMSE, or AUC) when a variable is introduced in a model, by comparing and evaluating
via spatial cross-validation models with and without the given variable. This function was devised
to provide importance scores that would be less sensitive to spatial autocorrelation than those com-
puted internally by random forest on the out-of-bag data. This function is experimental.

Usage

rf_importance(
model = NULL,
xy = NULL,
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repetitions = 30,
training.fraction = 0.75,
metric = c("r.squared", "pseudo.r.squared", "rmse", "nrmse", "auc"),
distance.step = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
fill.color = viridis::viridis(100, option = "F", direction = -1, alpha = 1, end = 0.9),
line.color = "white",
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model Model fitted with rf() and/or rf_spatial(). The function doesn’t work with
models fitted with rf_repeat(). Default: NULL

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If NULL, the function will throw an error. Default: NULL

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

metric Character, nams of the performance metric to use. The possible values are:
"r.squared" (cor(obs, pred) ^ 2), "pseudo.r.squared" (cor(obs, pred)), "rmse"
(sqrt(sum((obs - pred)^2)/length(obs))), "nrmse" (rmse/(quantile(obs,
0.75) - quantile(obs, 0.25))), and "auc" (only for binary responses with
values 1 and 0). Default: "r.squared"

distance.step Numeric, argument distance.step of thinning_til_n(). distance step used
during the selection of the centers of the training folds. These fold centers
are selected by thinning the data until a number of folds equal or lower than
repetitions is reached. Its default value is 1/1000th the maximum distance
within records in xy. Reduce it if the number of training folds is lower than
expected.

distance.step.x

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the x axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the x coordinates).

distance.step.y

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the y axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the y coordinates).

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1, alpha = 0.8, end = 0.9)
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line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "white"

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

The input model with new data in its "importance" slot. The new importance scores are included in
the data frame model$importance$per.variable, under the column names "importance.cv" (me-
dian contribution to transferability over spatial cross-validation repetitions), "importance.cv.mad"
(median absolute deviation of the performance scores over spatial cross-validation repetitions), "im-
portance.cv.percent" ("importance.cv" expressed as a percent, taking the full model’s performance
as baseline), and "importance.cv.mad" (median absolute deviation of "importance.cv"). The plot is
stored as "cv.per.variable.plot".

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)
xy <- plant_richness_df[, c("x", "y")]

#fitting random forest model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
xy = xy,
n.cores = 1,
verbose = FALSE

)
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#computing predictor contribution to model transferability
rf.model <- rf_importance(rf.model)

}

rf_repeat Fits several random forest models on the same data

Description

Fits several random forest models on the same data in order to capture the effect of the algo-
rithm’s stochasticity on the variable importance scores, predictions, residuals, and performance
measures. The function relies on the median to aggregate performance and importance values
across repetitions. It is recommended to use it after a model is fitted (rf() or rf_spatial()),
tuned (rf_tuning()), and/or evaluated (rf_evaluate()). This function is designed to be used af-
ter fitting a model with rf() or rf_spatial(), tuning it with rf_tuning() and evaluating it with
rf_evaluate().

Usage

rf_repeat(
model = NULL,
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
xy = NULL,
ranger.arguments = NULL,
scaled.importance = FALSE,
repetitions = 10,
keep.models = TRUE,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model A model fitted with rf(). If provided, the data and ranger arguments are taken
directly from the model definition (stored in model$ranger.arguments). De-
fault: NULL

data Data frame with a response variable and a set of predictors. Default: NULL
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dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

xy (optional) Data frame or matrix with two columns containing coordinates and
named "x" and "y". It is not used by this function, but it is stored in the slot
ranger.arguments$xy of the model, so it can be used by rf_evaluate() and
rf_tuning(). Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

scaled.importance

Logical. If TRUE, and ’importance = "permutation’, the function scales ’data’
with scale and fits a new model to compute scaled variable importance scores.
Default: FALSE

repetitions Integer, number of random forest models to fit. Default: 10
keep.models Logical, if TRUE, the fitted models are returned in the models slot. Set to FALSE if

the accumulation of models is creating issues with the RAM memory available.
Default: TRUE.

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical, ff TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
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cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A ranger model with several new slots:

• ranger.arguments: Stores the values of the arguments used to fit the ranger model.

• importance: A list containing a data frame with the predictors ordered by their importance,
a ggplot showing the importance values, and local importance scores.

• performance: out-of-bag performance scores: R squared, pseudo R squared, RMSE, and
normalized RMSE (NRMSE).

• pseudo.r.squared: computed as the correlation between the observations and the predic-
tions.

• residuals: residuals, normality test of the residuals computed with residuals_test(), and
spatial autocorrelation of the residuals computed with moran_multithreshold().

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fitting 5 random forest models
out <- rf_repeat(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
repetitions = 5,
n.cores = 1

)

#data frame with ordered variable importance
out$importance$per.variable

#per repetition
out$importance$per.repetition

#variable importance plot
out$importance$per.repetition.plot

#performance
out$performance

#spatial correlation of the residuals for different distance thresholds
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out$spatial.correlation.residuals$per.distance

#plot of the Moran's I of the residuals for different distance thresholds
out$spatial.correlation.residuals$plot

#using a model as an input for rf_repeat()
rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[8:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1
)

#repeating the model 5 times
rf.repeat <- rf_repeat(

model = rf.model,
n.cores = 1
)

rf.repeat$performance
rf.repeat$importance$per.repetition.plot

}

rf_spatial Fits spatial random forest models

Description

Fits spatial random forest models using different methods to generate, rank, and select spatial pre-
dictors acting as proxies of spatial processes not considered by the non-spatial predictors. The end
goal is providing the model with information about the spatial structure of the data to minimize
the spatial correlation (Moran’s I) of the model residuals and generate honest variable importance
scores.

Usage

rf_spatial(
model = NULL,
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
xy = NULL,
ranger.arguments = NULL,
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scaled.importance = TRUE,
method = c("mem.moran.sequential", "mem.effect.sequential", "mem.effect.recursive",

"hengl", "hengl.moran.sequential", "hengl.effect.sequential",
"hengl.effect.recursive", "pca.moran.sequential", "pca.effect.sequential",
"pca.effect.recursive"),

max.spatial.predictors = NULL,
weight.r.squared = NULL,
weight.penalization.n.predictors = NULL,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model A model fitted with rf(). If used, the arguments data, dependent.variable.name,
predictor.variable.names, distance.matrix, distance.thresholds, ranger.arguments,
and scaled.importance are taken directly from the model definition. Default:
NULL

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with distances in the same units as distance.matrix Distances
below each distance threshold are set to 0 on separated copies of the distance
matrix to compute Moran’s I at different neighborhood distances. If NULL, it
defaults to seq(0, max(distance.matrix)/2, length.out = 4) (defined by
default_distance_thresholds()). Default: NULL

xy (optional) Data frame or matrix with two columns containing coordinates and
named "x" and "y". It is not used by this function, but it is stored in the slot
ranger.arguments$xy of the model, so it can be used by rf_evaluate() and
rf_tuning(). Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.
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scaled.importance

Logical. If TRUE, and ’importance = "permutation’, the function scales ’data’
with scale and fits a new model to compute scaled variable importance scores.
Default: TRUE

method Character, method to build, rank, and select spatial predictors. One of:

• "hengl"
• "hengl.moran.sequential" (experimental)
• "hengl.effect.sequential" (experimental)
• "hengl.effect.recursive" (experimental)
• "pca.moran.sequential" (experimental)
• "pca.effect.sequential" (experimental)
• "pca.effect.recursive" (experimental)
• "mem.moran.sequential"
• "mem.effect.sequential"
• "mem.effect.recursive"

max.spatial.predictors

Integer, maximum number of spatial predictors to generate. Useful when mem-
ory problems arise due to a large number of spatial predictors, Default: NULL

weight.r.squared

Numeric between 0 and 1, weight of R-squared in the selection of spatial com-
ponents. See Details, Default: NULL

weight.penalization.n.predictors

Numeric between 0 and 1, weight of the penalization for adding an increasing
number of spatial predictors during selection. Default: NULL

seed Integer, random seed to facilitate reproducibility. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the
function are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Details

The function uses three different methods to generate spatial predictors ("hengl", "pca", and "mem"),
two methods to rank them in order to define in what order they are introduced in the model ("effect"
and "moran), and two methods to select the spatial predictors that minimize the spatial correlation
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of the model residuals ("sequential" and "recursive"). All method names but "hengl" (that uses the
complete distance matrix as predictors in the spatial model) are named by combining a method to
generate the spatial predictors, a method to rank them, and a method to select them, separated by
a point. Examples are "mem.moran.sequential" or "mem.effect.recursive". All combinations are
not possible, since the ranking method "moran" cannot be used with the selection method "recur-
sive" (because the logics behind them are very different, see below). Methods to generate spatial
predictors:

• "hengl": named after the method RFsp presented in the paper "Random forest as a generic
framework for predictive modeling of spatial and spatio-temporal variables", by Hengl et al.
(2018), where the authors propose to use the distance matrix among records as predictors
in spatial random forest models (RFsp method). In this function, all methods starting with
"hengl" use either the complete distance matrix, or select columns of the distance matrix as
spatial predictors.

• "mem": Generates Moran’s Eigenvector Maps, that is, the eigenvectors of the double-centered
weights of the distance matrix. The method is described in "Spatial modelling: a comprehen-
sive framework for principal coordinate analysis of neighbour matrices (PCNM)", by Dray
et al. (2006), and "Statistical methods for temporal and space–time analysis of community
composition data", by Legendre and Gauthier (2014).

• "pca": Computes spatial predictors from the principal component analysis of a weighted
distance matrix (see weights_from_distance_matrix()). This is an experimental method,
use with caution.

Methods to rank spatial predictors (see rank_spatial_predictors()):

• "moran": Computes the Moran’s I of each spatial predictor, selects the ones with positive
values, and ranks them from higher to lower Moran’s I.

• "effect": If a given non-spatial random forest model is defined as y = p1 + ... + pn, being
p1 + ... + pn the set of predictors, for every spatial predictor generated (spX) a spatial model
y = p1 + ... + pn + spX is fitted, and the Moran’s I of its residuals is computed. The spatial
predictors are then ranked by how much they help to reduce spatial autocorrelation between
the non-spatial and the spatial model.

Methods to select spatial predictors:

• "sequential" (see select_spatial_predictors_sequential()): The spatial predictors
are added one by one in the order they were ranked, and once all spatial predictors are in-
troduced, the best first n predictors are selected. This method is similar to the one employed
in the MEM methodology (Moran’s Eigenvector Maps) described in the paper "Spatial mod-
elling: a comprehensive framework for principal coordinate analysis of neighbour matrices
(PCNM)", by Dray et al. (2006), and "Statistical methods for temporal and space–time analy-
sis of community composition data", by Legendre and Gauthier (2014). This method generally
introduces tens of predictors into the model, but usually offers good results.

• "recursive" (see select_spatial_predictors_recursive()): This method tries to find
the smallest combination of spatial predictors that reduce the spatial correlation of the model’s
residuals the most. The algorithm goes as follows: 1. The first ranked spatial predictor is
introduced into the model; 2. the remaining predictors are ranked again using the "effect"
method, using the model in 1. as reference. The first spatial predictor in the resulting ranking
is then introduced into the model, and the steps 1. and 2. are repeated until spatial predictors



82 rf_spatial

stop having an effect in reducing the Moran’s I of the model residuals. This method takes
longer to compute, but generates smaller sets of spatial predictors. This is an experimental
method, use with caution.

Once ranking procedure is completed, an algorithm is used to select the minimal subset of spatial
predictors that reduce the most the Moran’s I of the residuals: for each new spatial predictor intro-
duced in the model, the Moran’s I of the residuals, it’s p-value, a binary version of the p-value (0 if <
0.05 and 1 if >= 0.05), the R-squared of the model, and a penalization linear with the number of spa-
tial predictors introduced (computed as (1 / total spatial predictors) * introduced spatial predictors)
are rescaled between 0 and 1. Then, the optimization criteria is computed as max(1 - Moran's I, p-value binary) + (weight.r.squared * R-squared) - (weight.penalization.n.predictors * penalization).
The predictors from the first one to the one with the highest optimization criteria are then selected
as the best ones in reducing the spatial correlation of the model residuals, and used along with data
to fit the final spatial model.

Value

A ranger model with several new slots:

• ranger.arguments: Values of the arguments used to fit the ranger model.

• importance: A list containing the vector of variable importance as originally returned by
ranger (scaled or not depending on the value of ’scaled.importance’), a data frame with the
predictors ordered by their importance, and a ggplot showing the importance values.

• performance: With the out-of-bag R squared, pseudo R squared, RMSE and NRMSE of the
model.

• residuals: residuals, normality test of the residuals computed with residuals_test(), and
spatial autocorrelation of the residuals computed with moran_multithreshold().

• spatial: A list with four slots:

– method: Character, method used to generate, rank, and select spatial predictors.
– names: Character vector with the names of the selected spatial predictors. Not returned if

the method is "hengl".
– optimization: Criteria used to select the spatial predictors. Not returned if the method

is "hengl".
– plot: Plot of the criteria used to select the spatial predictors. Not returned if the method

is "hengl".

Examples

if(interactive()){

#loading example data
data(distance_matrix)
data(plant_richness_df)

#names of the response and predictors
dependent.variable.name <- "richness_species_vascular"
predictor.variable.names <- colnames(plant_richness_df)[5:21]

#hengl
model <- rf_spatial(
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data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
distance.matrix = distance_matrix,
distance.thresholds = 0,
method = "hengl",
n.cores = 1

)

#mem.moran.sequential
model <- rf_spatial(

data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
distance.matrix = distance_matrix,
distance.thresholds = 0,
method = "mem.moran.sequential",
n.cores = 1

)

#fitting an rf_spatial model from an rf model
rf.model <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE

)
rf.model$spatial.correlation.residuals$plot

#spatial version of the rf model
rf.spatial <- rf_spatial(model = rf.model)
rf.spatial$spatial.correlation.residuals$plot

}

rf_tuning Tuning of random forest hyperparameters via spatial cross-validation

Description

Finds the optimal set of random forest hyperparameters num.trees, mtry, and min.node.size via
grid search by maximizing the model’s R squared, or AUC, if the response variable is binomial, via
spatial cross-validation performed with rf_evaluate().
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Usage

rf_tuning(
model = NULL,
num.trees = NULL,
mtry = NULL,
min.node.size = NULL,
xy = NULL,
repetitions = 30,
training.fraction = 0.75,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model A model fitted with rf(). If provided, the training data is taken directly from
the model definition (stored in model$ranger.arguments). Default: NULL

num.trees Numeric integer vector with the number of trees to fit on each model repetition.
Default: c(500, 1000, 2000).

mtry Numeric integer vector, number of predictors to randomly select from the com-
plete pool of predictors on each tree split. Default: floor(seq(1, length(predictor.variable.names),
length.out = 4))

min.node.size Numeric integer, minimal number of cases in a terminal node. Default: c(5,
10, 20, 40)

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If NULL, the function will throw an error. Default: NULL

repetitions Integer, number of independent spatial folds to use during the cross-validation.
Default: 30.

training.fraction

Proportion between 0.2 and 0.9 indicating the number of records to be used in
model training. Default: 0.75

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the
function are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
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cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A model with a new slot named tuning, with a data frame with the results of the tuning analysis.

See Also

rf_evaluate()

Examples

if(interactive()){

#loading example data
data(plant_richness_df)
data(distance_matrix)

#fitting model to tune
out <- rf(

data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1

)

#model tuning
tuning <- rf_tuning(

model = out,
num.trees = c(100, 500),
mtry = c(2, 8),
min.node.size = c(5, 10),
xy = plant_richness_df[, c("x", "y")],
n.cores = 1

)

}

root_mean_squared_error

RMSE and normalized RMSE

Description

Computes the rmse or normalized rmse (nrmse) between two numeric vectors of the same length
representing observations and model predictions.
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Usage

root_mean_squared_error(
o,
p,
normalization = c("rmse", "all", "mean", "sd", "maxmin", "iq")

)

Arguments

o Numeric vector with observations, must have the same length as p.

p Numeric vector with predictions, must have the same length as o.

normalization character, normalization method, Default: "rmse" (see Details).

Details

The normalization methods go as follows:

• "rmse": RMSE with no normalization.

• "mean": RMSE dividied by the mean of the observations (rmse/mean(o)).

• "sd": RMSE dividied by the standard deviation of the observations (rmse/sd(o)).

• "maxmin": RMSE divided by the range of the observations (rmse/(max(o) - min(o))).

• "iq": RMSE divided by the interquartile range of the observations (rmse/(quantile(o, 0.75) -
quantile(o, 0.25)))

Value

Named numeric vector with either one or 5 values, as selected by the user.

Examples

if(interactive()){

root_mean_squared_error(
o = runif(10),
p = runif(10)
)

}
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select_spatial_predictors_recursive

Finds optimal combinations of spatial predictors

Description

Selects spatial predictors following these steps:

1. Gets the spatial predictors ranked by rank_spatial_predictors() and fits a model of the
form y ~ predictors + best_spatial_predictor_1. The Moran’s I of the residuals of this
model is used as reference value for the next step.

2. The remaining spatial predictors are introduced again into rank_spatial_predictors(),
and the spatial predictor with the highest ranking is introduced in a new model of the form y
~ predictors + best_spatial_predictor_1 + best_spatial_predictor_2.

3. Steps 1 and 2 are repeated until the Moran’s I doesn’t improve for a number of repetitions
equal to the 20 percent of the total number of spatial predictors introduced in the function.

This method allows to select the smallest set of spatial predictors that have the largest joint effect in
reducing the spatial correlation of the model residuals, while maintaining the model’s R-squared as
high as possible. As a consequence of running rank_spatial_predictors() on each iteration, this
method includes in the final model less spatial predictors than the sequential method implemented
in select_spatial_predictors_sequential() would do, while minimizing spatial correlation
and maximizing the R squared of the model as much as possible.

Usage

select_spatial_predictors_recursive(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
ranger.arguments = NULL,
spatial.predictors.df = NULL,
spatial.predictors.ranking = NULL,
weight.r.squared = 0.25,
weight.penalization.n.predictors = 0,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL
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predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

spatial.predictors.df

Data frame of spatial predictors.
spatial.predictors.ranking

Ranking of predictors returned by rank_spatial_predictors().
weight.r.squared

Numeric between 0 and 1, weight of R-squared in the optimization index. De-
fault: 0.25

weight.penalization.n.predictors

Numeric between 0 and 1, weight of the penalization for the number of spatial
predictors added in the optimization index. Default: 0

n.cores Integer, number of cores to use. Default: parallel::detectCores() - 1

cluster A cluster definition generated by parallel::makeCluster(). Default: NULL

Details

The algorithm works as follows. If the function rank_spatial_predictors() returns 10 ranked
spatial predictors (sp1 to sp10, being sp7 the best one), select_spatial_predictors_recursive()
is going to first fit the model y ~ predictors + sp7. Then, the spatial predictors sp2 to sp9 are
again ranked with rank_spatial_predictors() using the model y ~ predictors + sp7 as refer-
ence (at this stage, some of the spatial predictors might be dropped due to lack of effect). When
the new ranking of spatial predictors is ready (let’s say they are sp5, sp3, and sp4), the best one
(sp5) is included in the model y ~ predictors + sp7 + sp5, and the remaining ones go again to
rank_spatial_predictors() to repeat the process until spatial predictors are depleted.

Value

A list with two slots: optimization, a data frame with the index of the spatial predictor added on
each iteration, the spatial correlation of the model residuals, and the R-squared of the model, and
best.spatial.predictors, that is a character vector with the names of the spatial predictors that
minimize the Moran’s I of the residuals and maximize the R-squared of the model.
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Examples

if(interactive()){

#loading example data
data(distance_matrix)
data(plant_richness_df)

#response and preditor names
dependent.variable.name = "richness_species_vascular"
predictor.variable.names = colnames(plant_richness_df)[5:21]

#non-spatial model
model <- rf(

data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1

)

#preparing spatial predictors
spatial.predictors <- mem_multithreshold(

distance.matrix = distance_matrix,
distance.thresholds = 0

)

#ranking spatial predictors
spatial.predictors.ranking <- rank_spatial_predictors(

data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
spatial.predictors.df = spatial.predictors,
ranking.method = "moran",
reference.moran.i = model$spatial.correlation.residuals$max.moran,
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1

)

#selecting the best subset of predictors
selection <- select_spatial_predictors_recursive(

data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
distance.matrix = distance_matrix,
distance.thresholds = 0,
spatial.predictors.df = spatial.predictors,
spatial.predictors.ranking = spatial.predictors.ranking,
n.cores = 1

)
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selection$optimization
selection$best.spatial.predictors
plot_optimization(selection$optimization)

}

select_spatial_predictors_sequential

Sequential introduction of spatial predictors into a model

Description

Selects spatial predictors by adding them sequentially into a model while monitoring the Moran’s
I of the model residuals and the model’s R-squared. Once all the available spatial predictors have
been added to the model, the function identifies the first n predictors that minimize the spatial
correlation of the residuals and maximize R-squared, and returns the names of the selected spatial
predictors and a data frame with the selection criteria.

Usage

select_spatial_predictors_sequential(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
ranger.arguments = NULL,
spatial.predictors.df = NULL,
spatial.predictors.ranking = NULL,
weight.r.squared = 0.75,
weight.penalization.n.predictors = 0.25,
verbose = FALSE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL
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distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

spatial.predictors.df

Data frame of spatial predictors.
spatial.predictors.ranking

Ranking of the spatial predictors returned by rank_spatial_predictors().
weight.r.squared

Numeric between 0 and 1, weight of R-squared in the optimization index. De-
fault: 0.75

weight.penalization.n.predictors

Numeric between 0 and 1, weight of the penalization for the number of spatial
predictors added in the optimization index. Default: 0.25

verbose Logical, ff TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: FALSE

n.cores Integer, number of cores to use. Default: parallel::detectCores() - 1

cluster A cluster definition generated by parallel::makeCluster(). Default: NULL

Details

The algorithm works as follows: If the function rank_spatial_predictors returns 10 spatial predictors
(sp1 to sp10, ordered from best to worst), select_spatial_predictors_sequential is going to fit the
models y ~ predictors + sp1, y ~ predictors + sp1 + sp2, until all spatial predictors are used in
y ~ predictors + sp1 ... sp10. The model with lower Moran’s I of the residuals and higher
R-squared (computed on the out-of-bag data) is selected, and its spatial predictors returned.

Value

A list with two slots: optimization, a data frame with the index of the spatial predictor added on
each iteration, the spatial correlation of the model residuals, and the R-squared of the model, and
best.spatial.predictors, that is a character vector with the names of the spatial predictors that
minimize the Moran’s I of the residuals and maximize the R-squared of the model.

Examples

if(interactive()){
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#loading example data
data(distance_matrix)
data(plant_richness_df)

#common arguments
dependent.variable.name = "richness_species_vascular"
predictor.variable.names = colnames(plant_richness_df)[5:21]

#non-spatial model
model <- rf(

data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1

)

#preparing spatial predictors
spatial.predictors <- mem_multithreshold(

distance.matrix = distance.matrix,
distance.thresholds = 0

)
#ranking spatial predictors by their Moran's I (faster option)
spatial.predictors.ranking <- rank_spatial_predictors(

ranking.method = "moran",
spatial.predictors.df = spatial.predictors,
reference.moran.i = model$spatial.correlation.residuals$max.moran,
distance.matrix = distance.matrix,
distance.thresholds = 0,
n.cores = 1

)

#selecting the best subset of predictors
selection <- select_spatial_predictors_sequential(

data = plant_richness_df,
dependent.variable.name = dependent.variable.name,
predictor.variable.names = predictor.variable.names,
distance.matrix = distance_matrix,
distance.thresholds = 0,
spatial.predictors.df = spatial.predictors,
spatial.predictors.ranking = spatial.predictors.ranking,
n.cores = 1

)

selection$optimization
selection$best.spatial.predictors
plot_optimization(selection$optimization)

}
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standard_error Standard error of the mean of a numeric vector

Description

Computes the standard error of the mean of a numeric vector as round(sqrt(var(x)/length(x)),
3)

Usage

standard_error(x)

Arguments

x A numeric vector.

Details

The function removes NA values before computing the standard error, and rounds the result to 3
decimal places.

Value

A numeric value.

Examples

if(interactive()){

standard_error(runif(10))

}

statistical_mode Statistical mode of a vector

Description

Computes the mode of a numeric or character vector

Usage

statistical_mode(x)

Arguments

x Numeric or character vector.
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Value

Statistical mode of x.

Examples

if(interactive()){

statistical_mode(c(10, 9, 10, 8))

}

the_feature_engineer Suggest variable interactions and composite features for random for-
est models

Description

Suggests candidate variable interactions and composite features able to improve predictive accuracy
over data not used to train the model via spatial cross-validation with rf_evaluate(). For a pair
of predictors a and b, interactions are build via multiplication (a * b), while composite features are
built by extracting the first factor of a principal component analysis performed with pca(), after
rescaling a and b between 1 and 100. Interactions and composite features are named a..x..b and
a..pca..b respectively.

Candidate variables a and b are selected from those predictors in predictor.variable.names
with a variable importance above importance.threshold (set by default to the median of the
importance scores).

For each interaction and composite feature, a model including all the predictors plus the interaction
or composite feature is fitted, and it’s R squared (or AUC if the response is binary) computed via
spatial cross-validation (see rf_evaluate()) is compared with the R squared of the model without
interactions or composite features.

From all the potential interactions screened, only those with a positive increase in R squared (or
AUC when the response is binomial) of the model, a variable importance above the median, and a
maximum correlation among themselves and with the predictors in predictor.variable.names
not higher than cor.threshold (set to 0.5 by default) are selected. Such a restrictive set of rules
ensures that the selected interactions can be used right away for modeling purposes without increas-
ing model complexity unnecessarily. However, the suggested variable interactions might not make
sense from a domain expertise standpoint, so please, examine them with care.

The function returns the criteria used to select the interactions, and the data required to use these
interactions a model.

Usage

the_feature_engineer(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,



the_feature_engineer 95

xy = NULL,
ranger.arguments = NULL,
repetitions = 30,
training.fraction = 0.75,
importance.threshold = 0.75,
cor.threshold = 0.75,
point.color = viridis::viridis(100, option = "F", alpha = 0.8),
seed = NULL,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables, or object of class
"variable_selection" produced by auto_vif() and/or auto_cor(). Every
element of this vector must be in the column names of data. Default: NULL

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If not provided, the comparison between models with and without
variable interactions is not done.

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

importance.threshold

Numeric between 0 and 1, quantile of variable importance scores over which to
select individual predictors to explore interactions among them. Larger values
reduce the number of potential interactions explored. Default: 0.75

cor.threshold Numeric, maximum Pearson correlation between any pair of the selected inter-
actions, and between any interaction and the predictors in predictor.variable.names.
Default: 0.75

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
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or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", alpha = 0.8)

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: NULL

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed. Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A list with seven slots:

• screening: Data frame with selection scores of all the interactions considered.

• selected: Data frame with selection scores of the selected interactions.

• df: Data frame with the computed interactions.

• plot: List of plots of the selected interactions versus the response variable. The output list can
be plotted all at once with patchwork::wrap_plots(p) or cowplot::plot_grid(plotlist
= p), or one by one by extracting each plot from the list.

• data: Data frame with the response variable, the predictors, and the selected interactions,
ready to be used as data argument in the package functions.

• dependent.variable.name: Character, name of the response.

• predictor.variable.names: Character vector with the names of the predictors and the se-
lected interactions.

Examples

if(interactive()){

#load example data
data(plant_richness_df)

new.features <- the_feature_engineer(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
n.cores = 1,
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verbose = TRUE
)

new.features$screening
new.features$selected
new.features$columns

}

thinning Applies thinning to pairs of coordinates

Description

Resamples a set of points with x and y coordinates to impose a minimum distance among nearby
points.

Usage

thinning(xy, minimum.distance = NULL)

Arguments

xy A data frame with columns named "x" and "y" representing geographic coordi-
nates.

minimum.distance

Numeric, minimum distance to be set between nearby points, in the same units
as the coordinates of xy.

Details

Generally used to remove redundant points that could produce pseudo-replication, and to limit
sampling bias by disaggregating clusters of points.

Value

A data frame with the same columns as xy with points separated by the defined minimum distance.

See Also

thinning_til_n()
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Examples

if(interactive()){

#load example data
data(plant_richness_df)

#thinning to points separated by 5 degrees
plant_richness.thin <- thinning(
x = plant_richness_df,
minimum.distance = 5 #points separated by at least 5 degrees
)

plant_richness.thin

}

thinning_til_n Applies thinning to pairs of coordinates until reaching a given n

Description

Resamples a set of points with x and y coordinates by increasing the distance step by step until a
given sample size is obtained.

Usage

thinning_til_n(
xy,
n = 30,
distance.step = NULL

)

Arguments

xy A data frame with columns named "x" and "y" representing geographic coordi-
nates. Default: NULL

n Integer, number of samples to obtain. Must be lower than nrow(xy). Default:
30

distance.step Numeric, distance step used during the thinning iterations. If NULL, the one
percent of the maximum distance among points in xy is used. Default: NULL

Value

A data frame with the same columns as xy with a row number close to n.

See Also

thinning()
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Examples

if(interactive()){

#loading example data
data(plant_richness_df)

#thinning to ~20 records
plant_richness.thin <- thinning_til_n(
x = plant_richness_df,
n = 20
)

plant_richness.thin

}

vif Variance Inflation Factor of a data frame

Description

Computes the variance inflation factor (VIF) of the colums in a data frame. Warning: variables
in preference.order not in colnames(x), and non-numeric columns are removed silently from x
and preference.order. The same happens with rows having NA values (na.omit() is applied).
The function issues a warning if zero-variance columns are found.

Usage

vif(x)

Arguments

x Data frame with numeric columns, typically containing a set of model predic-
tors.

Value

A data frame with two columns having the name of the variables in ’x’ and their respective VIF
values.

See Also

auto_vif(), auto_cor()
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Examples

if(interactive()){

data(plant_richness_df)

vif(plant_richness_df[, 5:21])

}

weights_from_distance_matrix

Transforms a distance matrix into a matrix of weights

Description

Transforms a distance matrix into weights (1/distance.matrix) normalized by the row sums. Used
to compute Moran’s I values and Moran’s Eigenvector Maps. Allows to apply a threshold to the
distance matrix before computing the weights.

Usage

weights_from_distance_matrix(
distance.matrix = NULL,
distance.threshold = 0

)

Arguments

distance.matrix

Distance matrix. Default: NULL.
distance.threshold

Numeric, positive, in the range of values of distance.matrix. Distances below
this value in the distance matrix are set to 0., Default: 0.

Value

A weighted distance matrix.

Examples

if(interactive()){

#loading example distance matrix
data(distance_matrix)

#computing matrix of weights
distance.matrix.weights <- weights_from_distance_matrix(
distance.matrix = distance_matrix
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)

distance.matrix.weights

}
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