
Package ‘splithalf’
July 23, 2025

Type Package

Title Calculate Task Split Half Reliability Estimates

Version 0.8.2

Maintainer Sam Parsons <sam.parsons@radboudumc.nl>

Description Estimate the internal consistency of your tasks with a permutation based split-
half reliability approach.
Unofficial release name: ``I eat stickers all the time, dude!''.

Depends R (>= 3.5)

Imports tidyr, dplyr, stats, Rcpp, robustbase, ggplot2, plyr, grid,
patchwork, psych, lme4, methods

LinkingTo Rcpp

Suggests knitr, rmarkdown, tools,

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

URL https://github.com/sdparsons/splithalf

BugReports https://github.com/sdparsons/splithalf

VignetteBuilder knitr

NeedsCompilation yes

Author Sam Parsons [aut, cre]

Repository CRAN

Date/Publication 2022-08-11 14:30:02 UTC

Contents
multiverse.plot . 2
speedtestdata . 5
splithalf . 5
splithalf.multiverse . 8
testretest.multiverse . 10

1

https://github.com/sdparsons/splithalf
https://github.com/sdparsons/splithalf

2 multiverse.plot

Index 13

multiverse.plot Visualising reliability multiverses

Description

This function allows the user to plot the output from splithalf_multiverse or testretest_multiverse.
The plot includes an upper panel with all reliability estimates (and CIs) and a lower panel that indi-
cates the data processing specifications corresponding to that reliability estimate. The (unofficial)
function version name is "This function will make you a master in bird law"

This function examines the output from splithalf_multiverse or testretest_multiverse to extract the
proportions of estimates above or below a set threshold (can be the estimate or the upper or lower
CI estimates). The (unofficial) function version name is "This function will get you up to here with
it"

Usage

multiverse.plot(
multiverse,
title = "",
vline = "none",
heights = c(4, 5),
SE = FALSE

)

threshold(multiverse, threshold, use = "estimate", dir = "above")

Arguments

multiverse multiverse object

title string add a title to the plot? default is ""

vline add a vertical line to the plot, e.g. use .5 for the median reliability estimate

heights must be a vector of length 2, relative heights of plot panels. Defaults to c(4,5)

SE logical includes an additional panel to plot the standard errors of the scores.
Note: the heights parameter must be a vector of length 3, e.g. c(2,2,3). Defaults
to FALSE

threshold threshold to look for, e.g. 0.7

use set to check the reliability "estimates", or the "upper" or "lower" CIs

dir look "above" or "below" the ’use’ at the set threshold

Value

Returns a visualization of a multiverse object

multiverse.plot 3

Examples

Not run:
see online documentation for examples
https://github.com/sdparsons/splithalf
also see https://psyarxiv.com/y6tcz

example simulated data
n_participants = 60 ## sample size
n_trials = 80
n_blocks = 2
sim_data <- data.frame(participant_number = rep(1:n_participants,

each = n_blocks * n_trials),
trial_number = rep(1:n_trials,
times = n_blocks * n_participants),
block_name = rep(c("A","B"),
each = n_trials,
length.out = n_participants * n_trials * n_blocks),
trial_type = rep(c("congruent","incongruent"),
length.out = n_participants * n_trials * n_blocks),
RT = rnorm(n_participants * n_trials * n_blocks,
500,
200),
ACC = 1)

specify several data processing decisions
specifications <- list(RT_min = c(0, 100, 200),

RT_max = c(1000, 2000),
averaging_method = c("mean", "median"))

run splithalf, and save the output
difference <- splithalf(data = sim_data,

outcome = "RT",
score = "difference",
conditionlist = c("A"),
halftype = "random",
permutations = 5000,
var.RT = "RT",
var.condition = "block_name",
var.participant = "participant_number",
var.compare = "trial_type",
var.ACC = "ACC",
compare1 = "congruent",
compare2 = "incongruent",
average = "mean")

run splithalf.multiverse to perform the multiverse of data processing
and reliability estimation
multiverse <- splithalf.multiverse(input = difference,

specifications = specifications)

can be plot with:
multiverse.plot(multiverse = multiverse,

title = "README multiverse")

4 multiverse.plot

End(Not run)
Not run:
see online documentation for examples
https://github.com/sdparsons/splithalf
also see https://psyarxiv.com/y6tcz

example simulated data
n_participants = 60 ## sample size
n_trials = 80
n_blocks = 2
sim_data <- data.frame(participant_number = rep(1:n_participants,

each = n_blocks * n_trials),
trial_number = rep(1:n_trials,
times = n_blocks * n_participants),
block_name = rep(c("A","B"),
each = n_trials,
length.out = n_participants * n_trials * n_blocks),
trial_type = rep(c("congruent","incongruent"),
length.out = n_participants * n_trials * n_blocks),
RT = rnorm(n_participants * n_trials * n_blocks,
500,
200),
ACC = 1)

specify several data processing decisions
specifications <- list(RT_min = c(0, 100, 200),

RT_max = c(1000, 2000),
averaging_method = c("mean", "median"))

run splithalf, and save the output
difference <- splithalf(data = sim_data,

outcome = "RT",
score = "difference",
conditionlist = c("A"),
halftype = "random",
permutations = 5000,
var.RT = "RT",
var.condition = "block_name",
var.participant = "participant_number",
var.compare = "trial_type",
var.ACC = "ACC",
compare1 = "congruent",
compare2 = "incongruent",
average = "mean")

run splithalf.multiverse to perform the multiverse of data processing
and reliability estimation
multiverse <- splithalf.multiverse(input = difference,

specifications = specifications)

the threshold function can be used to return the number of estimates

speedtestdata 5

above or below a certain threshold

threshold(multiverse = multiverse,
threshold = 0.7,
use = "estimate",
dir = "above")

End(Not run)

speedtestdata Simulated data for runtime of splithalf package

Description

This simulation was run to estimate the relative runtimes for different possible combinations of
sample sizes and trial numbers etc.

Usage

data(speedtestdata)

Format

A data frame with 225 rows and 6 variables

Details

• Simcodes for the simulation number

• sample_sizecodes for the sample size

• Number_of_conditionscodes for the number of conditions run

• trialscodes for the number of trials

• permutationscodes for the number of permutations

• runtimecodes for the runtime in seconds

splithalf Internal consistency of task measures via a permutation split-half re-
liability approach

Description

This function calculates split half reliability estimates via a permutation approach for a wide range
of tasks. Most of the user inputs relate to the variables in the dataset splithalf needs to read in
order to estimate reliability. Currently supports response time and accuracy outcomes, for several
scoring methods: average, difference, difference of difference scores, and a DPrime development.
The (unofficial) version name is "This function gives me the power to fight like a crow"

6 splithalf

Usage

splithalf(
data,
outcome = "RT",
score = "difference",
conditionlist = FALSE,
halftype = "random",
permutations = 5000,
var.RT = "latency",
var.ACC = "accuracy",
var.condition = FALSE,
var.participant = "subject",
var.compare = "congruency",
compare1 = "Congruent",
compare2 = "Incongruent",
average = "mean",
plot = FALSE,
round.to = 2,
check = TRUE

)

Arguments

data specifies the raw dataset to be processed

outcome indicates the type of data to be processed, e.g. "RT" or "accuracy"

score indicates how the outcome score is calculated, e.g. most commonly the dif-
ference score between two trial types. Can be "average", "difference", "differ-
ence_of_difference", and "DPrime"

conditionlist sets conditions/blocks to be processed

halftype specifies the split method; "oddeven", "halfs", or "random"

permutations specifies the number of random splits to run - 5000 is good

var.RT specifies the RT variable name in data

var.ACC specific the accuracy variable name in data

var.condition specifies the condition variable name in data - if not specified then splithalf will
treat all trials as one condition

var.participant

specifies the subject variable name in data

var.compare specifies the variable that is used to calculate difference scores (e.g. including
congruent and incongruent trials)

compare1 specifies the first trial type to be compared (e.g. congruent trials)

compare2 specifies the second trial type to be compared (e.g. incongruent trials)

average use "mean" or "median" to calculate average scores?

plot logical value giving the option to visualise the estimates in a raincloud plot.
defaults to FALSE

splithalf 7

round.to sets the number of decimals to round the estimates to defaults to 2

check runs several checks of the data to detect participants/conditions/trialtypes with
too few trials to run splithalf

Value

Returns a data frame containing permutation based split-half reliability estimates

splithalf is the raw estimate of the bias index

spearmanbrown is the spearman-brown corrected estimate of the bias index

Warning: If there are missing data (e.g one condition data missing for one participant) output will
include details of the missing data and return a dataframe containing the NA data. Warnings will be
displayed in the console.

Examples

Not run:
see online documentation for full examples
https://github.com/sdparsons/splithalf
example simulated data
n_participants = 60 ## sample size
n_trials = 80
n_blocks = 2
sim_data <- data.frame(participant_number = rep(1:n_participants,

each = n_blocks * n_trials),
trial_number = rep(1:n_trials,
times = n_blocks * n_participants),
block_name = rep(c("A","B"),
each = n_trials,
length.out = n_participants * n_trials * n_blocks),
trial_type = rep(c("congruent","incongruent"),
length.out = n_participants * n_trials * n_blocks),
RT = rnorm(n_participants * n_trials * n_blocks,
500,
200),
ACC = 1)

example run of splithalf on a difference score
splithalf(data = sim_data,

outcome = "RT",
score = "difference",
conditionlist = c("A", "B"),
halftype = "random",
permutations = 5000,
var.RT = "RT",
var.condition = "block_name",
var.participant = "participant_number",
var.compare = "trial_type",
compare1 = "congruent",
compare2 = "incongruent",
average = "mean",
plot = TRUE)

8 splithalf.multiverse

example run of splithalf on an average score
splithalf(data = sim_data,

outcome = "RT",
score = "average",
conditionlist = c("A", "B"),
halftype = "random",
permutations = 5000,
var.RT = "RT",
var.condition = "block_name",
var.participant = "participant_number",
average = "mean")

example run of splithalf on a difference of differences score
splithalf(data = sim_data,

outcome = "RT",
score = "difference_of_difference",
conditionlist = c("A", "B"),
halftype = "random",
permutations = 5000,
var.RT = "RT",
var.condition = "block_name",
var.participant = "participant_number",
var.compare = "trial_type",
compare1 = "congruent",
compare2 = "incongruent",
average = "mean")

End(Not run)

splithalf.multiverse Multiverse of data processing decisions on internal consistency relia-
bility estimates.

Description

This function enables the user to run a multiverse of data processing options and extract the resulting
(internal consistency) reliability estimates generated by splithalf. The user specifies a set of data
processing decisions and passes this to the function, along with a splithalf object. The output can
then be explored and plotted as desired.

Usage

splithalf.multiverse(input, specifications)

Arguments

input splithalf object or list of splithalf objects

specifications list of data processing specifications

splithalf.multiverse 9

Details

The (unofficial) function version name is "This function will let you get honey from a hornets nest"

Value

Returns a multiverse object containing the reliability estimates and dataframes from all data pro-
cessing specifications provided

Examples

Not run:
see online documentation for examples
https://github.com/sdparsons/splithalf
also see https://psyarxiv.com/y6tcz

example simulated data
n_participants = 60 ## sample size
n_trials = 80
n_blocks = 2
sim_data <- data.frame(participant_number = rep(1:n_participants,

each = n_blocks * n_trials),
trial_number = rep(1:n_trials,
times = n_blocks * n_participants),
block_name = rep(c("A","B"),
each = n_trials,
length.out = n_participants * n_trials * n_blocks),
trial_type = rep(c("congruent","incongruent"),
length.out = n_participants * n_trials * n_blocks),
RT = rnorm(n_participants * n_trials * n_blocks,
500,
200),
ACC = 1)

specify several data processing decisions
specifications <- list(RT_min = c(0, 100, 200),

RT_max = c(1000, 2000),
averaging_method = c("mean", "median"))

run splithalf, and save the output
difference <- splithalf(data = sim_data,

outcome = "RT",
score = "difference",
conditionlist = c("A"),
halftype = "random",
permutations = 5000,
var.RT = "RT",
var.condition = "block_name",
var.participant = "participant_number",
var.compare = "trial_type",
var.ACC = "ACC",
compare1 = "congruent",
compare2 = "incongruent",
average = "mean")

10 testretest.multiverse

run splithalf.multiverse to perform the multiverse of data processing
and reliability estimation
multiverse <- splithalf.multiverse(input = difference,

specifications = specifications)

can be plot with:
multiverse.plot(multiverse = multiverse,

title = "README multiverse")

End(Not run)

testretest.multiverse Multiverse of data processing decisions on test retest reliability esti-
mates.

Description

This function enables the user to run a multiverse of data processing options and extract the resulting
test-retest reliability estimates. The user specifies a set of data processing decisions and passes this
to the function, along with specifying key variables within several "var." inputs (so that the function
knows where to find your participant ids and RTs for example)

Usage

testretest.multiverse(
data,
specifications,
test = "ICC2",
outcome = "RT",
score = "difference",
var.participant = "subject",
var.ACC = "correct",
var.RT = "RT",
var.time = "time",
var.compare = "congruency",
compare1 = "Congruent",
compare2 = "Incongruent"

)

Arguments

data dataset

specifications list of data processing specifications

test test retest statistic, "ICC2", "cor", "ICC3"

outcome from splithalf() specifies the RT outcome - only "RT" available currently

score currently only "difference" scores are supported

testretest.multiverse 11

var.participant

= "subject",

var.ACC = "correct",

var.RT = "RT"

var.time codes the time variable (currently only works for 2 timepoints)

var.compare = "congruency" trial type used to create difference scores

compare1 specifies the first trial type to be compared (e.g. "Congruent" trials)

compare2 specifies the second trial type to be compared (e.g. "Incongruent" trials)

Details

The (unofficial) function version name is "This function will help you pay the troll toll"

Value

Returns a multiverse object containing the reliability estimates and dataframes from all data pro-
cessing specifications provided

Examples

Not run:
see online documentation for examples
https://github.com/sdparsons/splithalf
also see https://psyarxiv.com/y6tcz

n_participants <- 80 ## sample size
n_trials <- 120
n_blocks <- 2

sim_data_mv <- data.frame(participant_number = rep(1:n_participants,
each = n_blocks * n_trials),

trial_number = rep(1:n_trials,
times = n_blocks * n_participants),

block_name = rep(c(1,2),
each = n_trials,

length.out = n_participants * n_trials * n_blocks),
trial_type = rep(c("congruent","congruent",

"incongruent","incongruent"),
length.out = n_participants * n_trials * n_blocks / 2),

RT = rnorm(n_participants * n_trials * n_blocks,
500,
200),

ACC = c(rbinom(n_participants *
n_trials *
n_blocks / 6,

1, .5),
rbinom(n_participants *

n_trials *
n_blocks / 6,

1, .7),

12 testretest.multiverse

rbinom(n_participants *
n_trials *
n_blocks / 6,

1, .9),
rbinom(n_participants *

n_trials *
n_blocks / 6,

1, .5),
rbinom(n_participants *

n_trials *
n_blocks / 6,

1, .7),
rbinom(n_participants *

n_trials *
n_blocks / 6,

1, .9)))

specifications <- list(
ACC_cutoff = c(0, 0.5),
RT_min = c(0, 200),
RT_max = c(2000, 3000),
RT_sd_cutoff = c(0, 2),
split_by = c("subject", "trial"),
averaging_method = c("mean")
)

icc2 <- testretest.multiverse(data = sim_data_acc,
specifications,
test = "ICC2",
score = "difference",
var.participant = "participant_number",
var.ACC = "ACC",
var.RT = "RT",
var.time = "block_name",
var.compare = "trial_type",
compare1 = "congruent",
compare2 = "incongruent")

multiverse.plot(icc2)

End(Not run)

Index

multiverse.plot, 2

speedtestdata, 5
splithalf, 5
splithalf.multiverse, 8

testretest.multiverse, 10
threshold (multiverse.plot), 2

13

	multiverse.plot
	speedtestdata
	splithalf
	splithalf.multiverse
	testretest.multiverse
	Index

