Package 'sport'

July 23, 2025

```
Type Package
Title Sequential Pairwise Online Rating Techniques
Version 0.2.1
Depends R (>= 3.0)
Maintainer Dawid Kałędkowski <dawid.kaledkowski@gmail.com>
Description Calculates ratings for two-player or
      multi-player challenges. Methods included in package such as are able to
      estimate ratings (players strengths) and their evolution in time, also able to
      predict output of challenge. Algorithms are based on Bayesian Approximation
      Method, and they don't involve any matrix inversions nor likelihood estimation.
      Parameters are updated sequentially, and computation doesn't require any
      additional RAM to make estimation feasible. Additionally, base of the package
      is written in C++ what makes sport computation even faster. Methods used in the
      package refer to Mark E. Glickman (1999)
      <http://www.glicko.net/research/glicko.pdf>;
      Mark E. Glickman (2001) <doi:10.1080/02664760120059219>;
      Ruby C. Weng, Chih-
      Jen Lin (2011) <a href="https://www.jmlr.org/papers/volume12/weng11a/weng11a.pdf">https://www.jmlr.org/papers/volume12/weng11a/weng11a.pdf</a>;
      W. Penny, Stephen J. Roberts (1999) <doi:10.1109/IJCNN.1999.832603>.
BugReports https://github.com/gogonzo/sport/issues
Imports Rcpp, data.table, ggplot2
LinkingTo Rcpp
License GPL-2
Encoding UTF-8
Language en-US
URL https://github.com/gogonzo/sport
LazyData true
RoxygenNote 7.2.3
Suggests dplyr, knitr, lobstr, rmarkdown, testthat
VignetteBuilder knitr
```

2 bbt_run

NeedsCompilation yes

```
Author Dawid Kałędkowski [aut, cre] (ORCID: <a href="https://orcid.org/0000-0001-9533-457X">https://orcid.org/0000-0001-9533-457X</a>)
```

Repository CRAN

Date/Publication 2024-01-08 23:50:02 UTC

Contents

```
      bbt_run
      2

      dbl_run
      4

      glicko2_run
      6

      glicko_run
      9

      gpheats
      11

      gpsquads
      12

      plot.rating
      12

      predict.rating
      13

      summary.rating
      13
```

15

bbt_run

Index

Bayesian Bradley-Terry

Description

Bayesian Bradley-Terry

Usage

```
bbt_run(
  formula,
  data,
  r = numeric(0),
  rd = numeric(0),
  init_r = 25,
  init_rd = 25/3,
  lambda = NULL,
  share = NULL,
  weight = NULL,
  kappa = 0.5
)
```

3 bbt_run

Arguments

formula

formula which specifies the model. RHS Allows only player rating parameter and it should be specified in following manner:

rank | id ~ player(name).

- rank player position in event.
- · id event identifier in which pairwise comparison is assessed.
- player(name) name of the contestant. In this case player(name) helps algorithm point name of the column where player names are stored.

Users can also specify formula in in different way:

rank | id ~ player(name | team). Which means that players are playing in teams, and results are observed for teams not for players. For more see vignette.

data.frame which contains columns specified in formula, and optional columns

defined by lambda, weight.

named vector of initial players ratings estimates. If not specified then r will be created automatically for parameters specified in formula with initial value

init_r.

rd named vector of initial rating deviation estimates. If not specified then rd will be created automatically for parameters specified in formula with initial value init_rd.

initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, db1 = 0)

initial values for rd if not provided. Default (glicko = 350, glicko2 = 350, bbt = 25/3, db1 = 1)

name of the column in data containing lambda values or one constant value (eg. lambda = colname or lambda = 0.5). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of

winning.

name of the column in data containing player share in team efforts. It's used to first calculate combined rating of the team and then redistribute ratings update back to players level. Warning - it should be used only if formula is specified with players nested within teams (player(player | team)).

name of the column in data containing weights values or one constant (eg. weight = colname or weight = 0.5). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event

result on rating estimate.

controls rd shrinkage not to be greater than rd*(1 - kappa). kappa=1 means

that rd will not be decreased.

Value

A "rating" object is returned:

data

rd

init_r

init_rd

lambda

share

weight

kappa

4 dbl_run

- final_r named vector containing players ratings.
- final_rd named vector containing players ratings deviations.
- r data.frame with evolution of the ratings and ratings deviations estimated at each event.
- pairs pairwise combinations of players in analysed events with prior probability and result of a challenge.
- class of the object.
- method type of algorithm used.
- settings arguments specified in function call.

Examples

```
# the simplest example
data <- data.frame(</pre>
  id = c(1, 1, 1, 1),
  team = c("A", "A", "B", "B"),
  player = c("a", "b", "c", "d"),
  rank_{team} = c(1, 1, 2, 2),
  rank_player = c(3, 4, 1, 2)
)
bbt <- bbt_run(</pre>
  data = data,
  formula = rank_player | id ~ player(player),
  r = setNames(c(25, 23.3, 25.83, 28.33), c("a", "b", "c", "d")),
  rd = setNames(c(4.76, 0.71, 2.38, 7.14), c("a", "b", "c", "d"))
# nested matchup
bbt <- bbt_run(</pre>
  data = data,
  formula = rank_team | id ~ player(player | team)
)
```

dbl_run

Dynamic Bayesian Logit

Description

Dynamic Bayesian Logit

Usage

```
dbl_run(
  formula,
  data,
  r = NULL,
```

dbl_run 5

```
rd = NULL,
lambda = NULL,
weight = NULL,
kappa = 0.95,
init_r = 0,
init_rd = 1
)
```

Arguments

formula	formula which specifies the model. Unlike other algorithms in the packages (glicko_run, glicko2_run, bbt_run), this method doesn't allow players nested in teams with player(player team) and user should matchup in formula using player(player). DBL allows user specify multiple parameters also in interaction with others.
data	data.frame which contains columns specified in formula, and optional columns defined by lambda, weight.
r	named vector of initial players ratings estimates. If not specified then r will be created automatically for parameters specified in formula with initial value init_r.
rd	rd named vector of initial rating deviation estimates. If not specified then rd will be created automatically for parameters specified in formula with initial value init_rd.
lambda	name of the column in data containing lambda values or one constant value (eg. lambda = colname or lambda = 0.5). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of winning.
weight	name of the column in data containing weights values or one constant (eg. weight = colname or weight = 0.5). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event result on rating estimate.
kappa	controls rd shrinkage not to be greater than $rd*(1 - kappa)$. kappa=1 means that rd will not be decreased.
init_r	initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, dbl = 0)
init_rd	initial values for rd if not provided. Default (glicko = 350, glicko2 = 350, bbt = 25/3, dbl = 1)

Value

A "rating" object is returned:

- final_r named vector containing players ratings.
- final_rd named vector containing players ratings deviations.
- r data.frame with evolution of the ratings and ratings deviations estimated at each event.

6 glicko2_run

• pairs pairwise combinations of players in analysed events with prior probability and result of a challenge.

- class of the object.
- method type of algorithm used.
- settings arguments specified in function call.

Examples

```
# the simplest example

data <- data.frame(
   id = c(1, 1, 1, 1),
   name = c("A", "B", "C", "D"),
   rank = c(3, 4, 1, 2),
   gate = c(1, 2, 3, 4),
   factor1 = c("a", "a", "b", "b"),
   factor2 = c("a", "b", "a", "b")
)

dbl <- dbl_run(
   data = data,
   formula = rank | id ~ player(name)
)

dbl <- dbl_run(
   data = data,
   formula = rank | id ~ player(name) + gate * factor1
)</pre>
```

glicko2_run

Glicko2 rating algorithm

Description

Glicko2 rating algorithm

Usage

```
glicko2_run(
  formula,
  data,
  r = numeric(0),
  rd = numeric(0),
  sigma = numeric(0),
  lambda = NULL,
  share = NULL,
  weight = NULL,
  init_r = 1500,
```

glicko2_run 7

```
init_rd = 350,
  init_sigma = 0.05,
  kappa = 0.5,
  tau = 0.5
)
```

Arguments

formula

formula which specifies the model. RHS Allows only player rating parameter and it should be specified in following manner:

rank | id ~ player(name).

- rank player position in event.
- id event identifier in which pairwise comparison is assessed.
- player(name) name of the contestant. In this case player(name) helps algorithm point name of the column where player names are stored.

Users can also specify formula in in different way:

rank | id ~ player(name | team). Which means that players are playing in teams, and results are observed for teams not for players. For more see vignette.

data.frame which contains columns specified in formula, and optional columns defined by lambda, weight.

named vector of initial players ratings estimates. If not specified then r will be created automatically for parameters specified in formula with initial value init_r.

rd named vector of initial rating deviation estimates. If not specified then rd will be created automatically for parameters specified in formula with initial value init_rd.

(only for glicko2) named vector of initial players ratings estimates. If not specified then sigma will be created automatically for parameters specified in formula with initial value init_sigma.

name of the column in data containing lambda values or one constant value (eg. lambda = colname or lambda = 0.5). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of winning.

name of the column in data containing player share in team efforts. It's used to first calculate combined rating of the team and then redistribute ratings update back to players level. Warning - it should be used only if formula is specified with players nested within teams (player(player|team)).

name of the column in data containing weights values or one constant (eg. weight = colname or weight = 0.5). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event result on rating estimate.

initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, dbl = 0)

data

r

rd

sigma

lambda

share

weight

init_r

8 glicko2_run

that rd will not be decreased.

The system constant. Which constrains the change in volatility over time. Reasonable choices are between 0.3 and 1.2 (default = 0.5), though the system should be tested to decide which value results in greatest predictive accuracy. Smaller values of tau prevent the volatility measures from changing by large amounts, which in turn prevent enormous changes in ratings based on very improbable results. If the application of Glicko-2 is expected to involve extremely improbable collections of game outcomes, then tau should be set to a small value, even as small as, say, tau= 0.

Value

tau

A "rating" object is returned:

- final_r named vector containing players ratings.
- final_rd named vector containing players ratings deviations.
- final_sigma named vector containing players ratings volatile.
- r data.frame with evolution of the ratings and ratings deviations estimated at each event.
- pairs pairwise combinations of players in analysed events with prior probability and result of a challenge.
- class of the object.
- method type of algorithm used.
- settings arguments specified in function call.

Examples

```
# the simplest example
data <- data.frame(</pre>
 id = c(1, 1, 1, 1),
 team = c("A", "A", "B", "B"),
 player = c("a", "b", "c", "d"),
 rank_{team} = c(1, 1, 2, 2),
 rank_player = c(3, 4, 1, 2)
)
# Example from Glickman
glicko2 <- glicko2_run(</pre>
 data = data,
 formula = rank_player | id ~ player(player),
 r = setNames(c(1500.0, 1400.0, 1550.0, 1700.0), c("a", "b", "c", "d")),
 rd = setNames(c(200.0, 30.0, 100.0, 300.0), c("a", "b", "c", "d"))
)
# nested matchup
```

glicko_run 9

```
glicko2 <- glicko2_run(
  data = data,
  formula = rank_team | id ~ player(player | team)
)</pre>
```

glicko_run

Glicko rating algorithm

Description

Glicko rating algorithm

Usage

```
glicko_run(
  data,
  formula,
  r = numeric(0),
  rd = numeric(0),
  init_r = 1500,
  init_rd = 350,
  lambda = numeric(0),
  share = numeric(0),
  weight = numeric(0),
  kappa = 0.5
)
```

Arguments

data

data.frame which contains columns specified in formula, and optional columns defined by lambda, weight.

formula

formula which specifies the model. RHS Allows only player rating parameter and it should be specified in following manner:

rank | id ~ player(name).

- rank player position in event.
- id event identifier in which pairwise comparison is assessed.
- player(name) name of the contestant. In this case player(name) helps algorithm point name of the column where player names are stored.

Users can also specify formula in in different way:

rank | id ~ player(name | team). Which means that players are playing in teams, and results are observed for teams not for players. For more see vignette. named vector of initial players ratings estimates. If not specified then r will be created automatically for parameters specified in formula with initial value init_r.

r

10 glicko_run

rd	rd named vector of initial rating deviation estimates. If not specified then rd will be created automatically for parameters specified in formula with initial value init_rd.
init_r	initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, dbl = 0)
init_rd	initial values for rd if not provided. Default (glicko = 350, glicko2 = 350, bbt = 25/3, dbl = 1)
lambda	name of the column in data containing lambda values or one constant value (eg. lambda = colname or lambda = 0.5). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of winning.
share	name of the column in data containing player share in team efforts. It's used to first calculate combined rating of the team and then redistribute ratings update back to players level. Warning - it should be used only if formula is specified with players nested within teams (player(player team)).
weight	name of the column in data containing weights values or one constant (eg. weight = colname or weight = 0.5). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event result on rating estimate.
kappa	controls rd shrinkage not to be greater than rd*(1 - kappa). kappa=1 means that rd will not be decreased.

Value

A "rating" object is returned:

- final_r named vector containing players ratings.
- final_rd named vector containing players ratings deviations.
- r data.frame with evolution of the ratings and ratings deviations estimated at each event.
- pairs pairwise combinations of players in analysed events with prior probability and result of a challenge.
- class of the object.
- method type of algorithm used.
- settings arguments specified in function call.

Examples

```
# the simplest example
data <- data.frame(
  id = c(1, 1, 1, 1),
  team = c("A", "A", "B", "B"),
  player = c("a", "b", "c", "d"),
  rank_team = c(1, 1, 2, 2),
  rank_player = c(3, 4, 1, 2)
)</pre>
```

gpheats 11

```
# Example from Glickman
glicko <- glicko_run(
   data = data,
   formula = rank_player | id ~ player(player),
   r = setNames(c(1500.0, 1400.0, 1550.0, 1700.0), c("a", "b", "c", "d")),
   rd = setNames(c(200.0, 30.0, 100.0, 300.0), c("a", "b", "c", "d"))))

# nested matchup
glicko <- glicko_run(
   data = data,
   formula = rank_team | id ~ player(player | team)
)</pre>
```

gpheats

Heat results of Speedway Grand-Prix

Description

Actual dataset containing heats results of all Speedway Grand-Prix turnaments gpheats.

Format

A data frame with >19000 rows and 11 variables:

- id event identifier
- season year of Grand-Prix, 1995-now
- date date of turnament
- round round in season
- name Turnament name
- heat heat number, 1-23
- field number of gate, 1-4
- rider rider name, string
- points paints gained, integer
- position position at finish line, string
- rank rank at finish line, integer

Source

internal

12 plot.rating

gpsquads

Turnament results of Speedway Grand-Prix

Description

Actual dataset containing turnament results of all Speedway Grand-Prix events gpsquads

Format

A data frame with >4000 rows and 9 variables:

- id event identifier
- season year of Grand-Prix, 1995-now
- date date of turnament
- place stadium of event
- round round in season
- name Turnament name
- rider rider names, 1-6
- points points gained, integer
- classification classification after an event

Source

internal

plot.rating

Plot rating object

Description

Plot rating object

Usage

```
## S3 method for class 'rating'
plot(x, n = 10, players, ...)
```

Arguments

x of class rating

n number of teams to be plotted

players optional vector with names of the contestants (coefficients) to plot their evolu-

tion in time.

... optional arguments

predict.rating 13

predict.rating

Predict rating model

Description

Predict rating model

Usage

```
## S3 method for class 'rating'
predict(object, newdata, ...)
```

Arguments

```
object of class rating
```

newdata data.frame with data to predict

... optional arguments

Value

probabilities of winning challenge by player over his opponent in all provided events.

Examples

```
glicko <- glicko_run(
  data = gpheats[1:16, ],
  formula = rank | id ~ player(rider)
)
predict(glicko, gpheats[17:20, ])</pre>
```

summary.rating

Summarizing rating objects

Description

Summarizing rating objects Summary for object of class rating

Usage

```
## S3 method for class 'rating'
summary(object, ...)
```

Arguments

```
object of class rating
... optional arguments
```

summary.rating

Value

List with following elements:

- formula modeled formula.
- method type of algorithm used.
- Overall Accuracy named vector containing players ratings.
- r a data. frame with summarized players ratings and model winning probabilities.

Probabilities are returned only in models with one variable (ratings):

- name of a player
- r players ratings
- rd players ratings deviation
- Model probability mean predicted probability of winning the challenge by the player.
- True probability mean observed probability of winning the challenge by the player.
- Accuracy Accuracy of prediction.
- pairings number of pairwise occurrences.

Examples

```
model <- glicko_run(
  formula = rank | id ~ player(rider),
  data = gpheats[1:102, ]
)
summary(model)</pre>
```

Index

```
bbt_run, 2
dbl_run, 4
glicko2_run, 6
glicko_run, 9
gpheats, 11
gpsquads, 12
plot.rating, 12
predict.rating, 13
summary.rating, 13
```