
Package ‘steps’
July 23, 2025

Type Package

Title Spatially- and Temporally-Explicit Population Simulator

Version 1.3.0

Date 2022-10-03

Maintainer Casey Visintin <casey.visintin@unimelb.edu.au>

Description Software to simulate population change across space and time. Vis-
intin et al. (2020) <doi:10.1111/2041-210X.13354>.

BugReports https://github.com/steps-dev/steps/issues

URL https://github.com/steps-dev/steps

Depends R (>= 3.4.0)

License GPL (>= 2)

Imports Rcpp, raster, future, future.apply, rasterVis, viridisLite,
memuse

LinkingTo Rcpp

RoxygenNote 7.2.1

Suggests testthat, fields, knitr, rmarkdown, foreach

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

LazyData true

NeedsCompilation yes

Author Casey Visintin [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2245-8998>),

Nick Golding [ctb],
Skipton Woolley [ctb]

Repository CRAN

Date/Publication 2022-10-04 23:30:02 UTC

1

https://doi.org/10.1111/2041-210X.13354
https://github.com/steps-dev/steps/issues
https://github.com/steps-dev/steps
https://orcid.org/0000-0003-2245-8998

2 Contents

Contents

ceiling_density . 3
cellular_automata_dispersal . 3
compare_emp . 5
competition_density . 7
density_dependence_dispersing . 8
dispersal_kernel . 9
dispersal_proportion_function . 9
disturbance . 10
egk . 11
exponential_dispersal_kernel . 12
extract_spatial . 13
fast_dispersal . 14
fire_effects . 15
growth . 16
habitat_dynamics_functions . 18
kernel_dispersal . 18
landscape . 19
modified_transition . 21
mortality . 22
plot.simulation_results . 23
plot_hab_spatial . 24
plot_k_spatial . 25
plot_k_trend . 26
plot_pop_spatial . 27
plot_pop_trend . 28
population_change_functions . 29
population_density_dependence_functions . 29
population_dispersal_functions . 29
population_dynamics . 30
population_modification_functions . 31
set_proportion_dispersing . 32
simulation . 33
steps . 34
transition_function . 34
translocation . 35
visualisation . 36

Index 37

ceiling_density 3

ceiling_density Ceiling-based density dependence

Description

In-built density dependence function that constrains the number of individuals in a cell based on
the carrying capacity of that cell in a timestep. Note, carrying_capacity must be provided in the
landscape object to use this function (see landscape). Only specified stages that contribute to density
dependence are considered in the calculations and excess individuals are removed from only the
contributing stages. This type of density dependence only affects the population once it reaches the
carrying capacity. While population size is below carrying capacity, the population grows according
to the transition matrix.

Usage

ceiling_density(stages = NULL)

Arguments

stages which life-stages contribute to density dependence and are removed in a timestep
- default is all

Examples

Cap the population at carrying capacity with only the second and third
life stage used in calculations to determine density dependence.

Not run:
cap_population <- ceiling_density(stages = c(2, 3))

ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat), density_dependence = cap_population)

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

cellular_automata_dispersal

Cellular automata dispersal

4 cellular_automata_dispersal

Description

The cellular_automata_dispersal function simulates movements of individuals using rule-based cell
movements. In each cell that has population, every individual up to a specified proportion of the total
population attempts to move. For each step from a specified minimum up to a specified maximum
number of movements, a weighted draw of four directions, based on habitat suitability, is made
and then the destination cell is checked for available carrying capacity. If there is carrying capacity
available, the individual moves to the cell, if not, it remains in its current cell. This is repeated
until the maximum number of cell movements is reached. If no cell is found with available carrying
capacity, the individual remains in the source cell.

Usage

cellular_automata_dispersal(
max_cells = Inf,
min_cells = max_cells,
dispersal_proportion = set_proportion_dispersing(),
barriers = NULL,
use_suitability = TRUE,
carrying_capacity = "carrying_capacity"

)

Arguments

max_cells the maximum number of cell movements that each individual in each life stage
can disperse in whole integers.

min_cells the minimum number of cell movements that each individual in each life stage
will disperse in whole integers.

dispersal_proportion

a built-in or custom function defining the proportions of individuals that can
disperse in each life stage.

barriers the name of a spatial layer in the landscape object that contains cell values be-
tween 0 (no barrier) and 1 (full barrier) Any values between 0 and 1 indicate the
permeability of the barrier.

use_suitability

should habitat suitability be used to control the likelihood of individuals dispers-
ing into cells? The default is TRUE. Note, if a barrier map is also provided, the
suitability map is multiplied with the barrier map to generate a permeability map
of the landscape.

carrying_capacity

the name of a spatial layer in the landscape object that specifies the carrying
capacity in each cell.

Details

This function allows the use of barriers in the landscape to influence dispersal. The function is
computationally efficient, however, because as individuals are dispersed, performance scales with
the population sizes in each cell across a landscape and the maximum number of cell movements.

compare_emp 5

The maximum number of cell movements in cellular automata dispersal does not correspond ex-
actly to the distance decay of a dispersal kernel, since cellular automata dispersal depends on the
permeability of the landscape, and is interrupted on reaching a cell with available capacity (above
the minimum specified number of cell movements). A heuristic that can be used to determine a rea-
sonable number of steps from a mean dispersal distance ‘d‘ and cell resolution ‘res‘ is: ‘max_cells
= round(2 * (d / (res * 1.25)) ^ 2)‘. This corresponds approximately to the number of cell-steps
in an infinite, homogenous landscape with no early stopping, for which d is the mean end-to-end
dispersal distance of all individuals.

Rather than relying on this value, we recommend that the user experiment with the max_cells and
min_cells parameters to find a value such that the the mean dispersal distance in a reasonably
realistic simulation corresponds with field estimates of mean dispersal distances.

Examples

Example of cellular automata dispersal where the 2nd and 3rd life stages
disperse up to a maximum of 100 cells but dispersal is affected by
barriers (in this case roads). The road rasters have values of 0 for
large roads (no dispersal across barrier) and 0.5 for smaller roads
(reduced dispersal across barrier).

Not run:
ca_dispersal <- cellular_automata_dispersal(max_cells = c(0, 100, 100), barriers = "roads")

ls <- landscape(population = egk_pop,
suitability = egk_hab,
carrying_capacity = egk_k,
"roads" = egk_road)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = ca_dispersal,
density_dependence = ceiling_density())

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

compare_emp Compare minimum expected populations

Description

Compare minimum expected populations from two or more ’simulation_results’ objects.

Usage

compare_emp(
x,
...,
show_interval = TRUE,

6 compare_emp

interval = 95,
all_points = FALSE,
simulation_names = NULL

)

Arguments

x a simulation_results object

... additional simulation results objects

show_interval should the interval bars be shown on the plot? Default is TRUE.

interval the desired confidence interval representing the uncertainty around the expected
minimum population estimates from simulation comparisons; expressed as a
whole integer between 0 and 100 (default value is 95).

all_points should the expected minimum populations from all simulation replicates be
shown on the plot? Default is FALSE.

simulation_names

an optional character vector of simulation names to override the defaults

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

Create populations dynamics with and without ceiling density dependence
pd1 <- population_dynamics(change = growth(egk_mat),

dispersal = kernel_dispersal(max_distance = 1000,
dispersal_kernel = exponential_dispersal_kernel(distance_decay = 500)),

density_dependence = ceiling_density())
pd2 <- population_dynamics(change = growth(egk_mat),

dispersal = kernel_dispersal(max_distance = 3000,
dispersal_kernel = exponential_dispersal_kernel(distance_decay = 1500)))

Run first simulation with ceiling density dependence and three replicates
sim1 <- simulation(landscape = ls,

population_dynamics = pd1,
habitat_dynamics = NULL,
timesteps = 20,
replicates = 3)

Run second simulation without ceiling density dependence and three replicates
sim2 <- simulation(landscape = ls,

population_dynamics = pd2,
habitat_dynamics = NULL,
timesteps = 20,
replicates = 3)

compare_emp(sim1, sim2)

End(Not run)

competition_density 7

competition_density Competition density function

Description

Adjusts the life-stage transition matrix in each cell based on the carrying capacity in the cell and a
density dependence function - default is Beverton-Holt. The user may specify which life-stages are
affected by density dependence. If R_max is not provided this is calculated from the local cell-based
transition matrices internally. By providing initial stable age distribution values, performance can
be increased as the function internally calculates these values through optimisation.

Usage

competition_density(
stages = NULL,
mask = NULL,
R_max = NULL,
stable_age = NULL

)

Arguments

stages which life-stages contribute to density dependence - default is all

mask a matrix of boolean values (TRUE/FALSE), equal in dimensions to the life-stage
transition matrix and specifying which vital rates (i.e. survival and fecundity)
are to be modified by the function

R_max optional value of maximum growth rate (lambda) if known

stable_age optional vector of stable age distributions if known

Examples

Vital rates (survival and fecundity) modified based on approach to carrying capacity
by the 2nd and 3rd life stages.

Not run:
mod_fun <- competition_density(stages = c(2, 3))

ls <- landscape(population = egk_pop, suitability = NULL, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat, transition_function = mod_fun))

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

8 density_dependence_dispersing

density_dependence_dispersing

Density-dependent proportions of populations dispersing

Description

The proportion of populations dispersing will be density dependent in a simulation. Proportions of
populations in each life stage dispersing is adjusted based on available carrying capacity. If life-
stages are set by the population_density_dependence_functions, these will be used to determine
how close the population is to carrying capacity. If no life-stages are set or density dependence is
set to NULL in population_dynamics, the function will consider all life-stages in the calculation.

Usage

density_dependence_dispersing(maximum_proportions = 1)

Arguments

maximum_proportions

A single value or vector of the maximum proportions (between zero and one) of
individuals in each life stage that disperse - default is 1. If maximum proportions
are specified as a single number, then all life-stages use that value, however, a
vector of maximum proportions (equal in length to the number of life-stages)
can also be specified. Maximum proportions are multiplied by the calculated
proportions based on carrying capacity so to prevent stages from dispersing, set
corresponding values to zero.

Value

An object of class dispersal_proportion_function

Examples

Example of a proportion function that disperses all populations based on their approach
to carrying capacity

Not run:
prop_dispersal <- density_dependence_dispersing()

kb_dispersal <- kernel_dispersal(dispersal_proportion = prop_dispersal,
max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(distance_decay = 1000))

ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat), dispersal = kb_dispersal)

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

dispersal_kernel 9

End(Not run)

dispersal_kernel Create a dispersal function

Description

A dispersal kernel function is a mathematical representation of how species redistribute across the
landscape.

A common dispersal kernel is provided in the software for the user to select, however, a user may
also provide a custom written dispersal kernel.

See Also

• exponential_dispersal_kernel) for a (negative) exponential dispersal kernel

dispersal_proportion_function

Create a proportion dispersing function

Description

A proportion dispersing function generates the proportions of species that disperse from cells based
on landscape features.

Details

The default set_proportion_dispersing function and parameters returns full dispersal for all
life stages. Additional proportion dispersing functions are provided in the software for the user to
select, however, a user may also provide a custom written proportion dispersing function. Please
see the tutorial vignette titled "Creating custom *steps* functions" for information on how to write
custom functions for use in simulations.

See Also

• set_proportion_dispersing controls the proportions of each life-stage that disperse

• density_dependence_dispersing proportions of dispersing populations are controlled by ap-
proach to carrying capacity

10 disturbance

disturbance Disturbance

Description

Modifies the landscape by multiplying habitat suitability values by a sum of previous disturbances.
Since disturbances can act in a single timestep, or have lasting effects, the user can specify an ’effect
time’ of disturbances.

Usage

disturbance(disturbance_layers, effect_time = 1)

Arguments

disturbance_layers

the name of spatial layer(s) in the landscape object with disturbances used to
alter the habitat object for each timestep (number of layers must match the in-
tended timesteps)

effect_time the number of timesteps that the disturbance layer will act on the habitat ob-
ject (e.g. ’3’ will combine the effects of previous two timesteps to increase the
overall effect) - the default is 1.

Examples

Road building (stored in the landscape object and called "roads") acts on the landscape
each year.

Not run:
road_effect <- disturbance(disturbance_layers = "roads", effect_time = 1)

ls <- landscape(population = egk_pop, suitability = egk_hab, "roads" = egk_road)

pd <- population_dynamics(change = growth(egk_mat))

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = list(road_effect),
timesteps = 20)

plot(sim, object = "suitability", type = "raster", timesteps = 1:9)

End(Not run)

egk 11

egk Eastern Grey Kangaroo example data

Description

Example data for simulating spatial population dynamics of Eastern Grey Kangaroos in a hypothet-
ical landscape.

Usage

egk_hab

egk_pop

egk_k

egk_mat

egk_mat_stoch

egk_sf

egk_fire

egk_origins

egk_destinations

egk_road

Format

Misc data

An object of class RasterStack of dimension 35 x 36 x 3.

An object of class RasterLayer of dimension 35 x 36 x 1.

An object of class matrix (inherits from array) with 3 rows and 3 columns.

An object of class matrix (inherits from array) with 3 rows and 3 columns.

An object of class RasterStack of dimension 35 x 36 x 120.

An object of class RasterBrick of dimension 35 x 36 x 20.

An object of class RasterLayer of dimension 35 x 36 x 1.

An object of class RasterLayer of dimension 35 x 36 x 1.

An object of class RasterBrick of dimension 35 x 36 x 20.

12 exponential_dispersal_kernel

Details

egk_hab A raster layer containing the predicted relative habitat suitability for the Eastern Grey
Kangaroo.

egk_pop A raster stack containing initial populations for each life-stage of the Eastern Grey Kan-
garoo.

egk_k A raster layer containing the total number of Eastern Grey Kangaroos each grid cell can
support.

egk_mat A matrix containing the survival and fecundity of Eastern Grey Kangaroos at each of
three life-stages - juvenile, subadult, and adult.

egk_mat_stoch A matrix containing the uncertainty around survival and fecundity of Eastern Grey
Kangaroos at each of three life-stages - juvenile, subadult, and adult.

egk_sf A raster stack containing values for modifying survival and fecundities - each is raster is
named according to the timestep and position of the life-stage matrix to be modified.

egk_fire A raster stack containing values for modifying the habitat - in this case the proportion of
landscape remaining after fire.

egk_origins A raster stack containing locations and counts of where to move individual kangaroos
from.

egk_destinations A raster stack containing locations and counts of where to move individual kan-
garoos to.

egk_road A raster stack containing values for modifying the habitat - in this case the proportion of
habitat remaining after the construction of a road.

exponential_dispersal_kernel

Negative exponential dispersal kernel

Description

This function determines the proportion of redistribution based on distance.

Usage

exponential_dispersal_kernel(distance_decay = 0.5, normalize = FALSE)

Arguments

distance_decay (exponential dispersal parameter) controls the rate at which the population dis-
perses with distance

normalize (exponential dispersal parameter) should the normalising constant be used - de-
fault is FALSE.

Value

An object of class dispersal_function

extract_spatial 13

Examples

Not run:
dists <- seq(0, 100, 1)

exp_dispersal_fun <- exponential_dispersal_kernel(distance_decay = 50)

plot(dists, exp_dispersal_fun(dists), type = 'l')

End(Not run)

extract_spatial Extract spatial object from a ’simulation_results’ object

Description

The simulation results object is a list of lists containing spatial (and other) objects and is organised
by the following tree diagram:

• Replicate

– Timestep

* Population Raster Stack
· Life-Stage Raster

* Habitat Suitability Raster (or Stack)
· Habitat Raster (if stack is used)

* Carrying Capacity Raster

* Other Raster Stack
· Raster

* ...

Usage

extract_spatial(
x,
replicate = 1,
timestep = 1,
landscape_object = "population",
stage = 1,
misc = 1

)

Arguments

x a simulation_results object

replicate which replicate to extract from a simulation_results object

timestep which timestep to extract from a simulation_results

14 fast_dispersal

landscape_object

which landscape object to extract from a simulation_results object - can be
specified by name (e.g. "suitability") or index number

stage which life-stage to extract from a simulation_results object - only used for
’population’ components of the landscape object

misc which misc object to extract from a simulation_results object - only used for
additional spatial objects added to a landscape (e.g. disturbance layers)

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

Extract the population raster for the second life-stage in the first
replicate and ninth timestep
extract_spatial(sim, replicate = 1, timestep = 9, stage = 2)

End(Not run)

fast_dispersal Fast diffusion-based dispersal

Description

The fast_dispersal function uses kernel-based dispersal to modify the population with a user-defined
diffusion distribution and a fast-fourier transformation (FFT) computational algorithm. It is com-
putationally efficient and very fast, however, only useful for situations where dispersal barriers or
arrival based on habitat or carrying capacity are not required (e.g. a homogeneous landscape or
where diffusion alone is sufficient to explain dispersal patterns). Dispersal is not constrained to
suitable habitat or available carrying capacity.

Usage

fast_dispersal(
dispersal_kernel = exponential_dispersal_kernel(distance_decay = 0.1),
dispersal_proportion = set_proportion_dispersing()

)

fire_effects 15

Arguments

dispersal_kernel

a single built-in or user-defined distance dispersal kernel function.
dispersal_proportion

a built-in or custom function defining the proportions of individuals that can
disperse in each life stage.

Examples

Example of fast kernel-based dispersal where all life stages disperse.
The default dispersal kernel uses a decay parameter to control how far
populations disperse. Note proportions of populations to disperse are
controlled by approach to carrying capacity.

Not run:
fft_dispersal <- fast_dispersal(dispersal_proportion = density_dependence_dispersing(),

dispersal_kernel = exponential_dispersal_kernel(distance_decay = 1000))

ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = fft_dispersal,
density_dependence = ceiling_density())

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

fire_effects Fire effects with regeneration

Description

Modifies the landscape by multiplying habitat suitability values by a weighted sum of previous fire
intensities based on a user specified regeneration function. By default, the regenerative function is
an inverse linear relationship to time, however, this function can be replaced with a response that
takes into account other factors of habitat restoration (e.g. growth/re-growth curves of vegetation).

Usage

fire_effects(
fire_layers,
effect_time = 3,
regeneration_function = function(time) {

-time
}

)

16 growth

Arguments

fire_layers the name(s) of spatial layer(s) in the landscape object with fire disturbances
used to alter the habitat object for each timestep (number of layers must match
the intended timesteps)

effect_time the number of timesteps that the fire layer will act on the habitat object

regeneration_function

a function that determines how fast the landscape will regenerate after a fire
event

Examples

Fire (stored in the landscape object and called "fires") acts on the landscape for
#five years with an exponentially decaying intensity.

Not run:
regen <- function (time) {-exp(time)}

plot(1:5, regen(1:5), type = "l")

fire <- fire_effects(fire_layers = "fires", effect_time = 5, regeneration_function = regen)

ls <- landscape(population = egk_pop, suitability = egk_hab, "fires" = egk_fire)

pd <- population_dynamics(change = growth(egk_mat))

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = list(fire),
timesteps = 20)

plot(sim, object = "suitability", type = "raster", timesteps = 1:9)

End(Not run)

growth Population growth

Description

This function applies negative or positive growth to the population using matrix multiplication.
Stochasticity can be added to cell-based transition matrices or globally. Users can also specify a
built-in or custom function to modify the transition matrices throughout a simulation. Please see the
tutorial vignette titled "Creating custom *steps* functions" for information on how to write custom
functions for use in simulations.

growth 17

Usage

growth(
transition_matrix,
global_stochasticity = 0,
local_stochasticity = 0,
transition_function = NULL,
transition_order = c("fecundity", "survival"),
two_sex = FALSE

)

Arguments

transition_matrix

A symmetrical age-based (Leslie) or stage-based (Lefkovitch) population struc-
ture matrix.

global_stochasticity, local_stochasticity
Either scalar values or matrices (with the same dimension as transition_matrix)
specifying the variability in the transition matrix either for populations in all
grid cells (global_stochasticity) or for each grid cell population separately
(local_stochasticity). Values supplied here are the standard deviation of a
truncated normal distribution where the mean is the value supplied in the transi-
tion matrix.

transition_function

A function to specify or modify life-stage transitions at each timestep. See tran-
sition_function.

transition_order

Order of transitions performed in growth function. This behaviour is only ap-
plied when demographic stochasticity is set to "full" (default) and transitions
are applied sequentially. By default "fecundity" is performed first (calculating
the number of new individuals to be added to the populations), then "survival"
is applied. The final population is the sum of these. Users should be cautious
of specifying "survival" to be performed first as typically survival of reproduc-
tive stages will already be accounted for in the fecundity values of the transition
matrix.

two_sex Does the transition matrix include life stages for two sexes (i.e. male and fe-
male)? Default is FALSE which assumes a single sex matrix (e.g. females
only).

Examples

Example of a growth function that changes the populations based on a transition matrix that
is subject to global stochasticity.

Not run:
stoch_growth <- growth(transition_matrix = egk_mat, global_stochasticity = egk_mat_stoch)

ls <- landscape(population = egk_pop, suitability = NULL, carrying_capacity = NULL)

pd <- population_dynamics(change = stoch_growth)

18 kernel_dispersal

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

habitat_dynamics_functions

Functions to modify the habitat in a landscape object.

Description

Pre-defined functions to operate on habitat suitability (and carrying capacity if a function is used)
during a simulation.

See Also

• disturbance to modify the suitability of a landscape with user provided spatially-explicit layers

• fire_effects

kernel_dispersal Kernel-based dispersal

Description

The kernel_dispersal function employs a probabilistic kernel-based dispersal algorithm to modify
the population using a user-defined diffusion distribution (see dispersal_kernel), arrival probability
layers (e.g. habitat suitability), and growth limiting layers (e.g. carrying capacity). This function
is much slower than the fast_dispersal, however, respects dispersal limitations which may be more
ecologically appropriate. Further, the kernel-based dispersal function utilises a mechanism to opti-
mise computational performance in which it switches between pre-allocating cell movements based
on the available memory of the host computer (faster but more memory intensive) or executing cell
movements in sequence (slower but less memory intensive).

Usage

kernel_dispersal(
dispersal_kernel = exponential_dispersal_kernel(distance_decay = 1),
max_distance = NULL,
arrival_probability = c("both", "suitability", "carrying_capacity", "none"),
dispersal_proportion = set_proportion_dispersing()

)

landscape 19

Arguments

dispersal_kernel

a single built-in or user-defined distance dispersal kernel function.

max_distance the maximum distance that each life stage can disperse in spatial units of the
landscape (in kernel-based dispersal this truncates the dispersal curve). Setting
a reasonable number will increase the performance of a simulation by reducing
the number of cells that need to be calculated in distance matrices.

arrival_probability

the name of a spatial layer in the landscape object that controls where individuals
can disperse to (e.g. "suitability") or "none" to allow individuals to disperse to
all non-NA cells. The default is to use both the habitat suitability and carrying
capacity layers. When this option is selected, the arrival probability in each cell
is calculated by multiplying the habitat suitability by one minus the proportion of
space taken up in the cell (total population of life stages contributing to density
dependence divided by the carrying capacity).

dispersal_proportion

a built-in or custom function defining the proportions of individuals that can
disperse in each life stage.

Examples

Example of kernel-based dispersal where only the 3rd life stage
disperses up to a maximum distance of 2000 meters. Dispersal is affected
by both habitat suitability and carrying capacity (default). The default
dispersal kernel uses a decay parameter to control how far populations disperse.

Not run:
kb_dispersal <- kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(distance_decay = 1000))

ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kb_dispersal,
density_dependence = ceiling_density())

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

landscape Create a landscape object.

Description

A landscape object is used to store spatially-explicit information on population, habitat suitability,
carrying_capacity and miscellaneous landscape information.

20 landscape

Usage

landscape(population, suitability = NULL, carrying_capacity = NULL, ...)

Arguments

population a raster stack (grid cell-based) with one layer for each life stage.

suitability an optional raster layer or stack (multiple layers) containing habitat suitability
values for all cells in a landscape. Note, using a raster stack assumes that the
user has provided a layer for each intended timestep in a simulation.

carrying_capacity

an optional raster layer specifying carrying capacity values for all cells in a
landscape or a function defining how carrying capacity is determined by habitat
suitability.

... named raster objects representing different aspects of the landscape used to mod-
ify the landscape object in a simulation. Note, this is intended to store objects
that are accessed by dynamic functions and used to modify the landscape in a
simulation. Also, further arguments passed to or from other methods.

Details

A landscape object is modified in each timestep of a simulation. During a simulation, population,
habitat suitability or carrying capacity in a landscape object are changed based on dynamic functions
selected or created by the user.

Value

An object of class landscape

Examples

Example of setting up a landscape object.

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat))

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

modified_transition 21

modified_transition Spatially-explicit transition function

Description

In the built-in modified_transition function, the values of fecundity and survival in local cell-
based transition matrices are multiplied by values in the named spatial objects for each cell. The
spatial objects can be rasters that are stored in the landscape object.

Usage

modified_transition(survival_layer = NULL, fecundity_layer = NULL)

Arguments

survival_layer the name of a spatial layer in the landscape object used to modify survival values
(i.e. non-zero values in rows other than the first).

fecundity_layer

the name of a spatial layer in the landscape object used to modify fecundity
values (i.e. non-zero values in the first row).

Details

The behaviour of the function is to modify any non-zero values in the first row by the "fecun-
dity_layer" and non-zero values in rows other than the first by the "survival_layer". This is irre-
spective of the type of matrix or any assumptions made by the user in creating the transition matrix.
For example, if the transition matrix values include both the probabilities of surviving AND growing
into the next stage, these can NOT be modified individually. This operation would require the use
of a custom function - see the "Creating custom *steps* functions" vignette for more information.

Note, this function will not work if two-sex transition matrices are specified in a simulation. This
function can be modified, however, to accommodate two-sex models - review the population_change
function and see the "Creating custom *steps* functions" vignette for more information.

Value

An object of class transition_function

Examples

Vital rates (survival and fecundity) modified based on habitat suitability.

Not run:
mod_fun <- modified_transition(survival_layer = "suitability", fecundity_layer = "suitability")

ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = NULL)

pd <- population_dynamics(change = growth(egk_mat, transition_function = mod_fun))

22 mortality

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

mortality Directly affect populations

Description

This function modifies a population by a mortality spatial layer included in a steps landscape object.
The mortality layer consists of values from 0???1 and modifies the population by multiplying the
population of a cell by the value of the corresponding cell in a mortality layer. For example, a cell
with ten individuals before the mortality function is applied, and corresponding mortality layer cell
with a value of 0.2, would have two individuals remaining after modification. Note, rounding also
occurs after modification using a ceiling method (i.e the largest whole integer is retained).

Usage

mortality(mortality_layer, stages = NULL)

Arguments

mortality_layer

the name of spatial layer(s) in the landscape object with mortality proportions
used to alter the populations for each timestep. If a stack of rasters is used
then the number of layers must match the intended number of timesteps in the
simulation.

stages which life-stages are modified - default is all

Examples

Modify populations in all life-stages with fire intensity.

Not run:
fire_mortal <- mortality(mortality_layer = "fire", stages = NULL)

ls <- landscape(population = egk_pop,
suitability = egk_hab,
carrying_capacity = egk_k,
"fire" = egk_fire)

pd <- population_dynamics(change = growth(egk_mat), modification = fire_mortal)

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

plot.simulation_results 23

plot.simulation_results

Plot the results of a simulation

Description

Methods to visually inspect the results of a simulation. Both linear graphs and spatial-explicit grids
are generated for all timesteps to illustrate population changes through time and space. Note, this
function can be wrapped in a *png()* call to write several images to disk for creating animations.

Usage

S3 method for class 'simulation_results'
plot(x, replicates = 1, ...)

Arguments

x a simulation_results object

replicates which replicates to plot (default is one, or the first)

... further arguments passed to/from other methods

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

Plot the spatial distributions of total cell populations
plot(sim)

End(Not run)

24 plot_hab_spatial

plot_hab_spatial Plot habitat suitability spatial information

Description

Plot spatial grids to illustrate habitat suitability changes through time.

Usage

plot_hab_spatial(x, replicate = 1, timesteps = NULL, ...)

Arguments

x a simulation_results object.

replicate replicate to plot - note, only one replicate can be plotted at a time. The default
is to plot the first replicate

timesteps timesteps to plot

... further arguments passed to/from other methods

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

Plot the population trajectories by life-stage
plot_hab_spatial(sim)

End(Not run)

plot_k_spatial 25

plot_k_spatial Plot carrying capacity spatial information

Description

Plot spatial grids to illustrate carrying capacity changes through time.

Usage

plot_k_spatial(x, replicate = 1, timesteps = NULL, ...)

Arguments

x a simulation_results object.

replicate replicate to plot - note, only one replicate can be plotted at a time. The default
is to plot the first replicate

timesteps timesteps to plot

... further arguments passed to/from other methods

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

Plot the population trajectories by life-stage
plot_k_spatial(sim)

End(Not run)

26 plot_k_trend

plot_k_trend Plot carrying capacity (k) trend

Description

Plot linear graphs to illustrate carrying capacity changes through time.

Usage

plot_k_trend(x, summary_stat = "mean", return_data = FALSE, ...)

Arguments

x a simulation_results object

summary_stat how to summarize the values across the landscape - "mean" (default) or "sum"

return_data (TRUE/FALSE) should the data used to create the plots be returned?

... further arguments passed to/from other methods

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

Plot the carrying capacity trajectories
plot_k_trend(sim)

End(Not run)

plot_pop_spatial 27

plot_pop_spatial Plot population spatial information

Description

Plot spatial grids to illustrate population changes through time.

Usage

plot_pop_spatial(x, stage = 0, replicate = 1, timesteps = NULL, ...)

Arguments

x a simulation_results object

stage life-stage to plot - defaults to totals of all life stages. Set to zero for totals (i.e.
sum of all life-stages).

replicate replicate to plot - note, only one replicate can be plotted at a time. The default
is to plot the first replicate

timesteps timesteps to plot

... further arguments passed to/from other methods

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

Plot the population trajectories by life-stage
plot_pop_spatial(sim)

End(Not run)

28 plot_pop_trend

plot_pop_trend Plot population trend

Description

Plot linear graphs to illustrate population changes through time.

Usage

plot_pop_trend(x, stages = NULL, emp = FALSE, return_data = FALSE, ...)

Arguments

x a simulation_results object

stages life-stages to plot - by default all life-stages will be shown. Set to zero for totals
(i.e. sums of all life-stages).

emp (TRUE/FALSE) add a dashed line indicating the expected minimum population
of the simulation (for multiple replicates only)

return_data (TRUE/FALSE) should the data used to create the plots be returned?

... further arguments passed to/from other methods

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

sim <- simulation(landscape = ls,
population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

Plot the population trajectories by life-stage
plot_pop_trend(sim)

Plot the total population trajectory
plot_pop_trend(sim, stages = 0)

End(Not run)

population_change_functions 29

population_change_functions

How the population changes in a landscape.

Description

Pre-defined or custom functions to define population change during a simulation. Please see the
tutorial vignette titled "Creating custom *steps* functions" for information on how to write custom
functions for use in simulations.

See Also

• growth is a default function for changing populations based on transition matrices and func-
tions

population_density_dependence_functions

How the population responds to density dependence in a landscape.

Description

Pre-defined or custom functions to define population density dependence (e.g. ceiling) during a sim-
ulation. Please see the tutorial vignette titled "Creating custom *steps* functions" for information
on how to write custom functions for use in simulations.

See Also

• ceiling_density to cap populations at carrying capacities

population_dispersal_functions

How the population disperses in a landscape.

Description

Pre-defined or custom functions to define population dispersal during a simulation. Each dispersal
method uses different computing resources and may be applicable to different simulation scenarios.
Please see the tutorial vignette titled "Creating custom *steps* functions" for information on how
to write custom functions for use in simulations.

30 population_dynamics

See Also

• kernel_dispersal for kernel-based diffusion dispersal using habitat suitability and/or carrying
capacity to influence movements

• cellular_automata_dispersal for individual-based movements using rule-sets

• fast_dispersal for quick kernel-based diffusion dispersal without accounting for spatial hetero-
geneity

population_dynamics Define population dynamics.

Description

A population_dynamics object is used to describe how populations change in space and time.

Usage

population_dynamics(
change = NULL,
dispersal = NULL,
modification = NULL,
density_dependence = NULL,
dynamics_order = c("change", "dispersal", "modification", "density_dependence")

)

Arguments

change population_change_functions to define how population growth occurs at each
timestep

dispersal population_dispersal_functions to define how the population disperses at each
timestep

modification population_modification_functions to define any deterministic changes to the
population - such as translocations or population control - at each timestep

density_dependence

population_density_dependence_functions to control density dependence effects
on the population at each timestep

dynamics_order the order in which the population dynamics should be executed on the land-
scape object - default is "change" -> "dispersal" -> "modification" -> "den-
sity_dependence". Note, if population dynamics are reordered, all dynamics
must be listed in dynamics_order.

population_modification_functions 31

Details

A population_dynamics object is passed to simulation and defines how populations change be-
tween timesteps. Note, some dynamics functions can be executed at non-regular intervals (i.e. only
timesteps explicitly defined by the user). The population_dynamics function is used to construct
an object with several population dynamics functions and their associated parameters. These func-
tions specify how the population in the landscape object will be modified throughout a simulation.
The dynamics can be executed in any order that is specified by the user. It is cautioned that the order
of dynamics will have implications depending on whether the user has assumed a post-breeding or
pre-breeding census in the transition matrix. For more information on this, please refer to Kendall
et al, (2019) Ecological Applications.

Value

An object of class population_dynamics

Examples

Example of setting up population dynamics to only use a population change function.

Not run:
ls <- landscape(population = egk_pop, suitability = NULL, carrying_capacity = NULL)

pd <- population_dynamics(change = growth(egk_mat))

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

population_modification_functions

How the population is modified in a landscape.

Description

Pre-defined functions to define population modification (e.g. translocation) during a simulation.

See Also

• translocation for specifying explicit spatial and temporal movements of populations

• mortality for specifying explicit spatial and temporal changes to populations

32 set_proportion_dispersing

set_proportion_dispersing

Set proportions of populations dispersing

Description

This function allows a user to specify what proportions of populations in each life-stage disperse.
It operates similarly on all cells and in all timesteps throughout a simulation.

Usage

set_proportion_dispersing(proportions = 1)

Arguments

proportions A single value or vector of proportions (between zero and one) of individuals in
each life stage that disperse - default is 1. If proportions are specified as a single
number, then all life-stages disperse with that proportion, however, a vector of
proportions (equal in length to the number of life-stages) can also be specified.
To prevent stages from dispersing, set corresponding values to zero.

Value

An object of class dispersal_proportion_function

Examples

Example of a proportion function that disperses no population in the first life stage,
50% of the second, and 90% of the 3rd.

Not run:
prop_dispersal <- set_proportion_dispersing(proportions = c(0, 0.5, 0.9))

kb_dispersal <- kernel_dispersal(dispersal_proportion = prop_dispersal,
max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(distance_decay = 1000))

ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat), dispersal = kb_dispersal)

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

simulation 33

simulation Run a simulation

Description

A simulation changes landscape objects based on selected dynamics over a specified number of
timesteps.

Usage

simulation(
landscape,
population_dynamics,
habitat_dynamics = list(),
demo_stochasticity = c("full", "none"),
timesteps = 3,
replicates = 1,
verbose = TRUE,
future.globals = list()

)

Arguments

landscape a landscape object representing the initial habitat and population
population_dynamics

a population_dynamics object describing how population changes over time
habitat_dynamics

optional list of functions to modify the landscape at each timestep - see habi-
tat_dynamics_functions

demo_stochasticity

how should population rounding occur, if at all - "full" uses a multinomial draw
to return rounded cell populations (default) whilst "none" returns non-integer
cell populations (no rounding). Note, this parameter specification is used con-
sistently throughout all functions in a simulation.

timesteps number of timesteps used in one simulation

replicates number of simulations to perform

verbose print messages and progress to console? (default is TRUE)

future.globals a list of custom functions, and objects called by the functions, that a user has
created in the global environment for use in a simulation. Note this is only
required when running simulations in parallel (e.g. plan(multisession)).

Value

An object of class simulation_results

34 transition_function

Examples

Not run:
ls <- landscape(population = egk_pop, suitability = egk_hab, carrying_capacity = egk_k)

pd <- population_dynamics(change = growth(egk_mat),
dispersal = kernel_dispersal(max_distance = 2000,

dispersal_kernel = exponential_dispersal_kernel(
distance_decay = 1000)),

density_dependence = ceiling_density())

Run a simulation with full demographic stochasticity and without any habitat
dynamics for tewnty timesteps.
sim <- simulation(landscape = ls,

population_dynamics = pd,
habitat_dynamics = NULL,
timesteps = 20)

End(Not run)

steps Simulate population trajectories over space and time with dynamic
functions.

Description

Simulating shifts in species populations is an important part of ecological management. Species
respond to spatial and temporal changes in the landscape resulting from environmental phenomena,
managerial actions or anthropogenic activities. This data is crucial for modelling, however, current
software that incorporates this information has limited flexibility, transparency, and availability.
steps extends the features found in existing software and accepts common spatial inputs that are
derived from many other existing software packages.

A simulation is run on a landscape using population dynamics functions contained in a popula-
tion_dynamics object. habitat_dynamics_functions can also be added to the simulation to modify
the habitat during a simulation.

transition_function Create a growth transition function

Description

A growth transition function defines how spatial objects or custom functions influence survival and
fecundity. Two built-in functions are provided for the user to select, however, a user may also
provide custom written functions to modify survival and fecundity throughout a simulation. Please
see the tutorial vignette titled "Creating custom *steps* functions" for information on how to write
custom functions for use in simulations.

translocation 35

See Also

• modified_transition to use rasters to modify survival and fecundity

• competition_density to use relationship to carrying capacity to modify survival and fecundity

translocation Translocate populations

Description

This function is used to move or introduce populations throughout a simulation. A user can specify
which life-stages will be affected (default is all) and in which timesteps the translocations will take
place. A warning will be generated if populations are not available where specified to translocate
from.

Usage

translocation(
origins_layer,
destinations_layer,
stages = NULL,
effect_timesteps = 1

)

Arguments

origins_layer the name of a spatial layer in the landscape object with the locations and number
of individuals to translocate from. Note, this layer will have only zero values if
individuals are being introduced from outside the study area

destinations_layer

the name of a spatial layer in the landscape object with the locations and number
of individuals to translocate to. Note, this layer will have only zero values if
individuals are being controlled (e.g. culling)

stages which life-stages are modified - default is all
effect_timesteps

which timesteps in a single simulation do the translocations take place

Examples

Modify populations in all life-stages using explicit layers of origin and destination populations
in timesteps 5, 10, and 15.

Not run:
trans_pop <- translocation(origins_layer = "origins",

destinations_layer = "destinations",
stages = NULL,
effect_timesteps = c(5, 10, 15))

36 visualisation

ls <- landscape(population = egk_pop,
suitability = NULL,
carrying_capacity = NULL,
"origins" = egk_origins,
"destinations" = egk_destinations)

pd <- population_dynamics(change = growth(egk_mat), modification = trans_pop)

simulation(landscape = ls, population_dynamics = pd, habitat_dynamics = NULL, timesteps = 20)

End(Not run)

visualisation Visualise the results of a *steps* simulation

Description

Visualising the results of a simulation is important to verify parameter assumptions and quantitative
model behaviour. Both linear graphs indicating trends and spatial-explicit grids containing spatial
arrangement of information can be generated to illustrate changes through time and space for pop-
ulations, carrying capacity, and habitat suitability. The expected minimum populations (EMP) can
also be compared for several different simulations.

Details

For plotting trends, see:

• plot_pop_trend to examine population changes

• plot_k_trend to examine carrying capacity changes

For plotting spatial information, see:

• plot_pop_spatial to examine population changes

• plot_k_spatial to examine carrying capacity changes

• plot_hab_spatial to examine habitat suitability changes

For plotting and comparing expected minimum populations, see:

• compare_emp to examine how different simulations compare

Index

∗ datasets
egk, 11

ceiling_density, 3, 29
cellular_automata_dispersal, 3, 30
compare_emp, 5, 36
competition_density, 7, 35

density_dependence_dispersing, 8, 9
dispersal_kernel, 9, 18
dispersal_proportion_function, 9
disturbance, 10, 18

egk, 11
egk_destinations (egk), 11
egk_fire (egk), 11
egk_hab (egk), 11
egk_k (egk), 11
egk_mat (egk), 11
egk_mat_stoch (egk), 11
egk_origins (egk), 11
egk_pop (egk), 11
egk_road (egk), 11
egk_sf (egk), 11
exponential_dispersal_kernel, 9, 12
extract_spatial, 13

fast_dispersal, 14, 18, 30
fire_effects, 15, 18

growth, 16, 29

habitat_dynamics_functions, 18, 33, 34

kernel_dispersal, 18, 30

landscape, 3, 19, 33, 34

modified_transition, 21, 35
mortality, 22, 31

plot.simulation_results, 23

plot_hab_spatial, 24, 36
plot_k_spatial, 25, 36
plot_k_trend, 26, 36
plot_pop_spatial, 27, 36
plot_pop_trend, 28, 36
population_change_functions, 29, 30
population_density_dependence_functions,

8, 29, 30
population_dispersal_functions, 29, 30
population_dynamics, 8, 30, 33, 34
population_modification_functions, 30,

31

set_proportion_dispersing, 9, 32
simulation, 31, 33, 34
steps, 34

transition_function, 17, 34
translocation, 31, 35

visualisation, 36

37

	ceiling_density
	cellular_automata_dispersal
	compare_emp
	competition_density
	density_dependence_dispersing
	dispersal_kernel
	dispersal_proportion_function
	disturbance
	egk
	exponential_dispersal_kernel
	extract_spatial
	fast_dispersal
	fire_effects
	growth
	habitat_dynamics_functions
	kernel_dispersal
	landscape
	modified_transition
	mortality
	plot.simulation_results
	plot_hab_spatial
	plot_k_spatial
	plot_k_trend
	plot_pop_spatial
	plot_pop_trend
	population_change_functions
	population_density_dependence_functions
	population_dispersal_functions
	population_dynamics
	population_modification_functions
	set_proportion_dispersing
	simulation
	steps
	transition_function
	translocation
	visualisation
	Index

