
Package ‘sugrrants’
July 23, 2025

Title Supporting Graphs for Analysing Time Series

Version 0.2.9

Description Provides 'ggplot2' graphics for analysing time
series data. It aims to fit into the 'tidyverse' and grammar of
graphics framework for handling temporal data.

License GPL (>= 3)

URL https://pkg.earo.me/sugrrants/

BugReports https://github.com/earowang/sugrrants/issues

Depends ggplot2 (>= 2.2.0), R (>= 3.1.3)

Imports dplyr (>= 0.8.0), grid, gtable, lubridate (>= 1.7.1), rlang
(>= 0.2.0)

Suggests covr, knitr, plotly, readr, rmarkdown, testthat, tidyr,
tsibble (>= 0.8.0), viridis

VignetteBuilder knitr

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Earo Wang [aut, cre] (ORCID: <https://orcid.org/0000-0001-6448-5260>),
Di Cook [aut, ths] (ORCID: <https://orcid.org/0000-0002-3813-7155>),
Rob Hyndman [aut, ths] (ORCID: <https://orcid.org/0000-0002-2140-5352>)

Maintainer Earo Wang <earo.wang@gmail.com>

Repository CRAN

Date/Publication 2024-03-12 05:20:03 UTC

1

https://pkg.earo.me/sugrrants/
https://github.com/earowang/sugrrants/issues
https://orcid.org/0000-0001-6448-5260
https://orcid.org/0000-0002-3813-7155
https://orcid.org/0000-0002-2140-5352

2 facet_calendar

Contents

sugrrants-package . 2
facet_calendar . 2
frame_calendar . 4
geom_acf . 7
hourly_peds . 8
stat_acf . 9

Index 11

sugrrants-package sugrrants: supporting graphs for analysing time series

Description

Provides ’ggplot2’ graphics for analysing time series data. It aims to fit into the ’tidyverse’ and
grammar of graphics framework for handling temporal data.

Author(s)

Maintainer: Earo Wang <earo.wang@gmail.com> (ORCID)

Authors:

• Di Cook (ORCID) [thesis advisor]

• Rob Hyndman (ORCID) [thesis advisor]

See Also

Useful links:

• https://pkg.earo.me/sugrrants/

• Report bugs at https://github.com/earowang/sugrrants/issues

facet_calendar Lay out panels in a calendar format

Description

Lay out panels in a calendar format

https://orcid.org/0000-0001-6448-5260
https://orcid.org/0000-0002-3813-7155
https://orcid.org/0000-0002-2140-5352
https://pkg.earo.me/sugrrants/
https://github.com/earowang/sugrrants/issues

facet_calendar 3

Usage

facet_calendar(
date,
format = "%b %d",
week_start = getOption("lubridate.week.start", 1),
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
dir = "h",
labeller = "label_value",
strip.position = "top"

)

Arguments

date A variable that contains dates or an expression that generates dates will be
mapped in the calendar.

format A character string, such as %Y-%b-%d and %a (%d), formatting the display of
facet strips. See ?strptime for details.

week_start Day on which week starts following ISO conventions - 1 means Monday (de-
fault), 7 means Sunday. You can set lubridate.week.start option to control
this parameter globally.

nrow, ncol Number of rows and columns defined for "monthly" calendar layout. If NULL, it
computes a sensible layout.

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one
dimension ("free_x", "free_y")?

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

dir Direction of calendar: "h" for horizontal (the default) or "v" for vertical.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
= c("top", "bottom", "left", "right")

Details

A monthly calendar is set up as a 5 by 7 layout matrix. Each month could extend over six weeks
but in these months is to wrap the last few days up to the top row of the block.

4 frame_calendar

See Also

frame_calendar for a compact calendar display, by quickly transforming the data.

Examples

fs <- hourly_peds %>%
dplyr::filter(Date < as.Date("2016-05-01"))

fs %>%
ggplot(aes(x = Time, y = Hourly_Counts)) +
geom_line(aes(colour = Sensor_Name)) +
facet_calendar(~ Date, nrow = 2) + # or ~ as.Date(Date_Time)
theme(legend.position = "bottom")

frame_calendar Rearrange a temporal data frame to a calendar-based data format
using linear algebra

Description

Temporal data of daily intervals or higher frequency levels can be organised into a calendar-based
format, which is useful for visually presenting calendar-related activities or multiple seasonality
(such as time of day, day of week, day of month). The function only returns a rearranged data
frame, and ggplot2 takes care of the plotting afterwards. It allows more flexibility for users to
visualise the data in various ways.

Usage

frame_calendar(
data,
x,
y,
date,
calendar = "monthly",
dir = "h",
week_start = getOption("lubridate.week.start", 1),
nrow = NULL,
ncol = NULL,
polar = FALSE,
scale = "fixed",
width = 0.95,
height = 0.95,
margin = NULL,
...

)

prettify(plot, label = c("label", "text"), locale, abbr = TRUE, ...)

frame_calendar 5

Arguments

data A data frame or a grouped data frame including a Date variable.

x A bare (or unquoted) variable mapping to x axis, for example time of day. If in-
teger 1 is specified, it simply returns calendar grids on x without transformation.

y A bare (or unquoted) variable or more mapping to y axis. More than one variable
need putting to vars(). If integer 1 is specified, it returns calendar grids on y
without transformation.

date A Date variable mapping to dates in the calendar.

calendar Type of calendar. (1) "monthly" calendar (the default) organises the data to a
common format comprised of day of week in the column and week of month in
the row. A monthly calendar is set up as a 5 by 7 layout matrix. Each month
could extend over six weeks but in these months is to wrap the last few days up
to the top row of the block. (2) "weekly" calendar consists of day of week and
week of year. (3) "daily" calendar refers to day of month and month of year.

dir Direction of calendar: "h" for horizontal (the default) or "v" for vertical.

week_start Day on which week starts following ISO conventions - 1 means Monday (de-
fault), 7 means Sunday. You can set lubridate.week.start option to control
this parameter globally.

nrow, ncol Number of rows and columns defined for "monthly" calendar layout. If NULL, it
computes a sensible layout.

polar FALSE (the default) for Cartesian or TRUE for polar coordinates.

scale "fixed" (the default) for fixed scale. "free" for scaling conditional on each daily
cell, "free_wday" for scaling on weekdays, "free_mday" for scaling on day of
month.

width, height Numerics between 0 and 1 to specify the width/height for each glyph.

margin Numerics of length two between 0 and 1 to specify the horizontal and vertical
margins between month panels.

... Extra arguments passed to geom_label() and geom_text()

plot A "ggplot" object or "plotly".

label If "label" is specified, it will add month/week text on the ggplot object, which is
actually passed to geom_label(). If "text" is specified, it will add weekday/day
of month text on the ggplot object, which is actually passed to geom_text().
By default, both "label" and "text" are used. If "text2" is specified for the
"monthly" calendar only, it will add day of month to the ggplot object.

locale ISO 639 language code. The default is "en" (i.e. US English). For other lan-
guages support, package readr needs to be installed. See readr::locale for more
details.

abbr Logical to specify if the abbreviated version of label should be used.

Details

The calendar-based graphic can be considered as small multiples of sub-series arranged into many
daily cells. For every multiple (or facet), it requires the x variable mapped to be time of day

6 frame_calendar

and y to value. New x and y are computed and named with a . prefixed to variable accord-
ing to x and y respectively, and get ready for ggplot2 aesthetic mappings. In conjunction with
group_by(), it allows the grouped variable to have their individual scales. For more details, see
vignette("frame-calendar", package = "sugrrants")

Value

A data frame or a dplyr::tibble with newly added columns of .x, .y. .x and .y together give new co-
ordinates computed for different types of calendars. date groups the same dates in a chronological
order, which is useful for geom_line or geom_path. The basic use is ggplot(aes(x = .x, y = .y, group = date)) + geom_*.
The variable names .x and .y reflect the actual x and y with a prefix ..

See Also

facet_calendar for a fully-fledged faceting calendar with formal labels and axes.

Examples

library(dplyr, warn.conflicts = FALSE)
compute the calendar layout for the data frame
calendar_df <- hourly_peds %>%

filter(Sensor_ID == 13, Year == 2016) %>%
frame_calendar(x = Time, y = Hourly_Counts, date = Date, nrow = 4)

ggplot
p1 <- calendar_df %>%

ggplot(aes(x = .Time, y = .Hourly_Counts, group = Date)) +
geom_line()

prettify(p1, size = 3, label.padding = unit(0.15, "lines"))

use in conjunction with group_by()
grped_calendar <- hourly_peds %>%

filter(Year == "2017", Month == "March") %>%
group_by(Sensor_Name) %>%
frame_calendar(x = Time, y = Hourly_Counts, date = Date, week_start = 7)

p2 <- grped_calendar %>%
ggplot(aes(x = .Time, y = .Hourly_Counts, group = Date)) +
geom_line() +
facet_wrap(~ Sensor_Name, nrow = 2)

prettify(p2)
Not run:
allow for different languages
below gives simplied Chinese labels with STKaiti font family,
assuming this font installed in user's local system
prettify(p2, locale = "zh", family = "STKaiti")

plotly example
if (!requireNamespace("plotly", quietly = TRUE)) {

stop("Please install the 'plotly' package to run these following examples.")
}
library(plotly)

geom_acf 7

pp <- calendar_df %>%
group_by(Date) %>%
plot_ly(x = ~ .Time, y = ~ .Hourly_Counts) %>%
add_lines(text = ~ paste("Count: ", Hourly_Counts, "
 Time: ", Time))

prettify(pp)

End(Not run)

geom_acf Autocorrelation for temporal data

Description

Since the data input is data.frame, it’s better to sort the date-times from early to recent and make
implicit missing values explicit before using geom_acf.

Usage

geom_acf(
mapping = NULL,
data = NULL,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
lag.max = NULL,
type = "correlation",
level = 0.95,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

8 hourly_peds

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

na.rm Logical. If TRUE, missing values are removed. default is the "correlation" and
other options are "covariance" and "partial".

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

lag.max An integer indicating the maximum lag at which to calculate the acf.

type A character string giving the type of the acf to be computed. The

level A numeric defining the confidence level. If NULL, no significant line to be drawn.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Examples

library(dplyr)
fstaff <- hourly_peds %>%

filter(Sensor_ID == 13)

use ggplot2
fstaff %>%

ggplot(aes(x = ..lag.., y = Hourly_Counts)) +
geom_acf()

hourly_peds Pedestrian counts in Melbourne city

Description

A dataset containing the pedestrian counts at hourly intervals from 2016-01-01 to 2017-04-20 at 7
sensors in the city of Melbourne. The variables are as follows:

Usage

hourly_peds

stat_acf 9

Format

A tibble with 78755 rows and 9 variables:

Date_Time Date time when the pedestrian counts are recorded

Year Year associated with Date_Time

Month Month associated with Date_Time

Mdate Day of month associated with Date_Time

Day Weekday associated with Date_Time

Time Hour associated with Date_Time

Sensor_ID Sensor identifiers

Sensor_Name Sensor names

Hourly_Counts Hourly pedestrian counts

Examples

hourly_peds

stat_acf Autocorrelation for temporal data

Description

Since the data input is data.frame, it’s better to sort the date-times from early to recent and make
implicit missing values explicit before using stat_acf.

Usage

stat_acf(
mapping = NULL,
data = NULL,
geom = "bar",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
lag.max = NULL,
type = "correlation",
level = 0.95,
...

)

10 stat_acf

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data, either as a ggproto Geom sub-
class or as a string naming the geom stripped of the geom_ prefix (e.g. "point"
rather than "geom_point")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

na.rm Logical. If TRUE, missing values are removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

lag.max An integer indicating the maximum lag at which to calculate the acf.

type A character string giving the type of the acf to be computed. The default is the
"correlation" and other options are "covariance" and "partial".

level A numeric defining the confidence level. If NULL, no significant line to be drawn.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Examples

library(dplyr)
fstaff <- hourly_peds %>%

filter(Sensor_ID == 13)

use ggplot2
fstaff %>%

ggplot(aes(x = ..lag.., y = Hourly_Counts)) +
stat_acf(geom = "bar")

Index

∗ datasets
facet_calendar, 2
geom_acf, 7
hourly_peds, 8

aes(), 7, 10

borders(), 8, 10

facet_calendar, 2, 6
FacetCalendar (facet_calendar), 2
fortify(), 7, 10
frame_calendar, 4, 4

geom_acf, 7
GeomAcf (geom_acf), 7
ggplot(), 7, 10

hourly_peds, 8

label_parsed(), 3
label_value(), 3
labeller(), 3
layer(), 8, 10

prettify (frame_calendar), 4

readr::locale, 5

stat_acf, 9
sugrrants-package, 2

11

	sugrrants-package
	facet_calendar
	frame_calendar
	geom_acf
	hourly_peds
	stat_acf
	Index

