Package 'surveyplanning'

July 23, 2025

July 23, 2023
Type Package
Title Survey Planning Tools
Version 4.0
Date 2020-05-20
Depends R (>= 3.0.0)
Imports data.table (>= 1.11.4), laeken, stats
Maintainer Juris Breidaks <rcsb@csb.gov.lv></rcsb@csb.gov.lv>
Description Tools for sample survey planning, including sample size calculation, estimation of expected precision for the estimates of totals, and calculation of optimal sample size allocation.
License GPL (>= 2)
Encoding UTF-8
Repository CRAN
<pre>URL https://csblatvia.github.io/surveyplanning/</pre>
<pre>BugReports https://github.com/CSBLatvia/surveyplanning/issues/</pre>
NeedsCompilation yes
LazyData true
RoxygenNote 7.1.0
Author Juris Breidaks [aut, cre], Martins Liberts [aut], Janis Jukams [aut]
Date/Publication 2020-05-20 11:20:02 UTC
Contents
surveyplanning-package dom_optimal_allocation expsize expvar min_count

	min_prop
	MoE_P
	MoE_Y
	optsize
	prop_dom_optimal_allocation
	round2
	s2 19
Index	20
surve	eyplanning-package
	Survey Planning Tools

Description

Tools for sample survey planning, including sample size calculation, estimation of expected precision for the estimates of totals, and calculation of optimal sample size allocation.

Details

Package: surveyplanning

Version: 2.9

Date: 2017-10-26

Depends: R (>= 3.0.0), data.table (>= 1.10.4), stats, laeken

License: GPL (>= 2)

URL: https://github.com/CSBLatvia/surveyplanning/BugReports: https://github.com/CSBLatvia/surveyplanning/issues/

Index:

expvar Expected precision for the estimates of totals

min_count Minimal count of respondents for the given relative margin of error

min_prop Minimal proportion for the given relative margin of error

MoE_Y Margin of error for count
MoE_P Margin of error for proportion
optsize Optimal sample size allocation
s2 Population variance estimation

surveyplanning-package Survey Planning Tools

Author(s)

Juris Breidaks [aut, cre], Martins Liberts [aut], Janis Jukams [aut]

Maintainer: Juris Breidaks <rcsb@csb.gov.lv>

```
{\tt dom\_optimal\_allocation}
```

Optimal sample size allocation

Description

The function computes optimal sample size allocation over strata and domain for population.

Usage

```
dom_optimal_allocation(
   id,
   Dom,
   H,
   Y,
   Rh = NULL,
   deffh = NULL,
   indicator,
   sup_w,
   sup_cv,
   min_size = 3,
   correction_before = FALSE,
   dataset = NULL
)
```

Arguments

id	Variable for unit ID codes. One dimensional object convertible to one-column data.table or variable name as character, column number.
Dom	Optional variables used to define population domains. If supplied, values are calculated for each domain. An object convertible to data.table or variable names as character vector, column numbers.
Н	The unit stratum variable. One dimensional object convertible to one-column data.table or variable name as character, column number.
Υ	Variable of interest. Object convertible to data.table or variable names as character, column numbers.
Rh	The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character, or column number.
deffh	The expected design effect for the estimate of variable (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as Yh. Object convertible to data.table, variable name as character vector, or column numbers.
indicator	Variable for detection fully surveyed units. Object convertible to data.table or variable names as character, column numbers.

sup_w Variable for weight limit in domain of stratum. Object convertible to data. table

or variable names as character, column numbers.

sup_cv Variable for maximum coeficient of variation (CV) in percentage for domain.

Object convertible to data. table or variable names as character, column num-

bers.

min_size A numeric value for sample size.

correction_before

by default FALSE; correction of sample size is made before ending, if true,

correction of sample size is made at the end.

dataset Optional survey data object convertible to data.table with one row for each

stratum.

Value

A list with eights data objects:

data An object as data. table, with variables: id - variable with unit ID codes,

Dom - optional variables used to define population domains,

H - the unit stratum variable,

Y - variable of interest,

Rh - the expected response rate in each stratum,

deffh - the expected design effect,

 $indicator\ -\ variable\ for\ full\ surveys,$

sup_w - variable for weight limit in domain of stratum,

sup_cv - Variable for maximum coeficient of variation,

poph - population size,

nh - sample size.

nh_larger_then_Nh

An object as data. table, with variables:

H - the stratum variable,

nh - sample size, poph - population size.

dom_strata_size

An object as data.table, with variables:

H - the unit stratum variable,

Dom - optional variables used to define population domains,

sup_w - variable for weight limit in domain of stratum,

poph - population size,

nh - sample size,

sample100 - sample size for fully surveyed units,

design_weights - design weigts.

dom_size An object as data.table, with variables:

Dom - optional variables used to define population domains,

poph - population size,

nh - sample size,

sample100 - sample size for fully surveyed units,

design_weights - design weigts.

An object as data. table, with variables: size poph - population size, nh - sample size, sample100 - sample size for fully surveyed units. dom_strata_expected_precision An object as data. table, with variables: H - stratum, variable - the name of variable of interest, estim - total value, deffh - the expected design effect, s2h - population variance S^2 , nh - sample size, Rh - the expected response rate, deffh - the expected design effect, poph - population size, nrh - expected number of respondents, var - expected variance, se - expected standard error, cv - expected coeficient of variance. dom_expected_precision An object as data. table, with variables: Dom - domain. variable - the name of variable of interest, poph - the population size, nh - sample size, nrh - expected number of respondents, estim - total value. var - the expected variance, se - the expected standart error, cv - the expected coeficient of variance. total_expected_precision An object as data. table, with variables: variable - the name of variable of interest, poph - the population size, nh - sample size, nrh - expected number of respondents, estim - total value, var - the expected variance,

See Also

expsize, optsize, prop_dom_optimal_allocation

se - the expected standart error, cv - the expected coeficient of variance.

```
library("laeken")
library("data.table")
```

6 expsize

```
data("ses")
data <- data.table(ses)</pre>
data[, H := paste(location, NACE1, size, sep = "_")]
data[, id := .I]
data[, full := 0]
data[, sup_cv := 10]
data[, sup_w := 20]
#vars <- dom_optimal_allocation(id = "id", dom = "sex",</pre>
                                  H = "H", Y = "earnings",
                                  indicator = "full",
                                  sup_w = "sup_w",
                                  sup_cv = "sup_cv",
                                  min_size = 3,
                                  correction_before = FALSE,
#
                                  dataset = data)
#
                                  dataset=data)
#vars
```

expsize

Sample size calculation

Description

The function computes minimum sample size for each stratum to achieve defined precision (CV) for the estimates of totals in each stratum. The calculation takes into account expected totals, population variance, expected response rate and design effect in each stratum.

Usage

```
expsize(Yh, H, s2h, poph, Rh = NULL, deffh = NULL, CVh, dataset = NULL)
```

Arguments

Yh	The expected totals for variables of interest in each stratum. Object convertible to data.table, variable names as character vector, or column numbers.
Н	The stratum variable. One dimensional object convertible to one-column data.table, variable name as character, or column number.
s2h	The expected population variance S^2 for variables of interest in each stratum. Object convertible to data. table, variable name as character vector, or column numbers.
poph	Population size in each stratum. One dimensional object convertible to one-column data.table, variable name as character, or column number.
Rh	The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character, or column number.
deffh	The expected design effect for the estimates of totals (optional). If not defined, it is assumed to be 1 for each variable in each stratum. Object convertible to data.table, variable name as character vector, or column numbers.

expvar 7

CVh Coefficient of variation (in percentage) to be achieved for each stratum. One

dimensional object convertible to one-column data.table, variable name as

character, or column number.

dataset Optional survey data object convertible to data.table with one row for each

stratum.

Value

```
A data.table is returned by the function, with variables: H - stratum, variable - the name of variable of interest, estim - total value, deffh - the expected design effect, s2h - population variance S^2, CVh - the expected coefficient of variation, Rh - the expected response rate, poph - population size, nh - minimal sample size to achieve defined precision (CV).
```

See Also

```
expvar, optsize, MoE_P
```

Examples

expvar

Expected precision for the estimates of totals

Description

The function computes expected precision as variance, standard error, and coefficient of variation for the estimates.

8 expvar

Usage

```
expvar(
   Yh,
   Zh = NULL,
   H,
   s2h,
   nh,
   poph,
   Rh = NULL,
   deffh = NULL,
   Dom = NULL,
   dataset = NULL)
```

Arguments

Yh The expected totals for variables of interest in each stratum. Object convertible to data.table, variable names as character vector, or column numbers.

Optional variables of denominator for the expected ratio estimation in each stratum. Object convertible to data.table, variable names as character vector, or column numbers.

The stratum variable. One dimensional object convertible to one-column data.table, variable name as character, or column number.

The expected population variance S^2 for variables of interest in each stratum. Variables is defined the same arrangement as Yh. Object convertible to data.table,

variable name as character vector, or column numbers.

Sample size in each stratum. One dimensional object convertible to one-column

data.table, variable name as character, or column number.

poph Population size in each stratum. One dimensional object convertible to onecolumn data.table, variable name as character, or column number.

The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character, or column number.

The expected design effect for the estimates of totals (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as Yh. Object convertible to data.table,

variable name as character vector, or column numbers.

Optional variables used to define population domains. Only domains as unions of strata can be defined. If supplied, estimated precision is calculated for each domain. An object convertible to data.table, variable names as character vec-

tor, or column numbers.

Optional survey data object convertible to data.table with one row for each

stratum.

Vh

Zh

Н

s2h

nh

Rh

deffh

Dom

dataset

expvar 9

Value

A list with three data objects:

resultH An object as data. table, with variables:

H - stratum,

variableY - the name of variable of interest,

variable Z - the name of optional variable of denominator for the expected ratio

estimation,

estim - total value,

deffh - the expected design effect, s2h - population variance S^2 ,

nh - sample size,

Rh - the expected response rate,

poph - population size,

nrh - expected number of respondents,

var - expected variance,se - expected standard error,cv - expected coeficient of variance.

resultDom

An object as data.table, with variables:

Dom - domain,

variableY - the name of variable of interest,

variable Z - the name of optional variable of denominator for the expected ratio

estimation,

poph - the population size,

nh - sample size,

nrh - expected number of respondents,

estim - total value,

var - the expected variance, se - the expected standart error,

cv - the expected coeficient of variance.

result An object as data. table, with variables:

variableY - the name of variable of interest,

variable Z - the name of optional variable of denominator for the expected ratio

estimation,

poph - the population size,

nh - sample size,

nrh - expected number of respondents,

estim - total value,

var - the expected variance, se - the expected standart error,

cv - the expected coeficient of variance.

See Also

expvar, optsize

Examples

library("data.table")

10 min_count

min_count

Minimal count of respondents for the given relative margin of error

Description

The function computes minimal proportion for the given relative margin of error. The calculation takes into sample size, population size, margin of error, expected response rate and design effect.

Usage

```
min_count(n, pop, RMoE, confidence = 0.95, R = 1, deff_sam = 1, deff_est = 1)
```

Arguments

n	The expected sample size.
рор	Population size.
RMoE	The expected relative margin of error.
confidence	Optional positive value for confidence interval. This variable by default is 0.95.
R	The expected response rate (optional). If not defined, it is assumed to be 1 (full-response).
deff_sam	The expected design effect of sample design for the estimates (optional). If not defined, it is assumed to be 1.
deff_est	The estimated design effect of estimator for the estimates (optional). If not defined, it is assumed to be 1.

Value

The estimate of minimal count of respondents for the given relative margin of error.

See Also

```
expvar, optsize, MoE_P
```

min_prop 11

Examples

```
min_count(n = 15e3, pop = 2e6, RMoE = 0.1)

## Not run:
library("data.table")
min_count(n = c(10e3, 15e3, 20e3), pop = 2e6, 0.1)

n <- seq(10e3, 30e3, length.out = 11)
# n <- sort(c(n, 22691))
n

RMoE <- seq(.02, .2, length.out = 10)
RMoE

dt <- data.table(n = rep(n, each = length(RMoE)), RMoE = RMoE)
dt[, Y := min_count(n = n, pop = 2.1e6, RMoE = RMoE, R = 1) / 1e3]
dt

## End(Not run)</pre>
```

min_prop

Minimal proportion for the given relative margin of error

Description

The function computes minimal proportion for the given relative margin of error. The calculation takes into sample size, population size, margin of error, expected response rate and design effect.

Usage

```
min_prop(n, pop, RMoE, confidence = 0.95, R = 1, deff_sam = 1, deff_est = 1)
```

Arguments

n The expected sample size.

pop Population size.

RMoE The expected relative margin of error.

confidence Optional positive value for confidence interval. This variable by default is 0.95.

R The expected response rate (optional). If not defined, it is assumed to be 1 (full-

response).

deff_sam The expected design effect of sample design for the estimates (optional). If not

defined, it is assumed to be 1.

deff_est The estimated design effect of estimator for the estimates (optional). If not

defined, it is assumed to be 1.

12 MoE_P

Value

The estimate of minimal proportion for the given relative margin of error.

See Also

```
expvar, optsize, MoE_P
```

Examples

```
min_prop(n = 100, pop = 1000, RMoE = 0.1)
```

MoE_P

Margin of error for proportion

Description

The function computes margin of error for proportion. The calculation takes into proportion, expected response rate and design effect.

Usage

```
MoE_P(P = 0.5, n, pop, confidence = 0.95, R = 1, deff_sam = 1, deff_est = 1)
```

Arguments

Р	The expected	l proportion	n for variable of interest.

n The expected sample size.

pop Population size.

R The expected response rate (optional). If not defined, it is assumed to be 1 (full-

response).

deff_sam The expected design effect of sample design for the estimates (optional). If not

defined, it is assumed to be 1.

deff_est The estimated design effect of estimator for the estimates (optional). If not

defined, it is assumed to be 1.

confidence Optional

positive value for confidence interval. This variable by default is 0.95.

Value

The estimate of margin of error for proportion.

See Also

```
expvar, optsize, MoE_Y
```

MoE_Y 13

Examples

```
library("data.table")
n <- 100
pop <- 1000

MoE_P(P = 0.5, n = n, pop = pop)

DT <- data.table(P = seq(0, 1, 0.01))
DT[, Y := round(pop * P)]
DT[, AMOE := MoE_P(P, n = 100, pop = 1000)]
DT[Y > 0, RMOE := AMOE / Y]
DT
```

MoE_Y

Margin of error for count

Description

The function computes margin of error for count. The calculation takes into proportion, expected response rate and design effect.

Usage

```
MoE_Y(P = 0.5, n, pop, confidence = 0.95, R = 1, deff_sam = 1, deff_est = 1)
```

Arguments

Р	The expected proportion for variable of interest.
n	The expected sample size.
pop	Population size.
confidence	Optional positive value for confidence interval. This variable by default is 0.95.
R	The expected response rate (optional). If not defined, it is assumed to be 1 (full-response).
deff_sam	The expected design effect of sample design for the estimates (optional). If not defined, it is assumed to be 1.
deff_est	The estimated design effect of estimator for the estimates (optional). If not

Value

The estimate of margin of error for count.

defined, it is assumed to be 1.

See Also

```
expvar, optsize, MoE_P
```

14 optsize

Examples

```
library("data.table")
n <- 100
pop <- 1000

MoE_Y(P = 0.5, n = n, pop = pop)

DT <- data.table(P = seq(0, 1, 0.01))
DT[, Y := round(pop * P)]
DT[, AMOE := MoE_Y(P, n = 100, pop = 1000)]
DT[Y > 0, RMOE := AMOE / Y]
DT
```

optsize

Optimal sample size allocation

Description

The function computes optimal sample size allocation over strata.

Usage

```
optsize(
  H,
  n,
  poph,
  s2h = NULL,
  Rh = NULL,
  deffh = NULL,
  fullsampleh = NULL,
  dataset = NULL
)
```

Arguments

Н	The stratum variable. One dimensional object convertible to one-column data.table, variable name as character, or column number.
n	Total sample size. One dimensional object with length one.
poph	Population size in each stratum. One dimensional object convertible to one-column data.table, variable name as character, or column number.
s2h	The expected population variance S^2 for variables of interest in each stratum (optional). If not defined, it is assumed to be 1 in each stratum. Object convertible to data.table, variable name as character vector, or column numbers.
Rh	The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character, or column number.

optsize 15

deffh The expected design effect for the estimate of variable (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as Yh. Object convertible to data.table, variable name as character vector, or column numbers.

fullsampleh Variable for detection fully surveyed stratum (optinal). If not defined, it is as-

sumed to be 1 in each stratum (full-response). Object convertible to one-column

data.table, variable name as character, or column number.

dataset Optional survey data object convertible to data.table with one row for each

stratum.

Value

```
An object as data.table, with variables: H - stratum, variable - the name of variable for population variance S^2, s2h - population variance S^2, Rh - the expectedresponse rate, deffh - the expected design effect, poph - population size, deffh - design effect, fullsampleh - full sample indicator, nh - sample size.
```

Details

If s2h and Rh is not defined, the sample allocation will be calculated as proportional allocation (proportional to the population size). If Rh is not defined, the sample allocation will be calculated as Neyman allocation.

See Also

```
expsize, dom_optimal_allocation
```

```
prop_dom_optimal_allocation
```

Optimal sample size allocation for proportion

Description

The function computes optimal sample size allocation over strata and domain for proportion.

Usage

```
prop_dom_optimal_allocation(
    H,
    Dom,
    pop = NULL,
    R = NULL,
    deff = NULL,
    se_max = 0.5,
    prop = 0.5,
    min_size = 3,
    step = 1,
    unit_level = TRUE,
    dataset = NULL
)
```

Arguments

Н

The stratum variable. One dimensional object convertible to one-column data. table or variable name as character, column number.

Dom

Variables

used to define population domains. An object convertible to data.table or variable names as character vector, column numbers.

pop

The

population size in each stratum.

R

The

expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character, or column number.

deff

The

expected design effect for the estimate of variable (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as Yh. Object convertible to data.table, variable name as character vector, or column numbers.

se_max Variable

for maximum standarterror (se) in domain.

prop

The

excepted ratio proportion.

min_size

Α

numeric value for minimal sample size.

step

Α

value for pace.

unit_level

A

logical value, if dataset is prepared for unit level then value TRUE, othercase FALSE.

dataset

datah

Optional

agrregated survey data object convertible to data. table with one row for each stratum.

Value

A list with two data objects:

An object as data. table, with variables: H - the unit stratum variable,

Dom - variables used to define population domains,

poph - the population size in each stratum, Rh - the expected response rate in each stratum,

deffh - the expected design effect, s2h - variance in domain of stratum,

sup_cv - Variable for maximum coeficient of variation,

poph - population size,

nh - sample size.

aggr_Dom

An object as data. table, with variables:

Dom - optional variables used to define population domains,

pop_Dom - population size,

sample_size_Dom - optional variables used to define population domains, sample_size - optional variables used to define population domains,

pop - sample size

See Also

expsize, optsize, dom_optimal_allocation

18 round2

Examples

round2

Rounding numbers

Description

The function rounds the values in its first argument to the specified number of decimal places (default 0).

Usage

```
round2(x, n)
```

Arguments

x a numeric vector.

n integer indicating the number of decimal places.

Value

Rounded value

See Also

```
expsize, dom_optimal_allocation
```

```
dar <- 100 * runif(3)
dar
round2(dar, 1)</pre>
```

s2

s2

Population variance

Description

The function to estimate population variance S^2 .

Usage

```
s2(y, w = NULL)
```

Arguments

y Study variable.

w Survey weight (optional). If not defined, it is assumed to be 1 for each element.

Value

Population variance S^2 or the estimate of population variance s^2 .

Details

If w is not defined, the result is equal to the result of the function var.

```
s2(1:10)
s2(1:10, rep(1:2, each = 5))
all.equal(s2(1:10), var(1:10))
```

Index

```
* package
     surveyplanning-package, 2
* \ surveys ampling \\
     dom_optimal_allocation, 3
     expsize, 6
     expvar, 7
    min_count, 10
    min_prop, 11
    MoE_P, 12
    MoE_Y, 13
     optsize, 14
     \verb|prop_dom_optimal_allocation|, 16
     round2, 18
dom_optimal_allocation, 3, 15, 17, 18
expsize, 5, 6, 15, 17, 18
expvar, 7, 7, 9, 10, 12, 13
\texttt{min\_count}, \textcolor{red}{10}
min_prop, 11
MoE_P, 7, 10, 12, 12, 13
MoE_Y, 12, 13
optsize, 5, 7, 9, 10, 12, 13, 14, 17
prop_dom_optimal_allocation, 5, 16
round2, 18
s2, 19
surveyplanning
         (surveyplanning-package), 2
surveyplanning-package, 2
```