
Package ‘tdarec’
July 22, 2025

Title A 'recipes' Extension for Persistent Homology and Its
Vectorizations

Version 0.2.0
Description Topological data analytic methods in machine learning rely on

vectorizations of the persistence diagrams that encode persistent
homology, as surveyed by Ali &al (2000)
<doi:10.48550/arXiv.2212.09703>. Persistent homology can be computed
using 'TDA' and 'ripserr' and vectorized using 'TDAvec'. The
Tidymodels package collection modularizes machine learning in R for
straightforward extensibility; see Kuhn & Silge (2022,
ISBN:978-1-4920-9644-3). These 'recipe' steps and 'dials' tuners make
efficient algorithms for computing and vectorizing persistence
diagrams available for Tidymodels workflows.

License GPL (>= 3)

URL https://github.com/tdaverse/tdarec

BugReports https://github.com/tdaverse/tdarec/issues

Depends R (>= 3.5.0), recipes (>= 0.1.17), dials
Imports rlang (>= 1.1.0), vctrs (>= 0.5.0), scales, tibble, purrr (>=

1.0.0), tidyr, magrittr
Suggests ripserr (>= 0.1.1), TDA, TDAvec (>= 0.1.4), testthat (>=

3.0.0), modeldata, tdaunif, knitr (>= 1.20), rmarkdown (>=
1.10), tidymodels, ranger

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no
Author Jason Cory Brunson [cre, aut]
Maintainer Jason Cory Brunson <cornelioid@gmail.com>

Repository CRAN
Date/Publication 2025-06-20 16:50:02 UTC

1

https://doi.org/10.48550/arXiv.2212.09703
https://github.com/tdaverse/tdarec
https://github.com/tdaverse/tdarec/issues

2 blur

Contents

blur . 2
blur_sigmas . 3
get_blur_range . 4
mnist . 6
step_blur . 6
step_pd_degree . 8
step_pd_point_cloud . 10
step_pd_raster . 12
step_vpd_algebraic_functions . 14
step_vpd_betti_curve . 16
step_vpd_complex_polynomial . 19
step_vpd_descriptive_statistics . 21
step_vpd_euler_characteristic_curve . 23
step_vpd_normalized_life_curve . 26
step_vpd_persistence_block . 28
step_vpd_persistence_image . 31
step_vpd_persistence_landscape . 34
step_vpd_persistence_silhouette . 36
step_vpd_persistent_entropy_summary . 39
step_vpd_tent_template_functions . 41
step_vpd_tropical_coordinates . 44
vpd-dials . 46
vpd-finalizers . 49
vpd-summarizers . 50

Index 55

blur Gaussian blur of an array

Description

This function takes a numeric array of any dimension as input and returns a blurred array of the
same dimensions as output.

Usage

blur(
x,
xmin = 0,
xmax = 2^ceiling(log(max(x + 1), 2)) - 1,
sigma = max(dim(x))/2^(length(dim(x)) + 1)

)

blur_sigmas 3

Arguments

x a numerical ’array’ (including ’matrix’)

xmin the smallest possible value in x; defaults to 0

xmax the largest possible value in x; defaults to the smallest integer 2k − 1 ≤ max(x)

sigma the standard deviation of the gaussian distribution with which to convolve x;
defaults to max(dim(x))/2D+1, where D is the dimensionality of x

Details

This function is adapted from spatstat.explore::blur(), part of the spatstat package collection.

The procedure takes the following steps:

1. Rescale the value range from [xmin, xmax] to [0, 1].

2. Convolve x with N(0, sigma2).

3. Rescale the result back to the original value range.

Value

An array of the same dimensions as x.

Examples

square <- matrix(byrow = TRUE, nrow = 6L, c(
0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 0, 0, 0,
0, 1, 0, 0, 1, 1, 1, 0,
0, 1, 0, 0, 1, 0, 1, 0,
0, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0

))
square_blur <- blur(square)
image(t(square))
image(t(square_blur))

blur_sigmas Standard deviation of Gaussian blur

Description

The standard deviation of the noise function convolved with array values to induce blur in raster
data.

Usage

blur_sigmas(range = c(unknown(), unknown()), trans = transform_log1p())

https://spatstat.org/

4 get_blur_range

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.

trans A trans object from the scales package, such as scales::transform_log10()
or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.

Details

The gaussian blur step deploys blur(). See there for definitions and references.

get_blur_range() varies the parameter logarithmically from 0 to an order of magnitude greater
than the blur() default.

Value

A param object or list of param objects.

Examples

img_dat <- data.frame(img = I(list(volcano)))

(blur_man <- blur_sigmas(range = c(0, 3)))
grid_regular(blur_man)

(blur_fin <- blur_sigmas() %>% get_blur_range(x = img_dat))
grid_regular(blur_fin)

get_blur_range (Maximum) topological dimension or homological degree

Description

The degree of the homology group to vectorize, or the degree at which to stop vectorizing.

Usage

get_blur_range(object, x, ...)

hom_degree(range = c(0L, unknown()), trans = NULL)

max_hom_degree(range = c(0L, unknown()), trans = NULL)

get_hom_range(object, x, max_dim = 2L, ...)

get_blur_range 5

Arguments

object A param object or a list of param objects.

x The predictor data. In some cases (see below) this should only include numeric
data.

... Other arguments to pass to the underlying parameter finalizer functions. For ex-
ample, for get_rbf_range(), the dots are passed along to kernlab::sigest().

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.

trans A trans object from the scales package, such as scales::transform_log10()
or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.

max_dim Bound on the maximum dimension determined from the data.

Details

Topological features have whole number dimensions that determine the degrees of homology that
encode them. Any finite point cloud will have finite topological dimension, but most practical
applications exploit features of degree at most 3.

Steps may vectorize features of a single degree (hom_degree()) or of degrees zero through some
maximum (max_hom_degree()).

In case the (maximum) degree is not provided, get_hom_range() queries each list-column for
the maximum dimension of its point cloud and returns the smaller of this maximum and max_dim
(which defaults to 2L, the highest homological degree of interest in most practical applications).

Value

A param object or list of param objects.

Examples

toy data set
klein_sampler <- function(n, prob = .5) {

if (rbinom(1, 1, prob) == 0) {
tdaunif::sample_klein_flat(n)

} else {
tdaunif::sample_klein_tube(n)

}
}
sample_data <- data.frame(

id = LETTERS[seq(4L)],
sample = I(c(replicate(4L, klein_sampler(60), simplify = FALSE)))

)

options to calibrate homological degree
hom_degree(range = c(2, 5))
hom_degree() %>% get_hom_range(x = sample_data[, 2, drop = FALSE])
hom_degree() %>% get_hom_range(x = sample_data[, 2, drop = FALSE], max_dim = 5)

6 step_blur

heterogeneous data types
hetero_data <- tibble(dataset = list(mtcars, nhtemp, eurodist, HairEyeColor))
hetero_data %>%

mutate(class = vapply(dataset, function(x) class(x)[[1L]], ""))
get_hom_range(

hom_degree(),
hetero_data,
max_dim = 60

)

mnist MNIST handwritten digits

Description

This is a 1% stratified random sample from the MNIST handwritten digit data set.

Usage

mnist_train; mnist_test

Format

Two data frames of 600 and 100 rows, respectively, and 2 variables:

digit list column of 28 × 28 numeric matrices

label integer digit

Source

http://yann.lecun.com/exdb/mnist/

step_blur Blur raster data

Description

The function step_blur() creates a specification of a recipe step that will induce Gaussian blur in
numerical arrays. The input and output must be list-columns.

http://yann.lecun.com/exdb/mnist/

step_blur 7

Usage

step_blur(
recipe,
...,
role = NA_character_,
trained = FALSE,
xmin = 0,
xmax = 1,
blur_sigmas = NULL,
skip = FALSE,
id = rand_id("blur")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
xmin, xmax, blur_sigmas

Parameters passed to blur().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The gaussian blur step deploys blur(). See there for definitions and references.

TODO: Explain the importance of blur for PH of image data.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tuning Parameters

This step has 1 tuning parameter(s):

• blur_sigmas: Gaussian Blur std. dev.s (type: double, default: NULL)

8 step_pd_degree

Examples

topos <- data.frame(pix = I(list(volcano)))

blur_rec <- recipe(~ ., data = topos) %>% step_blur(pix)
blur_prep <- prep(blur_rec, training = topos)
blur_res <- bake(blur_prep, topos)

tidy(blur_rec, number = 1)
tidy(blur_prep, number = 1)

with_sigmas <- recipe(~ ., data = topos) %>% step_blur(pix, blur_sigmas = 10)
with_sigmas <- bake(prep(with_sigmas, training = topos), topos)

ops <- par(mfrow = c(1, 3))
image(topos$pix[[1]])
image(blur_res$pix[[1]])
image(with_sigmas$pix[[1]])
par(ops)

step_pd_degree Separate persistent pairs by homological degree

Description

The function step_pd_degree() creates a specification of a recipe step that will separate data sets
of persistent pairs by homological degree. The input and output must be list-columns.

Usage

step_pd_degree(
recipe,
...,
role = NA_character_,
trained = FALSE,
hom_degrees = NULL,
columns = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pd_degree")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

step_pd_degree 9

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degrees Integer vector of homological degrees.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The hom_degrees argument sets the homological degrees for which to return new list-columns.
If not NULL (the default), it is intersected with the degrees found in any specified columns of the
training data; otherwise all found degrees are used. This parameter cannot be tuned.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

See Also

Other topological feature extraction via persistent homology: step_pd_point_cloud(), step_pd_raster()

Examples

dat <- data.frame(
roads = I(list(eurodist, UScitiesD * 1.6)),
topos = I(list(volcano, 255 - volcano))

)

ph_rec <- recipe(~ ., data = dat) %>%
step_pd_point_cloud(roads) %>%
step_pd_raster(topos) %>%
step_pd_degree(roads, topos)

ph_prep <- prep(ph_rec, training = dat)
(ph_res <- bake(ph_prep, dat))

tidy(ph_rec, number = 3)
tidy(ph_prep, number = 3)

with_degs <- recipe(~ ., data = dat) %>%
step_pd_point_cloud(roads) %>%

10 step_pd_point_cloud

step_pd_raster(topos) %>%
step_pd_degree(roads, topos, hom_degrees = c(1, 2))

with_degs <- prep(with_degs, training = dat)
bake(with_degs, dat)

step_pd_point_cloud Persistent homology of point clouds

Description

The function step_pd_point_cloud() creates a specification of a recipe step that will convert
compatible data formats (distance matrices, coordinate matrices, or time series) to 3-column matrix
representations of persistence diagram data. The input and output must be list-columns.

Usage

step_pd_point_cloud(
recipe,
...,
role = NA_character_,
trained = FALSE,
filtration = "Rips",
max_hom_degree = 1L,
radius_max = NULL,
diameter_max = NULL,
field_order = 2L,
engine = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("pd_point_cloud")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

filtration The type of filtration from which to compute persistent homology; one of "Rips",
"Vietoris" (equivalent), or "alpha".

max_hom_degree, radius_max, diameter_max, field_order
Parameters passed to persistence engines.

step_pd_point_cloud 11

engine The computational engine to use (see ’Details’). Reasonable defaults are chosen
based on filtration.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology (PH) is a tool of algebraic topology to extract features from data whose per-
sistence measures their robustness to scale. The computation relies on a sequence of maps between
discrete topological spaces (usually a filtration comprising only inclusions) constructed from the
data.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

PH of Point Clouds

The PH of a point cloud arises from a simplicial filtration (usually Vietoris–Rips, Čech, or alpha)
along an increasing distance threshold.

Ripser is a highly efficient implementation of PH on a point cloud (a finite metric space) via the
Vietoris–Rips filtration and is ported to R through ripserr. TDA calls the Dionysus, PHAT, and
GUDHI libraries to compute PH via Vietoris–Rips and alpha filtrations. The filtration parameter
controls the choice of filtration while the engine parameter allows the user to manually select an
implementation.

Both engines accept data sets in distance matrix, coordinate matrix, data frame, and time series
formats.

The max_hom_degree argument determines the highest-dimensional features to be calculated. Ei-
ther diameter_max (preferred) or radius_max can be used to bound the distance threshold along
which PH is computed. The field_order argument should be prime and will be the order of the
field of coefficients used in the computation. In most applications, only max_hom_degree will be
tuned, and to at most 3L.

Tuning Parameters

This step has 1 tuning parameter(s):

• max_hom_degree: Maximum Homological Degree (type: integer, default: 1)

See Also

Other topological feature extraction via persistent homology: step_pd_degree(), step_pd_raster()

12 step_pd_raster

Examples

roads <- data.frame(dist = I(list(eurodist, UScitiesD * 1.6)))

ph_rec <- recipe(~ ., data = roads) %>%
step_pd_point_cloud(dist, max_hom_degree = 1, filtration = "Rips")

ph_prep <- prep(ph_rec, training = roads)
ph_res <- bake(ph_prep, roads)

tidy(ph_rec, number = 1)
tidy(ph_prep, number = 1)

ops <- par(mfrow = c(1, 2), mar = c(2, 2, 0, 0) + 0.1)
for (i in seq(nrow(ph_res))) {

with(ph_res$dist[[i]], plot(
x = birth, y = death, pch = dimension + 1, col = dimension + 1,
xlab = NA, ylab = "", asp = 1

))
}
par(ops)

with_max <- recipe(~ ., data = roads) %>%
step_pd_point_cloud(dist, max_hom_degree = 1, diameter_max = 200)

with_max <- prep(with_max, training = roads)
bake(with_max, roads)

step_pd_raster Persistent homology of raster data (images)

Description

The function step_pd_raster() creates a specification of a recipe step that will convert compatible
data formats (numerical arrays, including matrices, of 2, 3, or 4 dimensions) to 3-column matrix
representations of persistence diagram data. The input and output must be list-columns.

Usage

step_pd_raster(
recipe,
...,
role = NA_character_,
trained = FALSE,
filtration = "cubical",
value_max = 9999L,
method = c("link_join", "compute_pairs"),
engine = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("pd_raster")

)

step_pd_raster 13

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

filtration The type of filtration from which to compute persistent homology; currently
only "cubical".

value_max, method
Parameters passed to persistence engines.

engine The computational engine to use (see ’Details’). Reasonable defaults are chosen
based on filtration.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology (PH) is a tool of algebraic topology to extract features from data whose per-
sistence measures their robustness to scale. The computation relies on a sequence of maps between
discrete topological spaces (usually a filtration comprising only inclusions) constructed from the
data.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

PH of Rasters

The PH of numeric arrays such as (greyscale) digital images is computed from the cubical filtration
of the pixel or voxel array, treated as a function from a cubical mesh to a finite value range.

Cubical Ripser is an efficient implementation of cubical PH and is ported to R through ripserr. It
accepts numerical arrays.

The value_max argument bounds the value range along which PH is computed. Cubical Ripser
is implemented using both of two methods, link-join and compute-pairs, controlled by the method
parameter.

14 step_vpd_algebraic_functions

Tuning Parameters

This step has 1 tuning parameter(s):

• max_hom_degree: Maximum Homological Degree (type: integer, default: NULL)

See Also

Other topological feature extraction via persistent homology: step_pd_degree(), step_pd_point_cloud()

Examples

topos <- data.frame(pix = I(list(volcano)))

ph_rec <- recipe(~ ., data = topos) %>%
step_pd_raster(pix)

ph_prep <- prep(ph_rec, training = topos)
ph_res <- bake(ph_prep, topos)

tidy(ph_rec, number = 1)
tidy(ph_prep, number = 1)

with(ph_res$pix[[1]], plot(
x = birth, y = death, pch = dimension + 1, col = dimension + 1,
xlab = NA, ylab = "", asp = 1

))

with_max <- recipe(~ ., data = topos) %>%
step_pd_raster(pix, value_max = 150)

with_max <- prep(with_max, training = topos)
bake(with_max, topos)

step_vpd_algebraic_functions

Algebraic Functions Vectorization of Persistent Homology

Description

The function step_vpd_algebraic_functions() creates a specification of a recipe step that will
convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matrices
of vectorizations.

Usage

step_vpd_algebraic_functions(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,

step_vpd_algebraic_functions 15

columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_algebraic_functions")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
hom_degree The homological degree of the features to be transformed.
columns A character string of the selected variable names. This field is a placeholder and

will be populated once prep() is used.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The algebraic functions vectorization deploys TDAvec::computeAlgebraicFunctions(). See there
for definitions and references.

Tuning Parameters

This step has 1 tuning parameter:

• hom_degree: Homological degree (type: integer, default: 0L)

16 step_vpd_betti_curve

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_algebraic_functions(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_algebraic_functions(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_betti_curve Betti Curve Vectorization of Persistent Homology

Description

The function step_vpd_betti_curve() creates a specification of a recipe step that will convert a
list-column of 3-column matrices of persistence data to a list-column of 1-row matrices of vector-
izations.

step_vpd_betti_curve 17

Usage

step_vpd_betti_curve(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
evaluate = "intervals",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_betti_curve")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
hom_degree The homological degree of the features to be transformed.
xseq A discretization grid, as an increasing numeric vector. xseq overrides the other

x* parameters with a warning.
xmin, xmax, xlen, xby

Limits and resolution of a discretization grid; specify only one of xlen and xby.
evaluate The method by which to vectorize continuous functions over a grid, either ’in-

tervals’ or ’points’. Some functions only admit one method.
columns A character string of the selected variable names. This field is a placeholder and

will be populated once prep() is used.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

18 step_vpd_betti_curve

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The Betti curve vectorization deploys TDAvec::computeBettiCurve(). See there for definitions
and references.

Tuning Parameters

This step has 1 tuning parameter:

• hom_degree: Homological degree (type: integer, default: 0L)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_betti_curve(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_betti_curve(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)

step_vpd_complex_polynomial 19

tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_complex_polynomial

Complex Polynomial Vectorization of Persistent Homology

Description

The function step_vpd_complex_polynomial() creates a specification of a recipe step that will
convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matrices
of vectorizations.

Usage

step_vpd_complex_polynomial(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
num_coef = 1L,
poly_type = "R",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_complex_polynomial")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

20 step_vpd_complex_polynomial

num_coef The number of coefficients of a convex polynomial fitted to finite persistence
pairs.

poly_type The type of complex polynomial to fit (’R’, ’S’, or ’T’).

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The complex polynomial vectorization deploys TDAvec::computeComplexPolynomial(). See
there for definitions and references.

Tuning Parameters

This step has 3 tuning parameters:

• hom_degree: Homological degree (type: integer, default: 0L)

• num_coef: # Polynomial coefficients (type: integer, default: 1L)

• poly_type: Type of polynomial (type: character, default: "R")

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_complex_polynomial(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)

step_vpd_descriptive_statistics 21

volc_rec %>%
prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_complex_polynomial(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_descriptive_statistics

Descriptive Statistics Vectorization of Persistent Homology

Description

The function step_vpd_descriptive_statistics() creates a specification of a recipe step that
will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matri-
ces of vectorizations.

Usage

step_vpd_descriptive_statistics(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,

22 step_vpd_descriptive_statistics

id = rand_id("vpd_descriptive_statistics")
)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The descriptive statistics vectorization deploys TDAvec::computeStats(). See there for defini-
tions and references.

Tuning Parameters

This step has 1 tuning parameter:

• hom_degree: Homological degree (type: integer, default: 0L)

step_vpd_euler_characteristic_curve 23

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_descriptive_statistics(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_descriptive_statistics(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_euler_characteristic_curve

Euler Characteristic Curve Vectorization of Persistent Homology

Description

The function step_vpd_euler_characteristic_curve() creates a specification of a recipe step
that will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row
matrices of vectorizations.

24 step_vpd_euler_characteristic_curve

Usage

step_vpd_euler_characteristic_curve(
recipe,
...,
role = "predictor",
trained = FALSE,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
max_hom_degree = Inf,
evaluate = "intervals",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_euler_characteristic_curve")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
xseq A discretization grid, as an increasing numeric vector. xseq overrides the other

x* parameters with a warning.
xmin, xmax, xlen, xby

Limits and resolution of a discretization grid; specify only one of xlen and xby.
max_hom_degree The highest degree, starting from 0, of the features to be transformed.
evaluate The method by which to vectorize continuous functions over a grid, either ’in-

tervals’ or ’points’. Some functions only admit one method.
columns A character string of the selected variable names. This field is a placeholder and

will be populated once prep() is used.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

step_vpd_euler_characteristic_curve 25

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The Euler characteristic curve vectorization deploys TDAvec::computeEulerCharacteristic().
See there for definitions and references.

Tuning Parameters

This step has 1 tuning parameter:

• max_hom_degree: Highest homological degree (type: integer, default: Inf)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_euler_characteristic_curve(image, max_hom_degree = 2) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_euler_characteristic_curve(chem_fp, max_hom_degree = 2) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)

26 step_vpd_normalized_life_curve

tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_normalized_life_curve

Normalized Life Curve Vectorization of Persistent Homology

Description

The function step_vpd_normalized_life_curve() creates a specification of a recipe step that
will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matri-
ces of vectorizations.

Usage

step_vpd_normalized_life_curve(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
evaluate = "intervals",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_normalized_life_curve")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

step_vpd_normalized_life_curve 27

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

xseq A discretization grid, as an increasing numeric vector. xseq overrides the other
x* parameters with a warning.

xmin, xmax, xlen, xby
Limits and resolution of a discretization grid; specify only one of xlen and xby.

evaluate The method by which to vectorize continuous functions over a grid, either ’in-
tervals’ or ’points’. Some functions only admit one method.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The normalized life curve vectorization deploys TDAvec::computeNormalizedLife(). See there
for definitions and references.

Tuning Parameters

This step has 1 tuning parameter:

• hom_degree: Homological degree (type: integer, default: 0L)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

28 step_vpd_persistence_block

step_pd_raster(image, method = "link_join") %>%
step_vpd_normalized_life_curve(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_normalized_life_curve(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_persistence_block

Persistence Block Vectorization of Persistent Homology

Description

The function step_vpd_persistence_block() creates a specification of a recipe step that will
convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matrices
of vectorizations.

Usage

step_vpd_persistence_block(
recipe,
...,
role = "predictor",
trained = FALSE,

step_vpd_persistence_block 29

hom_degree = 0L,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
yseq = NULL,
ymin = NULL,
ymax = NULL,
ylen = NULL,
yby = NULL,
block_size = 0.3,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_persistence_block")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

xseq A discretization grid, as an increasing numeric vector. xseq overrides the other
x* parameters with a warning.

xmin, xmax, xlen, xby
Limits and resolution of a discretization grid; specify only one of xlen and xby.

yseq Combined with xseq to form a 2-dimensional discretization grid.
ymin, ymax, ylen, yby

Limits and resolution of a discretization grid; specify only one of ylen and yby.

block_size The scaling factor of the squares used to obtain persistence blocks. The side
length of the square centered at a feature (b, p) is obtained by multiplying 2p by
this factor.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not

30 step_vpd_persistence_block

be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The persistence block vectorization deploys TDAvec::computePersistenceBlock(). See there
for definitions and references.

Tuning Parameters

This step has 2 tuning parameters:

• hom_degree: Homological degree (type: integer, default: 0L)

• block_size: Square side length scaling factor (type: double, default: 0.3)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_persistence_block(image, hom_degree = 1, block_size = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%

step_vpd_persistence_image 31

step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_persistence_block(chem_fp, hom_degree = 1, block_size = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_persistence_image

Persistence Image Vectorization of Persistent Homology

Description

The function step_vpd_persistence_image() creates a specification of a recipe step that will
convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matrices
of vectorizations.

Usage

step_vpd_persistence_image(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
yseq = NULL,
ymin = NULL,
ymax = NULL,
ylen = NULL,
yby = NULL,
img_sigma = 1,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,

32 step_vpd_persistence_image

id = rand_id("vpd_persistence_image")
)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

xseq A discretization grid, as an increasing numeric vector. xseq overrides the other
x* parameters with a warning.

xmin, xmax, xlen, xby
Limits and resolution of a discretization grid; specify only one of xlen and xby.

yseq Combined with xseq to form a 2-dimensional discretization grid.
ymin, ymax, ylen, yby

Limits and resolution of a discretization grid; specify only one of ylen and yby.

img_sigma The standard deviation of the gaussian distribution convolved with persistence
diagrams to obtain persistence images.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_vpd_persistence_image 33

Engine

The persistence image vectorization deploys TDAvec::computePersistenceImage(). See there
for definitions and references.

Tuning Parameters

This step has 2 tuning parameters:

• hom_degree: Homological degree (type: integer, default: 0L)

• img_sigma: Convolved Gaussian standard deviation (type: double, default: 1)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_persistence_image(image, hom_degree = 1, img_sigma = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_persistence_image(chem_fp, hom_degree = 1, img_sigma = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

34 step_vpd_persistence_landscape

step_vpd_persistence_landscape

Persistence Landscape Vectorization of Persistent Homology

Description

The function step_vpd_persistence_landscape() creates a specification of a recipe step that
will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matri-
ces of vectorizations.

Usage

step_vpd_persistence_landscape(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
num_levels = 6L,
generalized = FALSE,
weight_func_pl = "triangle",
bandwidth = NULL,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_persistence_landscape")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

xseq A discretization grid, as an increasing numeric vector. xseq overrides the other
x* parameters with a warning.

step_vpd_persistence_landscape 35

xmin, xmax, xlen, xby
Limits and resolution of a discretization grid; specify only one of xlen and xby.

num_levels The number of levels of a persistence landscape to vectorize. If num_levels
is greater than the length of a landscape, then additional levels of zeros will be
included.

generalized Logical indicator to compute generalized functions.

weight_func_pl A single character for the type of kernel function used to compute generalized
landscapes.

bandwidth The bandwidth of a kernel function.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The persistence landscape vectorization deploys TDAvec::computePersistenceLandscape(). See
there for definitions and references.

Tuning Parameters

This step has 4 tuning parameters:

• hom_degree: Homological degree (type: integer, default: 0L)

• num_levels: # Levels or envelopes (type: integer, default: 6L)

• weight_func_pl: Kernel distance weight function (type: character, default: "triangle")

• bandwidth: Kernel bandwidth (type: double, default: NULL)

36 step_vpd_persistence_silhouette

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_persistence_landscape(image, hom_degree = 1, num_levels = 3) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_persistence_landscape(chem_fp, hom_degree = 1, num_levels = 3) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_persistence_silhouette

Persistence Silhouette Vectorization of Persistent Homology

Description

The function step_vpd_persistence_silhouette() creates a specification of a recipe step that
will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matri-
ces of vectorizations.

step_vpd_persistence_silhouette 37

Usage

step_vpd_persistence_silhouette(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
weight_power = 1,
evaluate = "intervals",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_persistence_silhouette")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

xseq A discretization grid, as an increasing numeric vector. xseq overrides the other
x* parameters with a warning.

xmin, xmax, xlen, xby
Limits and resolution of a discretization grid; specify only one of xlen and xby.

weight_power The power of weights in a persistence silhouette function.

evaluate The method by which to vectorize continuous functions over a grid, either ’in-
tervals’ or ’points’. Some functions only admit one method.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).

38 step_vpd_persistence_silhouette

Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The persistence silhouette vectorization deploys TDAvec::computePersistenceSilhouette().
See there for definitions and references.

Tuning Parameters

This step has 2 tuning parameters:

• hom_degree: Homological degree (type: integer, default: 0L)

• weight_power: Exponent weight (type: double, default: 1)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_persistence_silhouette(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%

step_vpd_persistent_entropy_summary 39

step_vpd_persistence_silhouette(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_persistent_entropy_summary

Persistent Entropy Summary Vectorization of Persistent Homology

Description

The function step_vpd_persistent_entropy_summary() creates a specification of a recipe step
that will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row
matrices of vectorizations.

Usage

step_vpd_persistent_entropy_summary(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL,
xmin = NULL,
xmax = NULL,
xlen = NULL,
xby = NULL,
evaluate = "intervals",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_persistent_entropy_summary")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

40 step_vpd_persistent_entropy_summary

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

xseq A discretization grid, as an increasing numeric vector. xseq overrides the other
x* parameters with a warning.

xmin, xmax, xlen, xby
Limits and resolution of a discretization grid; specify only one of xlen and xby.

evaluate The method by which to vectorize continuous functions over a grid, either ’in-
tervals’ or ’points’. Some functions only admit one method.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The persistent entropy summary vectorization deploys TDAvec::computePersistentEntropy().
See there for definitions and references.

Tuning Parameters

This step has 1 tuning parameter:

• hom_degree: Homological degree (type: integer, default: 0L)

step_vpd_tent_template_functions 41

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_persistent_entropy_summary(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_persistent_entropy_summary(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_tent_template_functions

Tent Template Functions Vectorization of Persistent Homology

Description

The function step_vpd_tent_template_functions() creates a specification of a recipe step that
will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matri-
ces of vectorizations.

42 step_vpd_tent_template_functions

Usage

step_vpd_tent_template_functions(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
tent_size = NULL,
num_bins = 10L,
tent_shift = NULL,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_tent_template_functions")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
hom_degree The homological degree of the features to be transformed.
tent_size The length of the increment used to discretize tent template functions.
num_bins The number of bins along each axis in the discretization grid.
tent_shift The vertical shift applied to the discretization grid.
columns A character string of the selected variable names. This field is a placeholder and

will be populated once prep() is used.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

step_vpd_tent_template_functions 43

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The tent template functions vectorization deploys TDAvec::computeTemplateFunction(). See
there for definitions and references.

Tuning Parameters

This step has 4 tuning parameters:

• hom_degree: Homological degree (type: integer, default: 0L)

• tent_size: Discretization grid increment (type: double, default: NULL)

• num_bins: Discretization grid bins (type: integer, default: 10L)

• tent_shift: Discretization grid shift (type: double, default: NULL)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_tent_template_functions(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%
print() -> perm_dat

recipe(perm_cut ~ chem_fp, data = perm_dat) %>%
step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_tent_template_functions(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results

44 step_vpd_tropical_coordinates

with(perm_res, {
plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

step_vpd_tropical_coordinates

Tropical Coordinates Vectorization of Persistent Homology

Description

The function step_vpd_tropical_coordinates() creates a specification of a recipe step that will
convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matrices
of vectorizations.

Usage

step_vpd_tropical_coordinates(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
num_bars = 1L,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_tropical_coordinates")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree The homological degree of the features to be transformed.

num_bars Number of bars (persistent pairs) over which to maximize....

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

step_vpd_tropical_coordinates 45

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of
persistence data sets does not satisfy convenient statistical properties. Such applications as hypoth-
esis testing and machine learning benefit from transformations of persistence data, often to Hilbert
spaces (vector spaces with inner products and induced metrics).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Engine

The tropical coordinates vectorization deploys TDAvec::computeTropicalCoordinates(). See
there for definitions and references.

Tuning Parameters

This step has 2 tuning parameters:

• hom_degree: Homological degree (type: integer, default: 0L)

• num_bars: # Bars (persistence pairs) (type: integer, default: 1L)

Examples

library(recipes)

inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>%

step_pd_raster(image, method = "link_join") %>%
step_vpd_tropical_coordinates(image, hom_degree = 1) %>%
print() -> volc_rec

print(volc_rec)
volc_rec %>%

prep(training = volc_dat) %>%
bake(new_data = volc_dat)

dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>%

transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>%
subset(select = -permeability) %>%
tidyr::nest(chem_fp = -perm_cut) %>%

46 vpd-dials

print() -> perm_dat
recipe(perm_cut ~ chem_fp, data = perm_dat) %>%

step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>%
step_vpd_tropical_coordinates(chem_fp, hom_degree = 1) %>%
step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
print() -> perm_rec

perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
visualize results
with(perm_res, {

plot(PC1, PC2, type = "n", asp = 1)
text(PC1, PC2, labels = perm_cut)

})

vpd-dials Tune Vectorizations of Persistent Homology

Description

These tuning functions govern the parameters of vectorizations implemented in TDAvec.

Usage

num_coef(range = c(1L, unknown()), trans = NULL)

poly_type(values = c("R", "S", "T"), trans = NULL)

img_sigma(range = c(unknown(), unknown()), trans = transform_log10())

num_levels(range = c(1L, unknown()), trans = NULL)

weight_func_pl(
values = c("triangle", "epanechnikov", "tricubic"),
trans = NULL

)

bandwidth(range = c(unknown(), unknown()), trans = transform_log10())

weight_power(range = c(1, 2), trans = NULL)

num_bars(range = c(1L, unknown()), trans = NULL)

num_bins(range = c(2L, 20L), trans = NULL)

tent_shift(range = c(unknown(), unknown()), trans = transform_log10())

vpd-dials 47

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.

trans A trans object from the scales package, such as scales::transform_log10()
or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.

values A character string of possible values.

Details

The parameter num_coef is passed to m in TDAvec::computeComplexPolynomial().

The parameter poly_type is passed to polyType in TDAvec::computeComplexPolynomial().

The parameter img_sigma is passed to sigma in TDAvec::computePersistenceImage().

The parameter num_levels is passed to k in TDAvec::computePersistenceLandscape().

The parameter weight_func_pl is passed to kernel in TDAvec::computePersistenceLandscape().

The parameter bandwidth is passed to h in TDAvec::computePersistenceLandscape().

The parameter weight_power is passed to p in TDAvec::computePersistenceSilhouette().

The parameter num_bars is passed to r in TDAvec::computeTropicalCoordinates().

The parameter num_bins is passed to d in TDAvec::computeTemplateFunction().

The parameter tent_shift is passed to epsilon in TDAvec::computeTemplateFunction().

Value

A param object or list of param objects.

Examples

data.frame(dist = I(list(eurodist, UScitiesD * 1.6))) %>%
transform(pd = I(lapply(dist, ripserr::vietoris_rips))) %>%
subset(select = c(pd)) %>%
print() -> pd_data

`num_coef` for `step_vpn_complex_polynomial()`

(nc_man <- num_coef(range = c(1L, 3L)))
grid_regular(nc_man)

`poly_type` for `step_vpn_complex_polynomial()`

(pt_man <- poly_type(values = c("R", "S")))
grid_regular(pt_man)

`img_sigma` for `step_vpn_persistence_image()`

(is_man <- img_sigma(range = c(100, 400), trans = NULL))
grid_regular(is_man)

48 vpd-dials

(is_dat <- img_sigma() %>% get_pers_max_frac(x = pd_data))
grid_regular(is_dat)

(is_hom <- img_sigma() %>% get_pers_max_frac(x = pd_data, hom_degrees = seq(2L)))
grid_regular(is_hom)

`num_levels` for `step_vpn_persistence_landscape()`

(nl_man <- num_levels(range = c(1L, 6L)))
grid_regular(nl_man)

`weight_func_pl` for `step_vpn_persistence_landscape()`

(wfp_man <- weight_func_pl(values = c("triangle", "tricubic")))
grid_regular(wfp_man)

`bandwidth` for `step_vpn_persistence_landscape()`

(b_man <- bandwidth(range = c(500, 1500), trans = NULL))
grid_regular(b_man)

(b_dat <- bandwidth() %>% get_pers_max_frac(x = pd_data))
grid_regular(b_dat)

(b_hom <- bandwidth() %>% get_pers_max_frac(x = pd_data, hom_degrees = seq(2L)))
grid_regular(b_hom)

`weight_power` for `step_vpn_persistence_silhouette()`

(wp_man <- weight_power(range = c(1, 3)))
grid_regular(wp_man)

`num_bars` for `step_vpn_tropical_coordinates()`

(nb_man <- num_bars(range = c(1L, 3L)))
grid_regular(nb_man)

`num_bins` for `step_vpn_tent_template_functions()`

(nb_man <- num_bins(range = c(5L, 10L)))
grid_regular(nb_man)

`tent_shift` for `step_vpn_tent_template_functions()`

(ts_man <- tent_shift(range = c(100, 200), trans = NULL))
grid_regular(ts_man)

(ts_dat <- tent_shift() %>% get_pers_min_mult(x = pd_data))
grid_regular(ts_dat)

(ts_hom <- tent_shift() %>% get_pers_min_mult(x = pd_data, hom_degrees = seq(2L)))
grid_regular(ts_hom)

vpd-finalizers 49

vpd-finalizers Finalizers for persistent homology vectorizations

Description

These functions take a persistent homology vectorization parameter object and modify the dials::unknown()
parts of ranges based on a data set and heuristics used in inaugural studies.

Usage

get_pairs_max(object, x, hom_degrees = NULL, ...)

get_pers_max_frac(
object,
x,
hom_degree = NULL,
log_vals = TRUE,
frac = 1/100,
...

)

get_pers_min_mult(
object,
x,
hom_degree = NULL,
log_vals = TRUE,
mult = 100,
...

)

Arguments

object A param object or a list of param objects.

x Persistence data in a recognizable format.

... Other arguments to pass to the underlying parameter finalizer functions.
hom_degree, hom_degrees

Integer (vector) of homological degree(s).

log_vals A logical: should the ranges be set on the log10 scale?

frac A double for the fraction of the data to be used for the upper bound. For
get_n_frac_range() and get_batch_sizes(), a vector of two fractional val-
ues are required.

mult A double for the multiple of the data to be used for the lower bound.

50 vpd-summarizers

Details

get_pairs_max() sets the upper bound to the maximum number of persistent pairs.

get_pers_max_frac() sets both bounds to fractions of the maximum finite persistence (lifespan).
A single number is used as the lower bound fraction and takes the upper bound fraction to be 1.

get_pers_min_mult() sets both bounds to multiples of the minimum positive persistence (lifes-
pan). A single number is used as the upper bound multiple and takes the lower bound multiple to
be 1.

Value

An updated param object or a list of updated param objects depending on what is provided in
object.

vpd-summarizers Summarize topological data

Description

These miscellaneous functions are used by various get_*_range() functions to finalize hyperpa-
rameter ranges.

Usage

ph_dim(x)

Default S3 method:
ph_dim(x)

S3 method for class 'matrix'
ph_dim(x)

S3 method for class 'array'
ph_dim(x)

S3 method for class 'data.frame'
ph_dim(x)

S3 method for class 'dist'
ph_dim(x)

S3 method for class 'ts'
ph_dim(x)

pairs_min(x, hom_degrees)

Default S3 method:

vpd-summarizers 51

pairs_min(x, hom_degrees)

S3 method for class 'matrix'
pairs_min(x, hom_degrees)

S3 method for class 'data.frame'
pairs_min(x, hom_degrees)

S3 method for class 'diagram'
pairs_min(x, hom_degrees)

S3 method for class 'PHom'
pairs_min(x, hom_degrees)

S3 method for class 'persistence'
pairs_min(x, hom_degrees)

pairs_max(x, hom_degrees)

Default S3 method:
pairs_max(x, hom_degrees)

S3 method for class 'matrix'
pairs_max(x, hom_degrees)

S3 method for class 'data.frame'
pairs_max(x, hom_degrees)

S3 method for class 'diagram'
pairs_max(x, hom_degrees)

S3 method for class 'PHom'
pairs_max(x, hom_degrees)

S3 method for class 'persistence'
pairs_max(x, hom_degrees)

birth_range(x, hom_degree)

Default S3 method:
birth_range(x, hom_degree)

S3 method for class 'matrix'
birth_range(x, hom_degree)

S3 method for class 'data.frame'
birth_range(x, hom_degree)

52 vpd-summarizers

S3 method for class 'diagram'
birth_range(x, hom_degree)

S3 method for class 'PHom'
birth_range(x, hom_degree)

S3 method for class 'persistence'
birth_range(x, hom_degree)

pers_max(x, hom_degree)

Default S3 method:
pers_max(x, hom_degree)

S3 method for class 'matrix'
pers_max(x, hom_degree)

S3 method for class 'data.frame'
pers_max(x, hom_degree)

S3 method for class 'diagram'
pers_max(x, hom_degree)

S3 method for class 'PHom'
pers_max(x, hom_degree)

S3 method for class 'persistence'
pers_max(x, hom_degree)

pers_min(x, hom_degree)

Default S3 method:
pers_min(x, hom_degree)

S3 method for class 'matrix'
pers_min(x, hom_degree)

S3 method for class 'data.frame'
pers_min(x, hom_degree)

S3 method for class 'diagram'
pers_min(x, hom_degree)

S3 method for class 'PHom'
pers_min(x, hom_degree)

S3 method for class 'persistence'
pers_min(x, hom_degree)

vpd-summarizers 53

pers_range(x, hom_degree)

Default S3 method:
pers_range(x, hom_degree)

S3 method for class 'matrix'
pers_range(x, hom_degree)

S3 method for class 'data.frame'
pers_range(x, hom_degree)

S3 method for class 'diagram'
pers_range(x, hom_degree)

S3 method for class 'PHom'
pers_range(x, hom_degree)

S3 method for class 'persistence'
pers_range(x, hom_degree)

life_support(x, hom_degree)

Default S3 method:
life_support(x, hom_degree)

S3 method for class 'matrix'
life_support(x, hom_degree)

S3 method for class 'data.frame'
life_support(x, hom_degree)

S3 method for class 'diagram'
life_support(x, hom_degree)

S3 method for class 'PHom'
life_support(x, hom_degree)

S3 method for class 'persistence'
life_support(x, hom_degree)

Arguments

x Persistence data in a recognizable format.

hom_degree, hom_degrees
Integer (vector) of homological degree(s).

54 vpd-summarizers

Details

The functions compute the following summaries:

• ph_dim(): Dimension of a data set for purposes of PH

• pairs_min(): Minimum number of persistent pairs of any degree

• pairs_max(): Maximum number of persistent pairs of any degree

• birth_range(): Range of finite birth values for a given degree

• pers_max(): Maximum positive finite persistence for a given degree

• pers_min(): Minimum positive finite persistence for a given degree

• pers_range(): Range of positive finite persistence for a given degree

• life_support(): Range of union of birth–death ranges for a given degree

Value

A vector of one or two numeric values.

Index

∗ datasets
mnist, 6

∗ topological feature extraction via
persistent homology

step_pd_degree, 8
step_pd_point_cloud, 10
step_pd_raster, 12

bake(), 7, 9, 11, 13, 15, 17, 20, 22, 24, 27, 29,
32, 35, 37, 40, 42, 45

bandwidth (vpd-dials), 46
birth_range (vpd-summarizers), 50
blur, 2
blur(), 4, 7
blur_sigmas, 3

dials::unknown(), 49

finalize, 50

get_blur_range, 4
get_hom_range (get_blur_range), 4
get_pairs_max (vpd-finalizers), 49
get_pers_max_frac (vpd-finalizers), 49
get_pers_min_mult (vpd-finalizers), 49

hom_degree (get_blur_range), 4

img_sigma (vpd-dials), 46

kernlab::sigest(), 5

life_support (vpd-summarizers), 50

max_hom_degree (get_blur_range), 4
mnist, 6
mnist_test (mnist), 6
mnist_train (mnist), 6

num_bars (vpd-dials), 46
num_bins (vpd-dials), 46

num_coef (vpd-dials), 46
num_levels (vpd-dials), 46

pairs_max (vpd-summarizers), 50
pairs_min (vpd-summarizers), 50
pers_max (vpd-summarizers), 50
pers_min (vpd-summarizers), 50
pers_range (vpd-summarizers), 50
ph_dim (vpd-summarizers), 50
poly_type (vpd-dials), 46
prep(), 7, 9, 11, 13, 15, 17, 20, 22, 24, 27, 29,

32, 35, 37, 40, 42, 44, 45

ripserr, 11, 13

selections(), 7, 8, 10, 13, 15, 17, 19, 22, 24,
26, 29, 32, 34, 37, 40, 42, 44

step_blur, 6
step_pd_degree, 8, 11, 14
step_pd_point_cloud, 9, 10, 14
step_pd_raster, 9, 11, 12
step_vpd_algebraic_functions, 14
step_vpd_betti_curve, 16
step_vpd_complex_polynomial, 19
step_vpd_descriptive_statistics, 21
step_vpd_euler_characteristic_curve,

23
step_vpd_normalized_life_curve, 26
step_vpd_persistence_block, 28
step_vpd_persistence_image, 31
step_vpd_persistence_landscape, 34
step_vpd_persistence_silhouette, 36
step_vpd_persistent_entropy_summary,

39
step_vpd_tent_template_functions, 41
step_vpd_tropical_coordinates, 44

TDA, 11
TDAvec::computeAlgebraicFunctions(),

15

55

56 INDEX

TDAvec::computeBettiCurve(), 18
TDAvec::computeComplexPolynomial(), 20,

47
TDAvec::computeEulerCharacteristic(),

25
TDAvec::computeNormalizedLife(), 27
TDAvec::computePersistenceBlock(), 30
TDAvec::computePersistenceImage(), 33,

47
TDAvec::computePersistenceLandscape(),

35, 47
TDAvec::computePersistenceSilhouette(),

38, 47
TDAvec::computePersistentEntropy(), 40
TDAvec::computeStats(), 22
TDAvec::computeTemplateFunction(), 43,

47
TDAvec::computeTropicalCoordinates(),

45, 47
tent_shift (vpd-dials), 46
tidy.step_blur (step_blur), 6
tidy.step_pd_degree (step_pd_degree), 8
tidy.step_pd_point_cloud

(step_pd_point_cloud), 10
tidy.step_pd_raster (step_pd_raster), 12
tidy.step_vpd_algebraic_functions

(step_vpd_algebraic_functions),
14

tidy.step_vpd_betti_curve
(step_vpd_betti_curve), 16

tidy.step_vpd_complex_polynomial
(step_vpd_complex_polynomial),
19

tidy.step_vpd_descriptive_statistics
(step_vpd_descriptive_statistics),
21

tidy.step_vpd_euler_characteristic_curve
(step_vpd_euler_characteristic_curve),
23

tidy.step_vpd_normalized_life_curve
(step_vpd_normalized_life_curve),
26

tidy.step_vpd_persistence_block
(step_vpd_persistence_block),
28

tidy.step_vpd_persistence_image
(step_vpd_persistence_image),
31

tidy.step_vpd_persistence_landscape
(step_vpd_persistence_landscape),
34

tidy.step_vpd_persistence_silhouette
(step_vpd_persistence_silhouette),
36

tidy.step_vpd_persistent_entropy_summary
(step_vpd_persistent_entropy_summary),
39

tidy.step_vpd_tent_template_functions
(step_vpd_tent_template_functions),
41

tidy.step_vpd_tropical_coordinates
(step_vpd_tropical_coordinates),
44

vpd-dials, 46
vpd-finalizers, 49
vpd-summarizers, 50

weight_func_pl (vpd-dials), 46
weight_power (vpd-dials), 46

	blur
	blur_sigmas
	get_blur_range
	mnist
	step_blur
	step_pd_degree
	step_pd_point_cloud
	step_pd_raster
	step_vpd_algebraic_functions
	step_vpd_betti_curve
	step_vpd_complex_polynomial
	step_vpd_descriptive_statistics
	step_vpd_euler_characteristic_curve
	step_vpd_normalized_life_curve
	step_vpd_persistence_block
	step_vpd_persistence_image
	step_vpd_persistence_landscape
	step_vpd_persistence_silhouette
	step_vpd_persistent_entropy_summary
	step_vpd_tent_template_functions
	step_vpd_tropical_coordinates
	vpd-dials
	vpd-finalizers
	vpd-summarizers
	Index

