Package 'tidygenomics'

July 22, 2025

Type Package

Title Tidy Verbs for Dealing with Genomic Data Frames

Version 0.1.2

Description Handle genomic data within data frames just as you would with 'GRanges'.

This packages provides method to deal with genomic intervals the ``tidy-way" which makes

it simpler to integrate in the general data munging process. The API is inspired by the popular 'bedtools' and the genome_join() method from the 'fuzzyjoin' package.

URL https://github.com/const-ae/tidygenomics

License GPL-3

Encoding UTF-8

LazyData true

Imports dplyr, rlang, purrr, tidyr, fuzzyjoin (>= 0.1.3), IRanges, Rcpp

Suggests testthat, knitr, rmarkdown

RoxygenNote 6.1.1

LinkingTo Rcpp

VignetteBuilder knitr

NeedsCompilation yes

Author Constantin Ahlmann-Eltze [aut, cre] (ORCID:

<https://orcid.org/0000-0002-3762-068X>),

Stan Developers [cph] (Code from the Stan Math library is reused in 'cluster_interval.cpp'),

David Robinson [cph] (Code from the fuzzyjoin package is reused)

Maintainer Constantin Ahlmann-Eltze <artjom31415@googlemail.com>

Repository CRAN

Date/Publication 2019-08-08 11:50:02 UTC

2 cluster_interval

Contents

cluster_interval .																	
genome_cluster .					 												
genome_compleme	ent				 												
genome_intersect																	
genome_join_close	est																
genome_subtract					 												

Index

cluster_interval

Cluster ranges which are implemented as 2 equal-length numeric vectors.

Description

Cluster ranges which are implemented as 2 equal-length numeric vectors.

Usage

```
cluster_interval(starts, ends, max_distance = 0L)
```

Arguments

starts A numeric vector that defines the starts of each interval

ends A numeric vector that defines the ends of each interval

max_distance The maximum distance up to which intervals are still considered to be the same cluster. Default: 0.

Examples

```
starts <- c(50, 100, 120)
ends <- c(75, 130, 150)
j <- cluster_interval(starts, ends)
j == c(0,1,1)</pre>
```

genome_cluster 3

	-	
genome	c	uster

Intersect data frames based on chromosome, start and end.

Description

Intersect data frames based on chromosome, start and end.

Usage

```
genome_cluster(x, by = NULL, max_distance = 0,
  cluster_column_name = "cluster_id")
```

Arguments

x A dataframe.

by A character vector with 3 entries which are the chromosome, start and end col-

umn. For example: by=c("chr", "start", "end")

max_distance The maximum distance up to which intervals are still considered to be the same

cluster. Default: 0.

cluster_column_name

A string that is used as the new column name

Value

The dataframe with the additional column of the cluster

Examples

genome_complement

Calculates the complement to the intervals covered by the intervals in a data frame. It can optionally take a chromosome_size data frame that contains 2 or 3 columns, the first the names of chromosome and in case there are 2 columns the size or first the start index and lastly the end index on the chromosome.

genome_intersect

Description

Calculates the complement to the intervals covered by the intervals in a data frame. It can optionally take a chromosome_size data frame that contains 2 or 3 columns, the first the names of chromosome and in case there are 2 columns the size or first the start index and lastly the end index on the chromosome.

Usage

```
genome_complement(x, chromosome_size = NULL, by = NULL)
```

Arguments

x A data frame for which the complement is calculated

chromosome_size

A dataframe with at least 2 columns that contains first the chromosome name and then the size of that chromosome. Can be NULL in which case the largest value per chromosome from x is used.

by

A character vector with 3 entries which are the chromosome, start and end column. For example: by=c("chr", "start", "end")

Examples

genome_intersect

Intersect data frames based on chromosome, start and end.

Description

Intersect data frames based on chromosome, start and end.

Usage

```
genome_intersect(x, y, by = NULL, mode = "both")
```

genome_join_closest 5

Arguments

X	A dataframe.
у	A dataframe.
by	A character vector with 3 entries which are used to match the chromosome, start and end column. For example: by=c("Chromosome"="chr", "Start"="start", "End"="end")
mode	One of "both", "left", "right" or "anti".

Value

The intersected dataframe of x and y with the new boundaries.

Examples

genome_join_closest

Join intervals on chromosomes in data frames, to the closest partner

Description

Join intervals on chromosomes in data frames, to the closest partner

Usage

```
genome_join_closest(x, y, by = NULL, mode = "inner",
    distance_column_name = NULL, max_distance = Inf, select = "all")
genome_inner_join_closest(x, y, by = NULL, ...)
genome_left_join_closest(x, y, by = NULL, ...)
```

genome_join_closest

```
genome_right_join_closest(x, y, by = NULL, ...)
genome_full_join_closest(x, y, by = NULL, ...)
genome_semi_join_closest(x, y, by = NULL, ...)
genome_anti_join_closest(x, y, by = NULL, ...)
```

Arguments

x A dataframe.y A dataframe.

by A character vector with 3 entries which are used to match the chromosome, start

and end column. For example: by=c("Chromosome"="chr", "Start"="start",

"End"="end")

mode One of "inner", "full", "left", "right", "semi" or "anti".

distance_column_name

A string that is used as the new column name with the distance. If NULL no new

column is added.

max_distance The maximum distance that is allowed to join 2 entries.

select A string that is passed on to IRanges::distanceToNearest, can either be all

which means that in case that multiple intervals have the same distance all are reported, or arbitrary which means in that case one would be chosen at random.

... Additional arguments parsed on to genome join closest.

Value

The joined dataframe of x and y.

Examples

genome_subtract 7

genome_subtract	Subtract one data frame from another based on chromosome, start and end.

Description

Subtract one data frame from another based on chromosome, start and end.

Usage

```
genome\_subtract(x, y, by = NULL)
```

Arguments

x A dataframe.

y A dataframe.

by A character vector with 3 entries which are used to match the chromosome, start and end column. For example: by=c("Chromosome"="chr", "Start"="start", "End"="end")

Value

The subtracted dataframe of x and y with the new boundaries.

Examples

Index

```
cluster_interval, 2
genome_anti_join_closest
        (genome_join_closest), 5
genome_cluster, 3
genome_complement, 3
genome_full_join_closest
        (genome_join_closest), 5
genome_inner_join_closest
        (genome_join_closest), 5
genome_intersect, 4
genome_join_closest, 5
genome_left_join_closest
        (genome_join_closest), 5
genome_right_join_closest
        (genome_join_closest), 5
genome_semi_join_closest
        (genome_join_closest), 5
genome_subtract, 7
```