
Package ‘trade’
July 22, 2025

Type Package

Title Tools for Trade Practitioners

Version 0.8.1

Date 2022-08-23

Author Charles Taragin

Maintainer Charles Taragin <ctaragin+trader@gmail.com>

Depends antitrust (>= 0.99.11)

URL https://github.com/luciu5/trade

Imports methods, stats

Suggests BB,competitiontoolbox,rmarkdown,bookdown,knitr

VignetteBuilder knitr

Description A collection of tools for trade practitioners, including the ability to calibrate differ-
ent consumer demand systems and simulate the effects of tariffs and quotas under different com-
petitive regimes. These tools are derived from Anderson et al. (2001) <doi:10.1016/S0047-
2727(00)00085-2> and Froeb et al. (2003) <doi:10.1016/S0304-4076(02)00166-5>.

License CC0

Encoding UTF-8

LazyLoad yes

RoxygenNote 7.2.0

Collate 'TariffClasses.R' 'ps-methods.R' 'HypoMonMethods.R'
'QuotaClasses.R' 'summary-methods.R' 'bargaining_tariff.R'
'SimFunctions.R' 'TariffCournot-methods.R'
'TariffMonComRUM-methods.R' 'auction2nd_tariff.R'
'bertrand_quota.R' 'bertrand_tariff.R' 'cournot_tariff.R'
'initialize-methods.R' 'monopolistic_competition_tariff.R'
'trade-deprecated.R' 'trade_shiny.R'

NeedsCompilation no

Repository CRAN

Date/Publication 2022-08-24 07:10:06 UTC

1

https://github.com/luciu5/trade
https://doi.org/10.1016/S0047-2727(00)00085-2
https://doi.org/10.1016/S0047-2727(00)00085-2
https://doi.org/10.1016/S0304-4076(02)00166-5

2 auction2nd_tariff

Contents
auction2nd_tariff . 2
bargaining_tariff . 4
bertrand_quota . 7
bertrand_tariff . 9
cournot_tariff . 12
defineMarketTools-methods . 15
initialize-methods . 16
monopolistic_competition_tariff . 17
ps-methods . 19
Quota-classes . 19
Sim-Functions . 20
summary-methods . 23
Tariff-classes . 24
TariffCournot-methods . 24
TariffMonComRUM-methods . 25

Index 27

auction2nd_tariff Tariff Simulation With A Second Score Procurement Auction Game

Description

Simulate the effect of tariffs when firms play a second score procurement auction game and con-
sumer demand is Logit.

Usage

auction2nd_tariff(
demand = c("logit"),
prices,
quantities,
margins,
owner = NULL,
mktElast = NA_real_,
diversions,
tariffPre = rep(0, length(quantities)),
tariffPost = rep(0, length(quantities)),
priceStart,
parmStart,
control.slopes,
control.equ,
labels = paste("Prod", 1:length(quantities), sep = ""),
...

)

auction2nd_tariff 3

Arguments

demand A character vector indicating which demand system to use. Currently allows
logit (default).

prices A length k vector product prices.

quantities A length k vector of product quantities.

margins A length k vector of product margins. All margins must be in levels (not w.r.t to
price), or NA.

owner EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the tariff OR a k x k matrix of pre-merger ownership shares.

mktElast A negative number equal to the industry pre-merger price elasticity. Default is
NA .

diversions A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to revenue share is assumed.

tariffPre A vector of length k where each element equals the current ad valorem tariff
(expressed as a proportion of the consumer price) imposed on each product.
Default is 0, which assumes no tariff.

tariffPost A vector of length k where each element equals the new ad valorem tariff (ex-
pressed as a proportion of the consumer price) imposed on each product. Default
is 0, which assumes no tariff.

priceStart For aids, a vector of length k who elements equal to an initial guess of the
proportional change in price caused by the merger. The default is to draw k
random elements from a [0,1] uniform distribution. For ces and logit, the default
is prices.

parmStart aids only. A vector of length 2 whose elements equal to an initial guess for each
"known" element of the diagonal of the demand matrix and the market elasticity.

control.slopes A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

control.equ A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

labels A k-length vector of labels.

... Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium prices.

Details

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, auction2ndtariff is able to recover the slopes and intercepts of a Logit, CES, demand
system. These parameters are then used to simulate the price effects of an ad valorem tariff under
the assumption that the firms are playing a 2nd score auction.

Value

auction2ndtariff returns an instance of class Tariff2ndLogit

4 bargaining_tariff

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192.

See Also

bertrand_tariff to simulate the effects of a tariff under a Bertrand pricing game and monopolistic_competition_tariff
to simulate the effects of a tariff under monopolistic competition.

Examples

Calibration and simulation results from a 10% tariff on non-US beers "OTHER-LITE"
and "OTHER-REG"
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
owner <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
quantities <- c(.066,.172,.253,.187,.099,.223)*100
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769) # margins in terms of price
margins <- margins*price # dollar margins
tariff <- c(0,0,0,0,.1,.1)

names(price) <-
names(quantities) <-
names(margins) <-
prodNames

result.2nd <- auction2nd_tariff(demand = "logit",prices=price,quantities=quantities,
margins = margins,owner=owner,
tariffPost = tariff, labels=prodNames)

print(result.2nd) # return predicted price change
summary(result.2nd) # summarize merger simulation

bargaining_tariff Tariff Simulation With A Nash Bargaining Game

Description

Simulate the effect of tariffs when firms play a Nash Bargaining game and consumer demand is
Logit.

bargaining_tariff 5

Usage

bargaining_tariff(
demand = c("logit"),
prices,
shares,
margins,
owner = NULL,
mktElast = NA_real_,
insideSize = NA_real_,
diversions,
tariffPre = rep(0, length(shares)),
tariffPost = rep(0, length(shares)),
bargpowerPre = rep(0.5, length(prices)),
bargpowerPost = bargpowerPre,
normIndex = ifelse(isTRUE(all.equal(sum(shares), 1, check.names = FALSE)), 1, NA),
priceOutside = ifelse(demand == "logit", 0, 1),
priceStart,
control.slopes,
control.equ,
labels = paste("Prod", 1:length(shares), sep = ""),
...

)

Arguments

demand A character vector indicating which demand system to use. Currently allows
logit (default).

prices A length k vector product prices.

shares A length k vector of product shares. Values must be between 0 and 1.

margins A length k vector of product margins. All margins must be in levels (not w.r.t to
price), or NA.

owner EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the tariff OR a k x k matrix of pre-merger ownership shares.

mktElast A negative number equal to the industry pre-merger price elasticity. Default is
NA .

insideSize An integer equal to total pre-merger units sold. If shares sum to one, this also
equals the size of the market.

diversions A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to revenue share is assumed.

tariffPre A vector of length k where each element equals the current ad valorem tariff
(expressed as a proportion of the consumer price) imposed on each product.
Default is 0, which assumes no tariff.

tariffPost A vector of length k where each element equals the new ad valorem tariff (ex-
pressed as a proportion of the consumer price) imposed on each product. Default
is 0, which assumes no tariff.

6 bargaining_tariff

bargpowerPre A length k vector of pre-tariff bargaining power parameters. Values must be
between 0 (sellers have the power) and 1 (buyers the power). NA values are al-
lowed, though must be calibrated from additional margin and share data. Default
is 0.5.

bargpowerPost A length k vector of post-tariff bargaining power parameters. Values must be
between 0 (sellers have the power) and 1 (buyers the power). NA values are al-
lowed, though must be calibrated from additional margin and share data. Default
is ‘bargpowerPre’.

normIndex An integer equalling the index (position) of the inside product whose mean val-
uation will be normalized to 1. Default is 1, unless ‘shares’ sum to less than 1,
in which case the default is NA and an outside good is assumed to exist.

priceOutside price of the outside good. Equals 0 for logit and 1 for ces. Not used for aids.

priceStart For aids, a vector of length k who elements equal to an initial guess of the
proportional change in price caused by the merger. The default is to draw k
random elements from a [0,1] uniform distribution. For ces and logit, the default
is prices.

control.slopes A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

control.equ A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

labels A k-length vector of labels.

... Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium prices.

Details

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, bargaining_tariff is able to recover the slopes and intercepts of a Logit demand sys-
tem. These parameters are then used to simulate the price effects of an ad valorem tariff under the
assumption that the firms are playing a Nash Bargaining game.

Value

bargaining_tariff returns an instance of class TariffBargainingLogit

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192.

See Also

bertrand_tariff to simulate the effects of a tariff under a Bertrand pricing game and monopolistic_competition_tariff
to simulate the effects of a tariff under monopolistic competition.

bertrand_quota 7

Examples

Calibration and simulation results from a 10% tariff on non-US beers "OTHER-LITE"
and "OTHER-REG"
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
owner <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
shares <- c(.066,.172,.253,.187,.099,.223)
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769) # margins in terms of price
tariff <- c(0,0,0,0,.1,.1)

names(price) <-
names(shares) <-
names(margins) <-
prodNames

result.barg <- bargaining_tariff(demand = "logit",prices=price,shares=shares,
margins = margins,owner=owner,
tariffPost = tariff, labels=prodNames)

print(result.barg) # return predicted price change
summary(result.barg) # summarize merger simulation

bertrand_quota quota Simulation With A Bertrand Pricing Game

Description

Simulate the effect of quotas when firms play a Bertrand pricing game and consumer demand is
either Logit, CES, or AIDS

Usage

bertrand_quota(
demand = c("logit"),
prices,
quantities,
margins,
owner = NULL,
mktElast = NA_real_,
diversions,
quotaPre = rep(Inf, length(quantities)),
quotaPost,
priceOutside = ifelse(demand == "logit", 0, 1),
priceStart,

8 bertrand_quota

isMax = FALSE,
parmStart,
control.slopes,
control.equ,
labels = paste("Prod", 1:length(quantities), sep = ""),
...

)

Arguments

demand A character vector indicating which demand system to use. Currently allows
logit (default), ces, or aids.

prices A length k vector product prices. Default is missing, in which case demand
intercepts are not calibrated.

quantities A length k vector of product quantities.

margins A length k vector of product margins. All margins must be either be between 0
and 1, or NA.

owner EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the merger OR a k x k matrix of pre-merger ownership shares.

mktElast A negative number equal to the industry pre-merger price elasticity. Default is
NA .

diversions A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to revenue share is assumed.

quotaPre A vector of length k where each element equals the current quota (expressed as
a proportion of pre-merger quantities) imposed on each product. Default is Inf,
which assumes no quota.

quotaPost A vector of length k where each element equals the new quota (expressed as a
proportion of pre-merger quantities) imposed on each product. Default is Inf,
which assumes no quota.

priceOutside price of the outside good. Equals 0 for logit and 1 for ces. Not used for aids.

priceStart For aids, a vector of length k who elements equal to an initial guess of the
proportional change in price caused by the merger. The default is to draw k
random elements from a [0,1] uniform distribution. For ces and logit, the default
is prices.

isMax If TRUE, checks to see whether computed price equilibrium locally maximizes
firm profits and returns a warning if not. Default is FALSE.

parmStart aids only. A vector of length 2 who elements equal to an initial guess for
"known" element of the diagonal of the demand matrix and the market elasticity.

control.slopes A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

control.equ A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

labels A k-length vector of labels.

... Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium prices.

bertrand_tariff 9

Details

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, bertrand_quota is able to recover the slopes and intercepts of the Logit, demand system.
These parameters are then used to simulate the price effects of a quota under the assumption that
the firms are playing a simultaneous price setting game.

Value

bertrand_quota returns an instance of class QuotaLogit.

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192.

Examples

Calibration and simulation results from a 80% quota on non-US beers "OTHER-LITE"
and "OTHER-REG"
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
owner <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
quantities <- c(.066,.172,.253,.187,.099,.223)*100
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769)
quota <- c(Inf,Inf,Inf,Inf,.8,.8)

names(price) <-
names(quantities) <-
names(margins) <-
prodNames

result.logit <- bertrand_quota(demand = "logit",prices=price,quantities=quantities,
margins = margins,owner=owner, quotaPost = quota, labels=prodNames)

print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation

bertrand_tariff Tariff Simulation With A Bertrand Pricing Game

Description

Simulate the effect of tariffs when firms play a Bertrand pricing game and consumer demand is
either Logit, CES, or AIDS

10 bertrand_tariff

Usage

bertrand_tariff(
demand = c("logit", "ces", "aids"),
prices,
quantities,
margins,
owner = NULL,
mktElast = NA_real_,
diversions,
tariffPre = rep(0, length(quantities)),
tariffPost = rep(0, length(quantities)),
priceOutside = ifelse(demand == "logit", 0, 1),
priceStart,
isMax = FALSE,
parmStart,
control.slopes,
control.equ,
labels = paste("Prod", 1:length(quantities), sep = ""),
...

)

Arguments

demand A character vector indicating which demand system to use. Currently allows
logit (default), ces, or aids.

prices A length k vector product prices. Default is missing, in which case demand
intercepts are not calibrated.

quantities A length k vector of product quantities.

margins A length k vector of product margins. All margins must be either be between 0
and 1, or NA.

owner EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the tariff OR a k x k matrix of pre-merger ownership shares.

mktElast A negative number equal to the industry pre-merger price elasticity. Default is
NA .

diversions A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to revenue share is assumed.

tariffPre A vector of length k where each element equals the current ad valorem tariff
(expressed as a proportion of the consumer price) imposed on each product.
Default is 0, which assumes no tariff.

tariffPost A vector of length k where each element equals the new ad valorem tariff (ex-
pressed as a proportion of the consumer price) imposed on each product. Default
is 0, which assumes no tariff.

priceOutside price of the outside good. Equals 0 for logit and 1 for ces. Not used for aids.

priceStart For aids, a vector of length k who elements equal to an initial guess of the
proportional change in price caused by the merger. The default is to draw k

bertrand_tariff 11

random elements from a [0,1] uniform distribution. For ces and logit, the default
is prices.

isMax If TRUE, checks to see whether computed price equilibrium locally maximizes
firm profits and returns a warning if not. Default is FALSE.

parmStart aids only. A vector of length 2 whose elements equal to an initial guess for each
"known" element of the diagonal of the demand matrix and the market elasticity.

control.slopes A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

control.equ A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

labels A k-length vector of labels.

... Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium prices.

Details

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, bertrand_tariff is able to recover the slopes and intercepts of either a Logit, CES, or
AIDS demand system. These parameters are then used to simulate the price effects of an ad valorem
tariff under the assumption that the firms are playing a simultaneous price setting game.

Value

bertrand_tariff returns an instance of class TariffLogit, TariffCES, or TariffAIDS, depend-
ing upon the value of the “demand” argument.

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192.

See Also

monopolistic_competition_tariff to simulate the effects of a tariff under monopolistic compe-
tition.

Examples

Calibration and simulation results from a 10% tariff on non-US beers "OTHER-LITE"
and "OTHER-REG"
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
owner <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
quantities <- c(.066,.172,.253,.187,.099,.223)*100
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769)
tariff <- c(0,0,0,0,.1,.1)

12 cournot_tariff

names(price) <-
names(quantities) <-
names(margins) <-
prodNames

result.logit <- bertrand_tariff(demand = "logit",prices=price,quantities=quantities,
margins = margins,owner=owner,
tariffPost = tariff, labels=prodNames)

print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation

cournot_tariff Tariff Simulation With A Cournot Quantity Setting Game

Description

Simulate the effect of tariffs when firms play a cournot quantity setting game and consumer demand
is either linear or log-linear

Usage

cournot_tariff(
prices,
quantities,
margins = matrix(NA_real_, nrow(quantities), ncol(quantities)),
demand = rep("linear", length(prices)),
cost = rep("linear", nrow(quantities)),
tariffPre = matrix(0, nrow = nrow(quantities), ncol = ncol(quantities)),
tariffPost = tariffPre,
mcfunPre = list(),
mcfunPost = mcfunPre,
vcfunPre = list(),
vcfunPost = vcfunPre,
capacitiesPre = rep(Inf, nrow(quantities)),
capacitiesPost = capacitiesPre,
productsPre = !is.na(quantities),
productsPost = productsPre,
owner = NULL,
mktElast = rep(NA_real_, length(prices)),
quantityStart = as.vector(quantities),
control.slopes,
control.equ,
labels,
...

)

cournot_tariff 13

Arguments

prices A length k vector product prices.

quantities An n x k matrix of product quantities. All quantities must either be positive, or
if the product is not produced by a plant, NA

margins An n x k matrix of product margins. All margins must be either be between 0
and 1, or NA.

demand A length k character vector equal to "linear" if a product’s demand curve is
assumed to be linear or "log" if a product’s demand curve is assumed to be log-
linear.

cost A length k character vector equal to "linear" if a plant’s marginal cost curve is
assumed to be linear or "constant" if a plant’s marginal curve is assumed to be
constant. Returns an error if a multi-plant firm with constant marginal costs does
not have capacity constraints.

tariffPre An n x k matrix where each element equals the current ad valorem tariff (ex-
pressed as a proportion of consumer price) imposed on each product. Default is
0, which assumes no tariff.

tariffPost An n x k matrix where each element equals the new ad valorem tariff (expressed
as a proportion of consumer price) imposed on each product. Default is 0, which
assumes no tariff.

mcfunPre a length n list of functions that calculate a plant’s marginal cost under the current
tariff structure. If empty (the default), assumes quadratic costs.

mcfunPost a length n list of functions that calculate a plant’s marginal cost under the new
tariff structure. If empty (the default), assumes quadratic costs.

vcfunPre a length n list of functions that calculate a plant’s variable cost under the current
tariff structure. If empty (the default), assumes quadratic costs.

vcfunPost a length n list of functions that calculate a plant’s variable cost under the new
tariff structure. If empty (the default), assumes quadratic costs.

capacitiesPre A length n numeric vector of plant capacities under the current tariff regime.
Default is Inf.

capacitiesPost A length n numeric vector of plant capacities under the new tariff regime. De-
fault is Inf.

productsPre An n x k matrix that equals TRUE if under the current tariff regime, a plant
produces a product. Default is TRUE if ’quantities’ is not NA.

productsPost An n x k matrix that equals TRUE if under the new tariff regime, a plant pro-
duces a product. Default equals ’productsPre’.

owner EITHER a vector of length n whose values indicate which plants are commonly
owned OR an n x n matrix of ownership shares.

mktElast A length k vector of product elasticities. Default is a length k vector of NAs

quantityStart A length k vector of quantities used as the initial guess in the nonlinear equation
solver. Default is ’quantities’.

control.slopes A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

14 cournot_tariff

control.equ A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

labels A k-length vector of labels.

... Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium quantities.

Details

Let k denote the number of products and n denote the number of plants. Using price, and quantity,
information for all products in each market, as well as margin information for at least one products
in each market, cournot_tariff is able to recover the slopes and intercepts of either a Linear or
Log-linear demand system. These parameters are then used to simulate the price effects of a tariff
under the assumption that the firms are playing a homogeneous products simultaneous quantity
setting game.

Value

cournot_tariff returns an instance of class Cournot from package antitrust, depending upon the
value of the “demand” argument.

References

Simon P. Anderson, Andre de Palma, Brent Kreider, The efficiency of indirect taxes under imperfect
competition, Journal of Public Economics, Volume 81, Issue 2, 2001,Pages 231-251.

Examples

Simulate the effect of a 75% ad valorem tariff in a
5-firm, single-product market with linear demand and quadratic costs
Firm 1 is assumed to be foreign, and so subject to a tariff

n <- 5 #number of firms in market
cap <- rnorm(n,mean = .5, sd = .1)
int <- 10
slope <- -.25
tariffPre <- tariffPost <- rep(0, n)
tariffPost[1] <- .75

B.pre.c = matrix(slope,nrow=n,ncol=n)
diag(B.pre.c) = 2* diag(B.pre.c) - 1/cap
quantity.pre.c = rowSums(solve(B.pre.c) * -int)
price.pre.c = int + slope * sum(quantity.pre.c)
mc.pre.c = quantity.pre.c/cap
vc.pre.c = quantity.pre.c^2/(2*cap)
margin.pre.c = 1 - mc.pre.c/price.pre.c

#prep inputs for Cournot
owner.pre <- diag(n)

defineMarketTools-methods 15

result.c <- cournot_tariff(prices = price.pre.c,quantities = as.matrix(quantity.pre.c),
margins=as.matrix(margin.pre.c),
owner=owner.pre,
tariffPre = as.matrix(tariffPre),
tariffPost = as.matrix(tariffPost))

summary(result.c, market = TRUE) # summarize tariff (high-level)
summary(result.c, market = FALSE) # summarize tariff (detailed)

defineMarketTools-methods

Methods For Implementing The Hypothetical Monopolist Test

Description

An adaptation of the Hypothetical Monopolist Test described in the 2010 Horizontal Merger Guide-
lines for use in non-merger settings.

HypoMonTest implements the Hypothetical Monopolist Test for a given ‘ssnip’. ‘...’ may be used
to pass arguments to the optimizer.

Usage

S4 method for signature 'TariffBertrand'
HypoMonTest(object, prodIndex, ssnip = 0.05, ...)

S4 method for signature 'TariffCournot'
HypoMonTest(object, plantIndex, prodIndex, ssnip = 0.05, ...)

Arguments

object An instance of one of the classes listed above.

prodIndex A vector of product indices that are to be placed under the control of the Hypo-
thetical Monopolist.

ssnip A number between 0 and 1 that equals the threshold for a “Small but Significant
and Non-transitory Increase in Price” (SSNIP). Default is .05, or 5%.

... Pass options to the optimizer used to solve for equilibrium prices.

plantIndex A vector of plant indices that are to be placed under the control of the Hypothet-
ical Monopolist (Cournot).

Details

HypoMonTest is an implementation of the Hypothetical Monopolist Test on the products indexed
by ‘prodIndex’ for a ‘ssnip’. The Hypothetical Monopolist Test determines whether a profit-
maximizing Hypothetical Monopolist who controls the products indexed by ‘prodIndex’ would

16 initialize-methods

increase the price of at least one of the products in ‘prodIndex’ by a small, significant, and non-
transitory amount (i.e. impose a SSNIP). The main difference between this implementation and
antitrust::HypoMonTest() is this implementation does not check to see if ‘prodIndex’ contains
a merging party’s product.

Value

HypoMonTest returns TRUE if a profit-maximizing Hypothetical Monopolist who controls the prod-
ucts indexed by ‘prodIndex’ would increase the price of at least one of the products in ‘prodIndex’
by a ‘ssnip’, and FALSE otherwise.

References

U.S. Department of Justice and Federal Trade Commission, Horizontal Merger Guidelines. Wash-
ington DC: U.S. Department of Justice, 2010. https://www.justice.gov/atr/horizontal-merger-guidelines-08192010
(accessed July 29, 2011).

initialize-methods Initialize Methods

Description

Initialize methods for the TariffBertrand and TariffCournot classes

Usage

S4 method for signature 'TariffBertrand'
initialize(.Object, ...)

S4 method for signature 'QuotaBertrand'
initialize(.Object, ...)

S4 method for signature 'TariffCournot'
initialize(.Object, ...)

Arguments

.Object an instance of class TariffBertrand or TariffCournot

... arguments to pass to initialize

https://www.justice.gov/atr/horizontal-merger-guidelines-08192010

monopolistic_competition_tariff 17

monopolistic_competition_tariff

Tariff Simulation With A Monopolistic Competition Pricing Game

Description

Simulate the effect of tariffs when firms play a Monopolistic Competition game and consumer
demand is either Logit or CES

Usage

monopolistic_competition_tariff(
demand = c("logit", "ces"),
prices,
quantities,
margins,
mktElast = NA_real_,
mktSize,
tariffPre = rep(0, length(quantities)),
tariffPost = rep(0, length(quantities)),
priceOutside = ifelse(demand == "logit", 0, 1),
labels = paste("Prod", 1:length(quantities), sep = "")

)

Arguments

demand A character vector indicating which demand system to use. Currently allows
“logit" or “ces" .

prices A length k vector product prices. Default is missing, in which case demand
intercepts are not calibrated.

quantities A length k vector of product quantities.

margins A length k vector of product margins. All margins must be either be between 0
and 1, or NA.

mktElast A negative number no greater than -1 equal to the industry pre-tariff price elas-
ticity. Default is NA .

mktSize A positive number equal to the industry pre-tariff market size. Market size
equals total quantity sold,including sales to the outside good.

tariffPre A vector of length k where each element equals the current ad valorem tariff
(expressed as a proportion of the consumer price) imposed on each product.
Default is 0, which assumes no tariff.

tariffPost A vector of length k where each element equals the new ad valorem tariff (ex-
pressed as a proportion of the consumer price) imposed on each product. Default
is 0, which assumes no tariff.

priceOutside price of the outside good. Default 0 for logit and 1 for ces. Not used for aids.

labels A k-length vector of labels.

18 monopolistic_competition_tariff

Details

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, monopolistic_competition_tariff is able to recover the slopes and intercepts of a Logit
demand system. These parameters are then used to simulate the price effects of an ad valorem tariff
under the assumption that the firms are playing a monopolisitcally competitive pricing game

Value

monopolistic_competition_tariff returns an instance of class TariffMonComLogit , depend-
ing upon the value of the “demand” argument.

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192. Anderson, Simon P., and
André De Palma. Economic distributions and primitive distributions in monopolistic competition.
Centre for Economic Policy Research, 2015.

See Also

bertrand_tariff to simulate the effects of a tariff under a Bertrand pricing game.

Examples

Calibration and simulation results from a 10% tariff on non-US beers "OTHER-LITE"
and "OTHER-REG"
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
quantities <- c(.066,.172,.253,.187,.099,.223)*100
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769)
tariff <- c(0,0,0,0,.1,.1)

names(price) <-
names(quantities) <-
names(margins) <-
prodNames

result.logit <- monopolistic_competition_tariff(demand = "logit",prices=price,quantities=quantities,
margins = margins,
tariffPost = tariff, labels=prodNames)

print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation

result.ces <- monopolistic_competition_tariff(demand = "ces",prices=price,quantities=quantities,
margins = margins,
tariffPost = tariff, labels=prodNames)

ps-methods 19

print(result.ces) # return predicted price change
summary(result.ces) # summarize merger simulation

ps-methods Methods To Calculate Producer Surplus

Description

Producer Surplus methods for the TariffBertrand and TariffCournot classes

Usage

S4 method for signature 'TariffBertrand'
calcProducerSurplus(object, preMerger = TRUE)

S4 method for signature 'TariffCournot'
calcProducerSurplus(object, preMerger = TRUE)

Arguments

object an instance of class TariffBertrand or TariffCournot
preMerger when TRUE, calculates producer surplus under the existing tariff regime. When

FALSE, calculates tariffs under the new tariff regime. Default is TRUE.

Value

product-level (or in the case of Cournot, plant-level) producer surplus

Quota-classes S4 classes to model quotas

Description

Extend classes from the antitrust package to accomodate quotas.

Slots

quotaPre For QuotaCournot, a matrix containing current plant-level (rows) AND product-level
(columns) quotas. Default is a matrix of 0s. For all other classes, a vector containing current
product-level quotas. Quotas are expressed as a proportion of pre-merger output. Default is a
vector of Infs.

quotaPost a For QuotaCournot, a matrix containing new plant-level (rows) AND product-level
(columns) quotas. Default is a matrix of Infs. For all other classes, a vector containing new
product-level quotas. quotas are expressed as a proportion of pre-merger output. Default is a
vector of Infss.

20 Sim-Functions

Sim-Functions Tariff Simulation With User-Supplied Demand Parameters

Description

Simulates the price effects of an ad valorem tariff with user-supplied demand parameters under the
assumption that all firms in the market are playing either a differentiated products Bertrand pricing
game, 2nd price auction, or bargaining game.

Let k denote the number of products produced by all firms below.

Usage

sim(
prices,
supply = c("moncom", "bertrand", "auction", "bargaining"),
demand = c("logit", "ces"),
demand.param,
owner,
tariffPre = rep(0, length(prices)),
tariffPost,
subset = rep(TRUE, length(prices)),
insideSize = 1,
priceOutside,
priceStart,
bargpowerPre = rep(0.5, length(prices)),
bargpowerPost = bargpowerPre,
labels = paste("Prod", 1:length(prices), sep = ""),
...

)

Arguments

prices A length k vector of product prices.

supply A character string indicating how firms compete with one another. Valid values
are "moncom" (monopolistic competition), "bertrand" (Nash Bertrand), "auc-
tion2nd" (2nd score auction), or "bargaining".

demand A character string indicating the type of demand system to be used in the merger
simulation. Supported demand systems are logit (‘Logit’) or ces (‘CES’).

demand.param See Below.

owner EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the tariff OR a k x k matrix of pre-merger ownership shares.

tariffPre A vector of length k where each element equals the current ad valorem tariff
(expressed as a proportion of the consumer price) imposed on each product.
Default is 0, which assumes no tariff.

Sim-Functions 21

tariffPost A vector of length k where each element equals the new ad valorem tariff (ex-
pressed as a proportion of the consumer price) imposed on each product. Default
is 0, which assumes no tariff.

subset A vector of length k where each element equals TRUE if the product indexed by
that element should be included in the post-merger simulation and FALSE if it
should be excluded.Default is a length k vector of TRUE.

insideSize A length 1 vector equal to total units sold if ‘demand’ equals "logit", or total
revenues if ‘demand’ equals "ces".

priceOutside A length 1 vector indicating the price of the outside good. This option only
applies to the ‘Logit’ class and its child classes Default for ‘Logit’,‘LogitNests’,
and ‘LogitCap’ is 0, and for ‘CES’ and ‘CesNests’ is 1.

priceStart A length k vector of starting values used to solve for equilibrium price. Default
is the ‘prices’ vector for all values of demand except for ‘AIDS’, which is set
equal to a vector of 0s.

bargpowerPre A length k vector of pre-merger bargaining power parameters. Values must be
between 0 (sellers have the power) and 1 (buyers the power). Ignored if ‘supply’
not equal to "bargaining".

bargpowerPost A length k vector of post-merger bargaining power parameters. Values must
be between 0 (sellers have the power) and 1 (buyers the power). Default is
‘bargpowerPre’. Ignored if ‘supply’ not equal to "bargaining".

labels A k-length vector of labels. Default is “Prod#”, where ‘#’ is a number between
1 and the length of ‘prices’.

... Additional options to feed to the optimizer used to solve for equilibrium prices.

Details

Using user-supplied demand parameters, sim simulates the effects of a merger in a market where
firms are playing a differentiated products pricing game.

If ‘demand’ equals ‘Logit’ then ‘demand.param’ must equal a list containing

• alphaThe price coefficient.

• meanvalA length-k vector of mean valuations ‘meanval’. If none of the values of ‘meanval’
are zero, an outside good is assumed to exist.

If demand equals ‘CES’ then ‘demand.param’ must equal a list containing

• gamma The price coefficient,

• alphaThe coefficient on the numeraire good. May instead be calibrated using ‘shareInside’,

• meanvalA length-k vector of mean valuations ‘meanval’. If none of the values of ‘meanval’
are zero, an outside good is assumed to exist,

• shareInside The budget share of all products in the market. Default is 1, meaning that all
consumer wealth is spent on products in the market. May instead be specified using ‘alpha’.

Value

sim returns an instance of the class specified by the ‘demand’ argument.

22 Sim-Functions

Author(s)

Charles Taragin <ctaragin+trader@gmail.com>

See Also

The S4 class documentation for: Logit and CES,

Examples

Calibration and simulation results from a merger between Budweiser and
Old Style. Note that the in the following model there is no outside
good; BUD's mean value has been normalized to zero.

Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
owner <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
tariff <- c(0,0,0,0,.1,.1)

price <- c(.0441,.0328,.0409,.0396,.0387,.0497)

a list containing price coefficient and mean valuations
demand.param=list(alpha=-48.0457,

meanval=c(0,0.4149233,1.1899885,0.8252482,0.1460183,1.4865730)
)

sim.logit <- sim(price,demand="logit",supply="bertrand", demand.param,
owner=owner,tariffPost=tariff,labels=prodNames)

print(sim.logit) # return predicted price change
summary(sim.logit) # summarize merger simulation

elast(sim.logit,TRUE) # returns premerger elasticities
elast(sim.logit,FALSE) # returns postmerger elasticities

diversion(sim.logit,TRUE) # return premerger diversion ratios
diversion(sim.logit,FALSE) # return postmerger diversion ratios

cmcr(sim.logit) #calculate compensating marginal cost reduction
upp(sim.logit) #calculate Upwards Pricing Pressure Index

CV(sim.logit) #calculate representative agent compensating variation

summary-methods 23

summary-methods Summary Methods

Description

Summary methods for the TariffBertrand, QuotaBertrand, and TariffCournot classes

Usage

S4 method for signature 'TariffBertrand'
summary(
object,
revenue = FALSE,
levels = FALSE,
parameters = FALSE,
market = FALSE,
insideOnly = TRUE,
digits = 2

)

S4 method for signature 'QuotaBertrand'
summary(
object,
revenue = FALSE,
levels = FALSE,
parameters = FALSE,
market = FALSE,
insideOnly = TRUE,
digits = 2

)

S4 method for signature 'TariffCournot'
summary(
object,
market = FALSE,
revenue = FALSE,
levels = FALSE,
parameters = FALSE,
digits = 2

)

Arguments

object an instance of class TariffBertrand, QuotaBertrand, or TariffCournot

revenue When TRUE, returns revenues, when FALSE returns quantitities. Default is
FALSE.

24 TariffCournot-methods

levels When TRUE returns changes in levels rather than percents and quantities rather
than shares, when FALSE, returns changes as a parcent and shares rather than
quantities. Default is FALSE.

parameters When TRUE, displays demand and cost parameters. Default is FALSE.

market When TRUE, displays aggregate information about the effect of a tariff. When
FALSE displays product-specific (or in the case of Cournot, plant-specific) ef-
fects. Default is FALSE

insideOnly When TRUE, rescales shares on inside goods to sum to 1. Default is FALSE.

digits Number of digits to report. Default is 2.

Value

Prints either market or product/plant-level summary and invisibly returns a data frame containing
the same information.

Tariff-classes S4 classes to model tariffs

Description

Extend classes from the antitrust package to accomodate tariffs.

Slots

tariffPre For TariffCournot, a matrix containing current plant-level (rows) AND product-level
(columns) tariffs. Default is a matrix of 0s. For all other classes, a vector containg current
product-level tariffs. ad valorem taxes are expressed as a proportion of the consumer price.
Default is a vector of 0s.

tariffPost a For TariffCournot, a matrix containing new plant-level (rows) AND product-level
(columns) tariffs. Default is a matrix of 0s. For all other classes, a vector containing new
product-level tariffs. ad valorem taxes are expressed as a proportion of the consumer price.
Default is a vector of 0s.

TariffCournot-methods Additional methods for TariffCournot Class

Description

Producer Surplus methods for the TariffBertrand and TariffCournot classes

TariffMonComRUM-methods 25

Usage

S4 method for signature 'TariffCournot'
calcSlopes(object)

S4 method for signature 'TariffCournot'
calcQuantities(object, preMerger = TRUE, market = FALSE)

Arguments

object an instance of class TariffCournot
preMerger when TRUE, computes result under the existing tariff regime. When FALSE,

calculates tariffs under the new tariff regime. Default is TRUE.
market when TRUE, computes market-wide results. When FALSE, calculates plant-

specific results.

Value

calcSlopes return a TariffCournot object containing estimated slopes. CalcQuantities returns a
matrix of equilbrium quantities under either the current or new tariff.

TariffMonComRUM-methods

Additional methods for TariffMonComLogit, TariffMonComCES
Classes

Description

calcSlopes, Prices, Margins methods for the TariffMonComLogit and TariffMonComCES classes

Usage

S4 method for signature 'TariffMonComLogit'
calcSlopes(object)

S4 method for signature 'TariffMonComCES'
calcSlopes(object)

S4 method for signature 'TariffMonComLogit'
calcMargins(object, preMerger = TRUE, level = FALSE)

S4 method for signature 'TariffMonComCES'
calcMargins(object, preMerger = TRUE, level = FALSE)

S4 method for signature 'TariffMonComLogit'
calcPrices(object, preMerger = TRUE, ...)

S4 method for signature 'TariffMonComCES'
calcPrices(object, preMerger = TRUE, ...)

26 TariffMonComRUM-methods

Arguments

object an instance of class TariffMonComLogit or class TariffMonComCES

preMerger when TRUE, computes result under the existing tariff regime. When FALSE,
calculates tariffs under the new tariff regime. Default is TRUE.

level when TRUE, computes margins in dollars. When FALSE, calculates margins as
a proportion of prices. Default is FALSE.

... harmlessly pass the arguments used in other calcPrices methods to methods for
TariffMonComLogit and TariffMonComCES.

Value

calcSlopes return a TariffMonComLogit or TariffMonComCES object containing estimated slopes.
CalcQuantities returns a matrix of equilbrium quantities under either the current or new tariff.

Index

∗ methods
defineMarketTools-methods, 15

antitrust::HypoMonTest(), 16
auction2nd_tariff, 2

bargaining_tariff, 4
BBsolve, 3, 6, 8, 11, 14
bertrand_quota, 7
bertrand_tariff, 4, 6, 9, 18

calcMargins,TariffMonComCES-method
(TariffMonComRUM-methods), 25

calcMargins,TariffMonComLogit-method
(TariffMonComRUM-methods), 25

calcPrices,TariffMonComCES-method
(TariffMonComRUM-methods), 25

calcPrices,TariffMonComLogit-method
(TariffMonComRUM-methods), 25

calcProducerSurplus,TariffBertrand-method
(ps-methods), 19

calcProducerSurplus,TariffCournot-method
(ps-methods), 19

calcQuantities,TariffCournot-method
(TariffCournot-methods), 24

calcSlopes,TariffCournot-method
(TariffCournot-methods), 24

calcSlopes,TariffMonComCES-method
(TariffMonComRUM-methods), 25

calcSlopes,TariffMonComLogit-method
(TariffMonComRUM-methods), 25

CES, 22
Cournot, 14
cournot_tariff, 12

defineMarketTools-methods, 15

HypoMonTest, 15
HypoMonTest

(defineMarketTools-methods), 15

HypoMonTest,TariffBertrand-method
(defineMarketTools-methods), 15

HypoMonTest,TariffCournot-method
(defineMarketTools-methods), 15

initialize,QuotaBertrand-method
(initialize-methods), 16

initialize,TariffBertrand-method
(initialize-methods), 16

initialize,TariffCournot-method
(initialize-methods), 16

initialize-methods, 16

Logit, 22

monopolistic_competition_tariff, 4, 6,
11, 17

optim, 3, 6, 8, 11, 13

ps-methods, 19

Quota-classes, 19
QuotaBertrand-class (Quota-classes), 19
QuotaCournot-class (Quota-classes), 19
QuotaLogit, 9
QuotaLogit-class (Quota-classes), 19

sim (Sim-Functions), 20
Sim-Functions, 20
summary,QuotaBertrand-method

(summary-methods), 23
summary,TariffBertrand-method

(summary-methods), 23
summary,TariffCournot-method

(summary-methods), 23
summary-methods, 23

Tariff-classes, 24
Tariff2ndLogit, 3

27

28 INDEX

Tariff2ndLogit-class (Tariff-classes),
24

TariffAIDS, 11
TariffAIDS-class (Tariff-classes), 24
TariffBargainingLogit, 6
TariffBargainingLogit-class

(Tariff-classes), 24
TariffBertrand-class (Tariff-classes),

24
TariffCES, 11
TariffCES-class (Tariff-classes), 24
TariffCournot-class (Tariff-classes), 24
TariffCournot-methods, 24
TariffLogit, 11
TariffLogit-class (Tariff-classes), 24
TariffMonComLogit, 18
TariffMonComLogit-class

(Tariff-classes), 24
TariffMonComRUM-methods, 25

	auction2nd_tariff
	bargaining_tariff
	bertrand_quota
	bertrand_tariff
	cournot_tariff
	defineMarketTools-methods
	initialize-methods
	monopolistic_competition_tariff
	ps-methods
	Quota-classes
	Sim-Functions
	summary-methods
	Tariff-classes
	TariffCournot-methods
	TariffMonComRUM-methods
	Index

