
Package ‘transforEmotion’
July 22, 2025

Title Sentiment Analysis for Text, Image and Video using Transformer
Models

Version 0.1.6

Date 2025-05-15

Maintainer Aleksandar Tomašević <atomashevic@gmail.com>

Description Implements sentiment analysis using huggingface <https:
//huggingface.co> transformer zero-
shot classification model pipelines for text and image data. The default text pipeline is Cross-
Encoder's DistilRoBERTa <https://huggingface.co/cross-encoder/
nli-distilroberta-base> and default image/video pipeline is Open AI's CLIP <https:
//huggingface.co/openai/clip-vit-base-patch32>. All other zero-
shot classification model pipelines can be implemented using their model name from <https:
//huggingface.co/models?pipeline_tag=zero-shot-classification>.

License GPL (>= 3.0)

Encoding UTF-8

Imports dplyr, googledrive, LSAfun, Matrix, methods, pbapply,
progress, remotes, reticulate

Suggests knitr, markdown, rmarkdown, rstudioapi, testthat (>= 3.0.0)

VignetteBuilder knitr

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author Alexander Christensen [aut] (ORCID:
<https://orcid.org/0000-0002-9798-7037>),

Hudson Golino [aut] (ORCID: <https://orcid.org/0000-0002-1601-1447>),
Aleksandar Tomašević [aut, cre] (ORCID:

<https://orcid.org/0000-0003-4863-6051>)

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2025-05-15 10:10:01 UTC

1

https://huggingface.co
https://huggingface.co
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://orcid.org/0000-0002-9798-7037
https://orcid.org/0000-0002-1601-1447
https://orcid.org/0000-0003-4863-6051

2 transforEmotion-package

Contents
transforEmotion-package . 2
calculate_moving_average . 3
check_nvidia_gpu . 3
conda_check . 4
delete_transformer . 4
dlo_dynamics . 5
emotions . 6
emoxicon_scores . 6
emphasize . 8
generate_observables . 8
generate_q . 9
image_scores . 10
MASS_mvrnorm . 11
neo_ipip_extraversion . 12
nlp_scores . 12
plot_sim_emotions . 15
punctuate . 16
rag . 17
sentence_similarity . 19
setup_gpu_modules . 20
setup_miniconda . 21
simulate_video . 22
stop_words . 23
tinytrolls . 24
transformer_scores . 24
video_scores . 27

Index 30

transforEmotion-package

transforEmotion–package

Description

Implements sentiment and emotion analysis using huggingface transformer zero-shot classifica-
tion model pipelines on text and image data. The default text pipeline is Cross-Encoder’s Distil-
RoBERTa and default image/video pipeline is Open AI’s CLIP. All other zero-shot classification
model pipelines can be implemented using their model name from https://huggingface.co/models?pipeline_tag=zero-
shot-classification.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>
and Aleksandar Tomasevic <atomashevic@ff.uns.ac.rs>

https://huggingface.co
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification

calculate_moving_average 3

References

Yin, W., Hay, J., & Roth, D. (2019). Benchmarking zero-shot text classification: Datasets, evalua-
tion and entailment approach. arXiv preprint arXiv:1909.00161.

calculate_moving_average

Calculate the moving average for a time series

Description

This function calculates the moving average for a time series.

Usage

calculate_moving_average(data, window_size)

Arguments

data Matrix or Data frame. The time series data
window_size Numeric integer. The size of the moving average window.

Value

Matrix or Data frame containing the moving average values.

check_nvidia_gpu Install Necessary Python Modules

Description

Installs required Python modules for the {transforEmotion} package, with automatic GPU detection
and optional GPU-enabled module installation.

Usage

check_nvidia_gpu()

Details

This function performs the following steps:

• Checks for NVIDIA GPU availability
• If GPU is detected, prompts user to choose between CPU or GPU installation
• Installs core modules including transformers, torch, tensorflow, and other dependencies
• For GPU installations, sets up additional GPU-specific modules via setup_gpu_modules()

The function automatically manages dependencies and versions, ensuring compatibility between
CPU and GPU variants of packages like torch, tensorflow, and torchvision. It uses conda_install
for package management in the ’transforEmotion’ conda environment.

4 delete_transformer

Note

Ensure that miniconda is installed and properly configured before running this function. For GPU
support, NVIDIA drivers must be properly installed on your system.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

conda_check Check if the "transforEmotion" conda environment exists

Description

This function checks if the "transforEmotion" conda environment exists by running the command
"conda env list" and searching for the environment name in the output.

Usage

conda_check()

Value

A logical value indicating whether the "transforEmotion" conda environment exists.

delete_transformer Delete a Transformer Model

Description

Large language models can be quite large and, when stored locally, can take up a lot of space on your
computer. The direct paths to where the models are on your computer is not necessarily intuitive.

This function quickly identifies the models on your computer and informs you which ones can be
deleted from it to open up storage space

Usage

delete_transformer(model_name, delete = FALSE)

Arguments

model_name Character vector. If no model is provided, then a list of models that are locally
stored on the computer are printed

delete Boolean (length = 1). Should model skip delete question? Defaults to FALSE.
Set to TRUE for less interactive deletion

dlo_dynamics 5

Value

Returns list of models or confirmed deletion

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

if(interactive()){
delete_transformer()

}

dlo_dynamics Dynamics function of the DLO model

Description

This function calculates the dynamics of a system using the DLO (Damped Linear Oscillator) model
based on Equation 1 (Ollero et al., 2023). The DLO model is a second-order differential equation
that describes the behavior of a damped harmonic oscillator. The function takes in the current state
of the system, the derivative of the state, the damping coefficient, the time step, and the values of
the eta and zeta parameters. It returns the updated derivative of the state.

Usage

dlo_dynamics(x, dxdt, q, dt, eta, zeta)

Arguments

x Numeric. The current state of the system (value of the latent score).
dxdt Numeric. The derivative of the state (rate of change of the latent score).
q Numeric. The damping coefficient.
dt Numeric. The time step.
eta Numeric. The eta parameter of the DLO model.
zeta Numeric. The zeta parameter of the DLO model.

Value

A numeric vector containing the updated derivative of the state.

References

Ollero, M. J. F., Estrada, E., Hunter, M. D., & Cancer, P. F. (2023). Characterizing affect dynam-
ics with a damped linear oscillator model: Theoretical considerations and recommendations for
individual-level applications. Psychological Methods. doi:10.1037/met0000615

https://doi.org/10.1037/met0000615

6 emoxicon_scores

emotions Emotions Data

Description

A matrix containing words (n = 175,592) and the emotion category most frequently associated
with each word. This dataset is a modified version of the ’DepecheMood++’ lexicon developed by
Araque, Gatti, Staiano, and Guerini (2018). For proper scoring, text should not be stemmed prior
to using this lexicon. This version of the lexicon does not rely on part of speech tagging.

Usage

data(emotions)

Format

A data frame with 175,592 rows and 9 columns.

word An entry in the lexicon, in English

AFRAID, AMUSED, ANGRY, ANNOYED, DONT_CARE, HAPPY, INSPIRED, SAD The emo-
tional category. All emotions contain either a 0 or 1. If the category is most likely to be
associated with the word, it recieves a 1, otherwise, 0. Words are only associated with one
category.

References

Araque, O., Gatti, L., Staiano, J., and Guerini, M. (2018). DepecheMood++: A bilingual emotion
lexicon built through simple yet powerful techniques. ArXiv

Examples

data("emotions")

emoxicon_scores Emoxicon Scores

Description

A bag-of-words approach for computing emotions in text data using the lexicon compiled by
Araque, Gatti, Staiano, and Guerini (2018).

Usage

emoxicon_scores(text, lexicon, exclude)

emoxicon_scores 7

Arguments

text Matrix or data frame. A data frame containing texts to be scored (one text per
row)

lexicon The lexicon used to score the words. The default is the emotions dataset, a
modification of the lexicon developed by Araque, Gatti, Staiano, and Guerini
(2018). To use the raw lexicon from Araque et. al (2018) containing the orig-
inal probability weights, use the weights dataset. If another custom lexicon is
used, the first column of the lexicon should contain the terms and the subsequent
columns contain the scoring categories.

exclude A vector listing terms that should be excluded from the lexicon. Words spec-
ified in exclude will not influence document scoring. Users should consider
excluding ’red herring’ words that are more closely related to the topics of the
documents, rather than the documents’ emotional content. For example, the
words "clinton" and "trump" are present in the lexicon and are both associated
with the emotion ’AMUSED’. Excluding these words when analyzing political
opinions may produce more accurate results.

Author(s)

Tara Valladares <tls8vx at virginia.edu> and Hudson F. Golino <hfg9s at virginia.edu>

References

Araque, O., Gatti, L., Staiano, J., and Guerini, M. (2018). DepecheMood++: A bilingual emotion
lexicon built through simple yet powerful techniques. ArXiv

See Also

emotions, where we describe how we modified the original DepecheMood++ lexicon.

Examples

Obtain "emotions" data
data("emotions")

Obtain "tinytrolls" data
data("tinytrolls")

Not run:
Obtain emoxicon scores for first 10 tweets
emotions_tinytrolls <- emoxicon_scores(text = tinytrolls$content, lexicon = emotions)

End(Not run)

8 generate_observables

emphasize Generate and emphasize sudden jumps in emotion scores

Description

This function generates and emphasizes the effect of strong emotions expressions during the period
where the derivative of the latent variable is high. The observable value of the strongest emotion
from the positive or negative group will spike in the next k time steps. The probability of this
happening is p at each time step in which the derivative of the latent variable is greater than 0.2.
The jump is proportionate to the derivative of the latent variable and the sum of the observable
values of the other emotions.

Usage

emphasize(data, num_observables, num_steps, k = 10, p = 0.5)

Arguments

data Data frame. The data frame containing the latent and observable variables cre-
ated by the simulate_video function.

num_observables

Numeric integer. The number of observable variables per latent factor.
num_steps Numeric integer. The number of time steps used in the simulation.
k Numeric integer. The mumber of time steps to emphasize the effect of strong

emotions on future emotions (default is 10). Alternatively: the length of a strong
emotional episode.

p Numeric. The probability of the strongest emotion being emphasized in the next
k time steps (default is 0.5).

Value

A data frame containing the updated observable variables.

generate_observables Generate observable emotion scores data from latent variables

Description

Function to generate observable data from 2 latent variables (negative and positive affect). The
function takes in the latent variable scores, the number of time steps, the number of observable
variables per latent factor, and the measurement error variance. It returns a matrix of observable
data. The factor loadings are not the same for all observable variables. They have uniform random
noise added to them (between -0.15 and 0.15). The loadings are scaled so that the sum of the
loadings for each latent factor is 2, to introduce a ceiling effect and to differentiate the dynamics
of specific emotions. This is further empahsized by adding small noise to the measurement error
variance for each observed variable (between -0.01 and 0.01).

generate_q 9

Usage

generate_observables(X, num_steps, num_obs, error, loadings = 0.8)

Arguments

X Matrix or Data frame. The (num_steps X 2) matrix of latent variable scores.

num_steps Numeric integer. Number of time steps.

num_obs Numeric integer. The number of observable variables per latent factor.

error Numeric. Measurement error variance.

loadings Numeric (default = 0.8). The default initial loading of the latent variable on the
observable variable.

Value

A (num_steps X num_obs) Matrix or Data frame containing the observable variables.

generate_q Generate a matrix of Dynamic Error values for the DLO simulation

Description

This function generates a matrix of Dynamic Error values (q) for the DLO simulation.

Usage

generate_q(num_steps, sigma_q)

Arguments

num_steps Numeric integer. The number of time steps used in the simulation.

sigma_q Numeric. Standard deviation of the Dynamic Error/

Value

A (num_steps X 3) matrix of Dynamic Error values for neutral, negative and positive emotion latent
score.

10 image_scores

image_scores Calculate image scores using a Hugging Face CLIP model

Description

This function takes an image file and a vector of classes as input and calculates the scores for each
class using a specified Hugging Face CLIP model. Primary use of the function is to calculate FER
scores - Facial Expression Detection of emotions based on detected facial expression in images.
In case there are more than one face in the image, the function will return the scores of the face
selected using the face_selection parameter. If there is no face in the image, the function will return
NA for all classes. Function uses reticulate to call the Python functions in the image.py file. If
you run this package/function for the first time it will take some time for the package to setup a
functioning Python virtual environment in the background. This includes installing Python libraries
for facial recognition and emotion detection in text, images and video. Please be patient.

Usage

image_scores(
image,
classes,
face_selection = "largest",
model = "oai-base",
local_model_path = NULL

)

Arguments

image The path to the image file or URL of the image.

classes A character vector of classes to classify the image into.

face_selection The method to select the face in the image. Can be "largest" or "left" or "right".
Default is "largest" and will select the largest face in the image. "left" and
"right" will select the face on the far left or the far right side of the image.
Face_selection method is irrelevant if there is only one face in the image.

model A string specifying the CLIP model to use. Options are:

• "oai-base": "openai/clip-vit-base-patch32" (default)
• "oai-large": "openai/clip-vit-large-patch14"
• "eva-8B": "BAAI/EVA-CLIP-8B-448" (quantized version for reduced mem-

ory usage)
• "jina-v2": "jinaai/jina-clip-v2"
• Any valid HuggingFace model ID

Note: Using custom HuggingFace model IDs beyond the recommended models
is done at your own risk. Large models may cause memory issues or crashes,
especially on systems with limited resources. The package has been optimized
and tested with the recommended models listed above.

MASS_mvrnorm 11

local_model_path

Optional. Path to a local directory containing a pre-downloaded HuggingFace
model. If provided, the model will be loaded from this directory instead of
being downloaded from HuggingFace. This is useful for offline usage or for
using custom fine-tuned models.
On Linux/Mac, look in ~/.cache/huggingface/hub/ folder for downloaded mod-
els. Navigate to the snapshots folder for the relevant model and point to the di-
rectory which contains the config.json file. For example: "/home/username/.cache/huggingface/hub/models–
cross-encoder–nli-distilroberta-base/snapshots/b5b020e8117e1ddc6a0c7ed0fd22c0e679edf0fa/"
On Windows, the base path is C:\Users\USERNAME\.cache\huggingface\transformers\
Warning: Using very large models from local paths may cause memory issues
or crashes depending on your system’s resources.

Details

Data Privacy: All processing is done locally with the downloaded model, and your images are never
sent to any remote server or third-party.

Value

A data frame containing the scores for each class.

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com>

MASS_mvrnorm Multivariate Normal (Gaussian) Distribution

Description

This function generates a random sample from the multivariate normal distribution with mean mu
and covariance matrix Sigma.

Usage

MASS_mvrnorm(n = 1, mu, Sigma, tol = 1e-06, empirical = FALSE, EISPACK = FALSE)

Arguments

n Numeric integer. The number of observations to generate.

mu Numeric vector. The mean vector of the multivariate normal distribution.

Sigma Numeric matrix. The covariance matrix of the multivariate normal distribution.

tol Numeric. Tolerance for checking the positive definiteness of the covariance
matrix.

empirical Logical. Whether to return the empirical covariance matrix.

EISPACK Logical. Whether to use the EISPACK routine instead of the LINPACK routine.

12 nlp_scores

Value

A (n X p) matrix of random observations from the multivariate normal distribution. Updated:
26.10.2023.

neo_ipip_extraversion NEO-PI-R IPIP Extraversion Item Descriptions

Description

A list (length = 6) of the NEO-PI-R IPIP item descriptions (https://ipip.ori.org/newNEOFacetsKey.htm).
Each vector within the 6 list elements contains the item descriptions for the respective Extraversion
facets – friendliness, gregariousness, assertiveness, activity_level, excitement_seeking, and cheer-
fulness

Usage

data(neo_ipip_extraversion)

Format

A list (length = 6)

Examples

data("neo_ipip_extraversion")

nlp_scores Natural Language Processing Scores

Description

Natural Language Processing using word embeddings to compute semantic similarities (cosine; see
costring) of text and specified classes

Usage

nlp_scores(
text,
classes,
semantic_space = c("baroni", "cbow", "cbow_ukwac", "en100", "glove", "tasa"),
preprocess = TRUE,
remove_stop = TRUE,
keep_in_env = TRUE,
envir = 1

)

nlp_scores 13

Arguments

text Character vector or list. Text in a vector or list data format

classes Character vector. Classes to score the text

semantic_space Character vector. The semantic space used to compute the distances between
words (more than one allowed). Here’s a list of the semantic spaces:

"baroni" Combination of British National Corpus, ukWaC corpus, and a 2009
Wikipedia dump. Space created using continuous bag of words algorithm
using a context window size of 11 words (5 left and right) and 400 di-
mensions. Best word2vec model according to Baroni, Dinu, & Kruszewski
(2014)

"cbow" Combination of British National Corpus, ukWaC corpus, and a 2009
Wikipedia dump. Space created using continuous bag of words algorithm
with a context window size of 5 (2 left and right) and 300 dimensions

"cbow_ukwac" ukWaC corpus with the continuous bag of words algorithm with
a context window size of 5 (2 left and right) and 400 dimensions

"en100" Combination of British National Corpus, ukWaC corpus, and a 2009
Wikipedia dump. 100,000 most frequent words. Uses moving window
model with a size of 5 (2 to the left and right). Positive pointwise mutual
information and singular value decomposition was used to reduce the space
to 300 dimensions

"glove" Wikipedia 2014 dump and Gigaword 5 with 400,000 words (300 di-
mensions). Uses co-occurrence of words in text documents (uses cosine
similarity)

"tasa" Latent Semantic Analysis space from TASA corpus all (300 dimen-
sions).Uses co-occurrence of words in text documents (uses cosine similar-
ity)

preprocess Boolean. Should basic preprocessing be applied? Includes making lowercase,
keeping only alphanumeric characters, removing escape characters, removing
repeated characters, and removing white space. Defaults to TRUE

remove_stop Boolean. Should stop_words be removed? Defaults to TRUE

keep_in_env Boolean. Whether the classifier should be kept in your global environment.
Defaults to TRUE. By keeping the classifier in your environment, you can skip
re-loading the classifier every time you run this function. TRUE is recommended

envir Numeric. Environment for the classifier to be saved for repeated use. Defaults
to the global environment

Value

Returns semantic distances for the text classes

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

https://dumps.wikimedia.org/
https://catalog.ldc.upenn.edu/LDC2011T07

14 nlp_scores

References

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! a systematic comparison
of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd annual
meting of the association for computational linguistics (pp. 238-247).

Landauer, T.K., & Dumais, S.T. (1997). A solution to Plato’s problem: The Latent Semantic Anal-
ysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104,
211-240.

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language processing
(pp. 1532-1543).

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

Not run:
GloVe
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

)
)

Baroni
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "baroni"

)

CBOW
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "cbow"

)

CBOW + ukWaC
nlp_scores(

plot_sim_emotions 15

text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "cbow_ukwac"

)

en100
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "en100"

)

tasa
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "tasa"

)

End(Not run)

plot_sim_emotions Plot the latent or the observable emotion scores.

Description

Function to plot the latent or the observable emotion scores.

Usage

plot_sim_emotions(df, mode = "latent", title = " ")

Arguments

df Data frame. The data frame containing the latent and observable variables cre-
ated by the simulate_video function.

mode Character. The mode of the plot. Can be either ’latent’, ’positive’ or ’negative’.

title Character. The title of the plot. Default is an empty title, ’ ’.

16 punctuate

Value

A plot of the latent or the observable emotion scores.

punctuate Punctuation Removal for Text

Description

Keeps the punctuations you want and removes the punctuations you don’t

Usage

punctuate(
text,
allowPunctuations = c("-", "?", "'", "\"", ";", ",", ".", "!")

)

Arguments

text Character vector or list. Text in a vector or list data format
allowPunctuations

Character vector. Punctuations that should be allowed in the text. Defaults to
common punctuations in English text

Details

Coarsely removes punctuations from text. Keeps general punctuations that are used in most En-
glish language text. Apostrophes are much trickier. For example, not allowing "’" will remove
apostrophes from contractions like "can’t" becoming "cant"

Value

Returns text with only the allowed punctuations

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness

Keep only periods
punctuate(text, allowPunctuations = c("."))

rag 17

rag Retrieval-augmented Generation (RAG)

Description

Performs retrieval-augmented generation {llama-index}

Currently limited to the TinyLLAMA model

Usage

rag(
text = NULL,
path = NULL,
transformer = c("LLAMA-2", "Mistral-7B", "OpenChat-3.5", "Orca-2", "Phi-2",
"TinyLLAMA"),

prompt = "You are an expert at extracting themes across many texts",
query,
response_mode = c("accumulate", "compact", "no_text", "refine", "simple_summarize",

"tree_summarize"),
similarity_top_k = 5,
device = c("auto", "cpu", "cuda"),
keep_in_env = TRUE,
envir = 1,
progress = TRUE

)

Arguments

text Character vector or list. Text in a vector or list data format. path will override
input into text Defaults to NULL

path Character. Path to .pdfs stored locally on your computer. Defaults to NULL

transformer Character. Large language model to use for RAG. Available models include:

"LLAMA-2" The largest model available (13B parameters) but also the most
challenging to get up and running for Mac and Windows. Linux operat-
ing systems run smooth. The challenge comes with installing the {llama-
cpp-python} module. Currently, we do not provide support for Mac and
Windows users

"Mistral-7B" Mistral’s 7B parameter model that serves as a high quality but
more computationally expensive (more time consuming)

"Orca-2" More documentation soon...
"Phi-2" More documentation soon...
"TinyLLAMA" Default. A smaller, 1B parameter version of LLAMA-2 that

offers fast inference with reasonable quality

prompt Character (length = 1). Prompt to feed into TinyLLAMA. Defaults to "You are
an expert at extracting emotional themes across many texts"

18 rag

query Character. The query you’d like to know from the documents. Defaults to
prompt if not provided

response_mode Character (length = 1). Different responses generated from the model. See
documentation here
Defaults to "tree_summarize"

similarity_top_k

Numeric (length = 1). Retrieves most representative texts given the query.
Larger values will provide a more comprehensive response but at the cost of
computational efficiency; small values will provide a more focused response at
the cost of comprehensiveness. Defaults to 5.
Values will vary based on number of texts but some suggested values might be:

40-60 Comprehensive search across all texts
20-40 Exploratory with good trade-off between comprehensive and speed
5-15 Focused search that should give generally good results

These values depend on the number and quality of texts. Adjust as necessary

device Character. Whether to use CPU or GPU for inference. Defaults to "auto"
which will use GPU over CPU (if CUDA-capable GPU is setup). Set to "cpu"
to perform over CPU

keep_in_env Boolean (length = 1). Whether the classifier should be kept in your global en-
vironment. Defaults to TRUE. By keeping the classifier in your environment,
you can skip re-loading the classifier every time you run this function. TRUE is
recommended

envir Numeric (length = 1). Environment for the classifier to be saved for repeated
use. Defaults to the global environment

progress Boolean (length = 1). Whether progress should be displayed. Defaults to TRUE

Value

Returns response from TinyLLAMA

Data Privacy

All processing is done locally with the downloaded model, and your text is never sent to any remote
server or third-party.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

https://docs.llamaindex.ai/en/stable/module_guides/deploying/query_engine/response_modes.html

sentence_similarity 19

Not run:
rag(
text = text,
query = "What themes are prevalent across the text?",
response_mode = "tree_summarize",
similarity_top_k = 5

)
End(Not run)

sentence_similarity Sentiment Analysis Scores

Description

Uses sentiment analysis pipelines from huggingface to compute probabilities that the text corre-
sponds to the specified classes

Usage

sentence_similarity(
text,
comparison_text,
transformer = c("all_minilm_l6"),
device = c("auto", "cpu", "cuda"),
preprocess = FALSE,
keep_in_env = TRUE,
envir = 1

)

Arguments

text Character vector or list. Text in a vector or list data format
comparison_text

Character vector or list. Text in a vector or list data format
transformer Character. Specific sentence similarity transformer to be used. Defaults to

"all_minilm_l6" (see huggingface)
Also allows any sentence similarity models with a pipeline from huggingface to
be used by using the specified name (e.g., "typeform/distilbert-base-uncased-mnli";
see Examples)

device Character. Whether to use CPU or GPU for inference. Defaults to "auto"
which will use GPU over CPU (if CUDA-capable GPU is setup). Set to "cpu"
to perform over CPU

preprocess Boolean. Should basic preprocessing be applied? Includes making lowercase,
keeping only alphanumeric characters, removing escape characters, removing
repeated characters, and removing white space. Defaults to FALSE. Transformers
generally are OK without preprocessing and handle many of these functions
internally, so setting to TRUE will not change performance much

https://huggingface.co
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/models?pipeline_tag=sentence-similarity

20 setup_gpu_modules

keep_in_env Boolean. Whether the classifier should be kept in your global environment.
Defaults to TRUE. By keeping the classifier in your environment, you can skip
re-loading the classifier every time you run this function. TRUE is recommended

envir Numeric. Environment for the classifier to be saved for repeated use. Defaults
to the global environment

Value

Returns a n x m similarity matrix where n is length of text and m is the length of comparison_text

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

Not run:
Example with defaults
sentence_similarity(
text = text, comparison_text = text

)

Example with model from 'sentence-transformers'
sentence_similarity(
text = text, comparison_text = text,
transformer = "sentence-transformers/all-mpnet-base-v2"

)

End(Not run)

setup_gpu_modules Install GPU Python Modules

Description

Installs GPU-specific Python modules for the {transforEmotion} conda environment.

Usage

setup_gpu_modules()

setup_miniconda 21

Details

This function installs additional GPU-specific modules including:

• AutoAWQ for weight quantization

• Auto-GPTQ for GPU quantization

• Optimum for transformer optimization

• llama-cpp-python (Linux only) for CPU/GPU inference

The function is typically called by setup_modules() when GPU installation is selected, but can
also be run independently to update GPU-specific modules.

Note

This function requires NVIDIA GPU and drivers to be properly installed.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

setup_miniconda Install Miniconda and activate the transforEmotion environment

Description

Installs miniconda and activates the transforEmotion environment

Usage

setup_miniconda()

Details

Installs miniconda using install_miniconda and activates the transforEmotion environment us-
ing use_condaenv. If the transforEmotion environment does not exist, it will be created using
conda_create.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com> Aleksandar Tomasevic <atomashe-
vic@gmail.com>

22 simulate_video

simulate_video Simulate latent and observed emotion scores for a single "video"

Description

This function simulates emotions in a video using the DLO model implemented as continuous time
state space model. The function takes in several parameters, including the time step, number of
steps, number of observables, and various model parameters. It returns a data frame containing
the simulated emotions and their derivatives, as well as smoothed versions of the observables. The
initial state of the video is always the same. Neutral score is 0.5 and both positive and negative
emotion score is 0.25. To simulate more realistic time series, there is an option of including a
sudden jump in the emotion scores. This is done by emphasizing the effect of the dominant emotion
during the period where the derivative of the latent variable is high. The observable value of the
strongest emotion from the positive or negative group will spike in the next k time step (emph.dur).
The probability of this happening is p at each time step in which the derivative of the latent variable
is greater than 0.2. The jump is proportionate to the derivative of the latent variable and the sum of
the observable values of the other emotions.

Usage

simulate_video(
dt,
num_steps,
num_observables,
eta_n,
zeta_n,
eta,
zeta,
sigma_q,
sd_observable,
loadings,
window_size,
emph = FALSE,
emph.dur = 10,
emph.prob = 0.5

)

Arguments

dt Numeric real. The time step for the simulation (in minutes).

num_steps Numeric real. Total length of the video (in minutes).
num_observables

Numeric integer. The number of observables to generate per factor. Total num-
ber of observables generated is 2 x num_observables.

eta_n Numeric. The eta parameter for the neutral state.

zeta_n Numeric. The zeta parameter for the neutral state.

stop_words 23

eta Numeric. The eta parameter for the positive and negative emotions.

zeta Numeric. The zeta parameter for the positive and negative emotions.

sigma_q Numeric. The standard deviation of Dynamic Error of the q(t) function.

sd_observable Numeric. The standard deviation of the measurement error.

loadings Numeric (default = 0.8). The default initial loading of the latent variable on the
observable variable.

window_size Numeric integer. The window size for smoothing the observables.

emph Logical. Whether to emphasize the effect of dominant emotion (default is FALSE).

emph.dur Numeric integer. The duration of the emphasis (default is 10).

emph.prob Numeric. The probability of the dominant emotion being emphasized (default
is 0.5).

Value

A data frame (num_steps X (6 + num_observables)) containing the latent scores for neutral score,
positive emotions, negative emotions and their derivatives, as well as smoothed versions of the
observables.

Examples

simulate_video(dt = 0.01, num_steps = 50, num_observables = 4,
eta_n = 0.5, zeta_n = 0.5,
eta = 0.5, zeta = 0.5,
sigma_q = 0.1, sd_observable = 0.1,
loadings = 0.8, window_size = 10)

stop_words Stop Words from the tm Package

Description

174 English stop words in the tm package

Usage

data(stop_words)

Format

A vector (length = 174)

Examples

data("stop_words")

24 transformer_scores

tinytrolls Russian Trolls Data - Small Version

Description

A matrix containing a smaller subset of tweets from the trolls dataset, useful for test purposes.
There are approximately 20,000 tweets from 50 authors. This dataset includes only authored tweets
by each account; retweets, reposts, and repeated tweets have been removed. The original data
was provided by FiveThirtyEight and Clemson University researchers Darren Linvill and Patrick
Warren. For more information, visit https://github.com/fivethirtyeight/russian-troll-tweets

Usage

data(tinytrolls)

Format

A data frame with 22,143 rows and 6 columns.

content A tweet.

author The name of the handle that authored the tweet.

publish_date The date the tweet was published on.

followers How many followers the handle had at the time of posting.

updates How many interactions (including likes, tweets, retweets) the post garnered.

account_type Left or Right

Examples

data(tinytrolls)

transformer_scores Sentiment Analysis Scores

Description

Uses sentiment analysis pipelines from huggingface to compute probabilities that the text corre-
sponds to the specified classes

https://huggingface.co

transformer_scores 25

Usage

transformer_scores(
text,
classes,
multiple_classes = FALSE,
transformer = c("cross-encoder-roberta", "cross-encoder-distilroberta",
"facebook-bart"),

device = c("auto", "cpu", "cuda"),
preprocess = FALSE,
keep_in_env = TRUE,
envir = 1,
local_model_path = NULL

)

Arguments

text Character vector or list. Text in a vector or list data format

classes Character vector. Classes to score the text
multiple_classes

Boolean. Whether the text can belong to multiple true classes. Defaults to
FALSE. Set to TRUE to get scores with multiple classes

transformer Character. Specific zero-shot sentiment analysis transformer to be used. Default
options:

"cross-encoder-roberta" Uses Cross-Encoder’s Natural Language Interface
RoBERTa Base zero-shot classification model trained on the Stanford Nat-
ural Language Inference (SNLI) corpus and MultiNLI datasets

"cross-encoder-distilroberta" Uses Cross-Encoder’s Natural Language
Interface DistilRoBERTa Base zero-shot classification model trained on the
Stanford Natural Language Inference (SNLI) corpus and MultiNLI datasets.
The DistilRoBERTa is intended to be a smaller, more lightweight version of
"cross-encoder-roberta", that sacrifices some accuracy for much faster
speed (see https://www.sbert.net/docs/cross_encoder/pretrained_models.html#nli)

"facebook-bart" Uses Facebook’s BART Large zero-shot classification model
trained on the Multi-Genre Natural Language Inference (MultiNLI) dataset

Defaults to "cross-encoder-distilroberta"

Also allows any zero-shot classification models with a pipeline from hugging-
face to be used by using the specified name (e.g., "typeform/distilbert-base-uncased-mnli";
see Examples)
Note: Using custom HuggingFace model IDs beyond the recommended models
is done at your own risk. Large models may cause memory issues or crashes,
especially on systems with limited resources. The package has been optimized
and tested with the recommended models listed above.

device Character. Whether to use CPU or GPU for inference. Defaults to "auto"
which will use GPU over CPU (if CUDA-capable GPU is setup). Set to "cpu"
to perform over CPU

https://huggingface.co/cross-encoder/nli-roberta-base
https://huggingface.co/cross-encoder/nli-roberta-base
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://huggingface.co/datasets/multi_nli
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://nlp.stanford.edu/projects/snli/
https://huggingface.co/datasets/multi_nli
https://www.sbert.net/docs/cross_encoder/pretrained_models.html#nli
https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/datasets/multi_nli
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification

26 transformer_scores

preprocess Boolean. Should basic preprocessing be applied? Includes making lowercase,
keeping only alphanumeric characters, removing escape characters, removing
repeated characters, and removing white space. Defaults to FALSE. Transformers
generally are OK without preprocessing and handle many of these functions
internally, so setting to TRUE will not change performance much

keep_in_env Boolean. Whether the classifier should be kept in your global environment.
Defaults to TRUE. By keeping the classifier in your environment, you can skip
re-loading the classifier every time you run this function. TRUE is recommended

envir Numeric. Environment for the classifier to be saved for repeated use. Defaults
to the global environment

local_model_path

Optional. Path to a local directory containing a pre-downloaded HuggingFace
model. If provided, the model will be loaded from this directory instead of
being downloaded from HuggingFace. This is useful for offline usage or for
using custom fine-tuned models.
On Linux/Mac, look in ~/.cache/huggingface/hub/ folder for downloaded mod-
els. Navigate to the snapshots folder for the relevant model and point to the di-
rectory which contains the config.json file. For example: "/home/username/.cache/huggingface/hub/models–
cross-encoder–nli-distilroberta-base/snapshots/b5b020e8117e1ddc6a0c7ed0fd22c0e679edf0fa/"
On Windows, the base path is C:\Users\USERNAME\.cache\huggingface\transformers\
Warning: Using very large models from local paths may cause memory issues
or crashes depending on your system’s resources.

Value

Returns probabilities for the text classes

Data Privacy

All processing is done locally with the downloaded model, and your text is never sent to any remote
server or third-party.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

BART
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer,
L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. arXiv preprint arXiv:1910.13461.

RoBERTa
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Zero-shot classification
Yin, W., Hay, J., & Roth, D. (2019). Benchmarking zero-shot text classification: Datasets, evalua-
tion and entailment approach. arXiv preprint arXiv:1909.00161.

video_scores 27

MultiNLI dataset
Williams, A., Nangia, N., & Bowman, S. R. (2017). A broad-coverage challenge corpus for sen-
tence understanding through inference. arXiv preprint arXiv:1704.05426.

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

Not run:
Cross-Encoder DistilRoBERTa
transformer_scores(
text = text,
classes = c(
"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

)
)

Facebook BART Large
transformer_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
transformer = "facebook-bart"

)

Directly from huggingface: typeform/distilbert-base-uncased-mnli
transformer_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
transformer = "typeform/distilbert-base-uncased-mnli"

)

End(Not run)

video_scores Run FER on a YouTube video using a Hugging Face CLIP model

28 video_scores

Description

This function retrieves facial expression recognition (FER) scores from a specific number of frames
extracted from a YouTube video using a specified Hugging Face CLIP model. It utilizes Python
libraries for facial recognition and emotion detection in text, images, and video.

Usage

video_scores(
video,
classes,
nframes = 100,
face_selection = "largest",
start = 0,
end = -1,
uniform = FALSE,
ffreq = 15,
save_video = FALSE,
save_frames = FALSE,
save_dir = "temp/",
video_name = "temp",
model = "oai-base",
local_model_path = NULL

)

Arguments

video The URL of the YouTube video to analyze.

classes A character vector specifying the classes to analyze.

nframes The number of frames to analyze in the video. Default is 100.

face_selection The method for selecting faces in the video. Options are "largest", "left", or
"right". Default is "largest".

start The start time of the video range to analyze. Default is 0.

end The end time of the video range to analyze. Default is -1 and this means that
video won’t be cut. If end is a positive number greater than start, the video will
be cut from start to end.

uniform Logical indicating whether to uniformly sample frames from the video. Default
is FALSE.

ffreq The frame frequency for sampling frames from the video. Default is 15.

save_video Logical indicating whether to save the analyzed video. Default is FALSE.

save_frames Logical indicating whether to save the analyzed frames. Default is FALSE.

save_dir The directory to save the analyzed frames. Default is "temp/".

video_name The name of the analyzed video. Default is "temp".

model A string specifying the CLIP model to use. Options are:

• "oai-base": "openai/clip-vit-base-patch32" (default)

video_scores 29

• "oai-large": "openai/clip-vit-large-patch14"
• "eva-8B": "BAAI/EVA-CLIP-8B-448" (quantized version for reduced mem-

ory usage)
• "jina-v2": "jinaai/jina-clip-v2"
• Any valid HuggingFace model ID

Note: Using custom HuggingFace model IDs beyond the recommended models
is done at your own risk. Large models may cause memory issues or crashes,
especially on systems with limited resources. The package has been optimized
and tested with the recommended models listed above. Video processing is
particularly memory-intensive, so use caution with large custom models.

local_model_path

Optional. Path to a local directory containing a pre-downloaded HuggingFace
model. If provided, the model will be loaded from this directory instead of
being downloaded from HuggingFace. This is useful for offline usage or for
using custom fine-tuned models.
On Linux/Mac, look in ~/.cache/huggingface/hub/ folder for downloaded mod-
els. Navigate to the snapshots folder for the relevant model and point to the di-
rectory which contains the config.json file. For example: "/home/username/.cache/huggingface/hub/models–
cross-encoder–nli-distilroberta-base/snapshots/b5b020e8117e1ddc6a0c7ed0fd22c0e679edf0fa/"
On Windows, the base path is C:\Users\USERNAME\.cache\huggingface\transformers\
Warning: Using very large models from local paths may cause memory issues
or crashes depending on your system’s resources, especially when processing
videos with many frames.

Value

A result object containing the analyzed video scores.

Data Privacy

All processing is done locally with the downloaded model, and your video frames are never sent to
any remote server or third-party.

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com>

Index

∗ datasets
emotions, 6
neo_ipip_extraversion, 12
stop_words, 23
tinytrolls, 24

calculate_moving_average, 3
check_nvidia_gpu, 3
conda_check, 4
conda_create, 21
conda_install, 3
costring, 12

delete_transformer, 4
dlo_dynamics, 5

emotions, 6, 7
emoxicon_scores, 6
emphasize, 8

generate_observables, 8
generate_q, 9

image_scores, 10
install_miniconda, 21

MASS_mvrnorm, 11

neo_ipip_extraversion, 12
nlp_scores, 12

plot_sim_emotions, 15
punctuate, 16

rag, 17

sentence_similarity, 19
setup_gpu_modules, 20
setup_miniconda, 21
simulate_video, 22
stop_words, 13, 23

tinytrolls, 24
transforEmotion

(transforEmotion-package), 2
transforEmotion-package, 2
transformer_scores, 24

use_condaenv, 21

video_scores, 27

weights, 7

30

	transforEmotion-package
	calculate_moving_average
	check_nvidia_gpu
	conda_check
	delete_transformer
	dlo_dynamics
	emotions
	emoxicon_scores
	emphasize
	generate_observables
	generate_q
	image_scores
	MASS_mvrnorm
	neo_ipip_extraversion
	nlp_scores
	plot_sim_emotions
	punctuate
	rag
	sentence_similarity
	setup_gpu_modules
	setup_miniconda
	simulate_video
	stop_words
	tinytrolls
	transformer_scores
	video_scores
	Index

