Package 'triplot'

July 22, 2025

Title Explaining Correlated Features in Machine Learning Models

Version 1.3.0

Description Tools for exploring effects of correlated features in predictive models. The predict_triplot() function delivers instance-level explanations that calculate the importance of the groups of explanatory variables. The model_triplot() function delivers data-level explanations. The generic plot function visualises in a concise way importance of hierarchical groups of predictors. All of the the tools are model agnostic, therefore works for any predictive machine learning models. Find more details in Biecek (2018) <doi:10.48550/arXiv.1806.08915>.

Depends R (>= 3.6)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports ggplot2, DALEX (>= 1.3), glmnet, ggdendro, patchwork

Suggests testthat, knitr, randomForest, mlbench, ranger, gbm, covr

URL https://github.com/ModelOriented/triplot

BugReports https://github.com/ModelOriented/triplot/issues

Language en-US

NeedsCompilation no

Author Katarzyna Pekala [aut, cre], Przemyslaw Biecek [aut] (ORCID: <https://orcid.org/0000-0001-8423-1823>)

Maintainer Katarzyna Pekala <katarzyna.pekala@gmail.com>

Repository CRAN

Date/Publication 2020-07-13 17:00:03 UTC

Contents

aspect_importance	2
aspect_importance_single	4
calculate_triplot	6
cluster_variables	8
get_sample	9
group_variables	0
hierarchical_importance	0
list_variables	12
plot.aspect_importance	13
plot.cluster_variables	4
plot.triplot	15
print.aspect_importance	6
1	8

Index

aspect_importance

Calculates importance of variable groups (called aspects) for a selected observation

Description

Predict aspects function takes a sample from a given dataset and modifies it. Modification is made by replacing part of its aspects by values from the observation. Then function is calculating the difference between the prediction made on modified sample and the original sample. Finally, it measures the impact of aspects on the change of prediction by using the linear model or lasso.

Usage

```
aspect_importance(x, ...)
## S3 method for class 'explainer'
aspect_importance(
  х,
 new_observation,
 variable_groups,
 N = 1000,
  n_var = 0,
  sample_method = "default",
  f = 2,
  . . .
)
## Default S3 method:
aspect_importance(
 х,
 data,
```

aspect_importance

```
predict_function = predict,
label = class(x)[1],
new_observation,
variable_groups,
N = 100,
n_var = 0,
sample_method = "default",
f = 2,
...
)
lime(x, ...)
predict_aspects(x, ...)
```

Arguments

x	an explainer created with the DALEX::explain() function or a model to be explained	
	planeu.	
•••	other parameters	
new_observation		
	selected observation with columns that corresponds to variables used in the model	
variable_groups		
	list containing grouping of features into aspects	
Ν	number of observations to be sampled (with replacement) from data NOTE: Small N may cause unstable results.	
n_var	maximum number of non-zero coefficients after lasso fitting, if zero than linear regression is used	
sample_method	sampling method in get_sample	
f	frequency in get_sample	
data	dataset, it will be extracted from x if it's an explainer NOTE: It is best when target variable is not present in the data	
predict_functio	n	
	predict function, it will be extracted from x if it's an explainer	
label	name of the model. By default it's extracted from the 'class' attribute of the model.	

Value

An object of the class aspect_importance. Contains data frame that describes aspects' importance.

Examples

library("DALEX")

```
model_titanic_glm <- glm(survived == 1 ~</pre>
                          class+gender+age+sibsp+parch+fare+embarked,
                          data = titanic_imputed,
                          family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed$survived == 1,
                                verbose = FALSE)
aspects <- list(wealth = c("class", "fare"),</pre>
                family = c("sibsp", "parch"),
                 personal = c("gender", "age"),
                embarked = "embarked")
predict_aspects(explain_titanic_glm,
                  new_observation = titanic_imputed[1,],
                  variable_groups = aspects)
library("randomForest")
library("DALEX")
model_titanic_rf <-</pre>
 randomForest(factor(survived) ~ class + gender + age + sibsp +
                parch + fare + embarked,
              data = titanic_imputed)
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed$survived == 1,
                               verbose = FALSE)
predict_aspects(explain_titanic_rf,
                  new_observation = titanic_imputed[1,],
                  variable_groups = aspects)
```

Description

Calculates aspect_importance for single aspects (every aspect contains only one feature).

Usage

```
aspect_importance_single(x, ...)
```

```
## S3 method for class 'explainer'
aspect_importance_single(
 х,
 new_observation,
 N = 1000,
 n_var = 0,
 sample_method = "default",
  f = 2,
  . . .
)
## Default S3 method:
aspect_importance_single(
 х,
 data,
 predict_function = predict,
  label = class(x)[1],
 new_observation,
 N = 1000,
 n_var = 0,
 sample_method = "default",
 f = 2,
  . . .
)
```

X	an explainer created with the DALEX::explain() function or a model to be explained.
	other parameters
new_observation	
	selected observation with columns that corresponds to variables used in the model, should be without target variable
Ν	number of observations to be sampled (with replacement) from data NOTE: Small N may cause unstable results.
n_var	how many non-zero coefficients for lasso fitting, if zero than linear regression is used
sample_method	sampling method in get_sample
f	frequency in in get_sample
data	dataset, it will be extracted from x if it's an explainer NOTE: Target variable shouldn't be present in the data
predict_functio	n
	predict function, it will be extracted from x if it's an explainer
label	name of the model. By default it's extracted from the 'class' attribute of the model.

An object of the class 'aspect_importance'. Contains dataframe that describes aspects' importance.

Examples

calculate_triplot	Calculate	triplot	that	sums	ир	automatic	aspect/feature	importance
	grouping							

Description

This function shows:

- plot for the importance of single variables,
- tree that shows importance for every newly expanded group of variables,
- clustering tree.

Usage

```
calculate_triplot(x, ...)
```

```
## S3 method for class 'explainer'
calculate_triplot(
    x,
    type = c("predict", "model"),
    new_observation = NULL,
    N = 1000,
    loss_function = DALEX::loss_root_mean_square,
    B = 10,
    fi_type = c("raw", "ratio", "difference"),
    clust_method = "complete",
    cor_method = "spearman",
    ...
)
```

```
## Default S3 method:
calculate_triplot(
 х,
 data,
 y = NULL,
 predict_function = predict,
 label = class(x)[1],
 type = c("predict", "model"),
 new_observation = NULL,
 N = 1000,
 loss_function = DALEX::loss_root_mean_square,
 B = 10,
 fi_type = c("raw", "ratio", "difference"),
 clust_method = "complete",
 cor_method = "spearman",
  . . .
)
## S3 method for class 'triplot'
print(x, ...)
model_triplot(x, ...)
predict_triplot(x, ...)
```

Х	an explainer created with the DALEX::explain() function or a model to be explained.
	other parameters
type	if predict then aspect_importance is used, if model than feature_importance is calculated
new_observation	l
	selected observation with columns that corresponds to variables used in the model, should be without target variable
Ν	number of rows to be sampled from data NOTE: Small N may cause unstable results.
loss_function	a function that will be used to assess variable importance, if type = model
В	integer, number of permutation rounds to perform on each variable in feature importance calculation, if type = model
fi_type	character, type of transformation that should be applied for dropout loss, if type = model. "raw" results raw drop losses, "ratio" returns drop_loss/drop_loss_full_model.
clust_method	the agglomeration method to be used, see hclust methods
cor_method	the correlation method to be used see cor methods
data	dataset, it will be extracted from x if it's an explainer NOTE: Target variable shouldn't be present in the data

У	true labels for data, will be extracted from x if it's an explainer
predict_functio	n
	predict function, it will be extracted from x if it's an explainer
label	name of the model. By default it's extracted from the 'class' attribute of the model.

triplot object

Examples

cluster_variables Creates a cluster tree from numeric features

Description

Creates a cluster tree from numeric features and their correlations.

Usage

```
cluster_variables(x, ...)
```

```
## Default S3 method:
cluster_variables(x, clust_method = "complete", cor_method = "spearman", ...)
```

х	dataframe with only numeric columns
	other parameters
clust_method	the agglomeration method to be used see hclust methods
cor_method	the correlation method to be used see cor methods

get_sample

Value

an hclust object

Examples

```
library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
cluster_variables(dragons_data, clust_method = "complete")</pre>
```

get_sample

Function for getting binary matrix

Description

Function creates binary matrix, to be used in aspect_importance method. It starts with a zero matrix. Then it replaces some zeros with ones. If sample_method = "default" it randomly replaces one or two zeros per row. If sample_method = "binom" it replaces random number of zeros per row - average number of replaced zeros can be controlled by parameter sample_method = "f". Function doesn't allow the returned matrix to have rows with only zeros.

Usage

```
get_sample(n, p, sample_method = c("default", "binom"), f = 2)
```

Arguments

n	number of rows
р	number of columns
sample_method	sampling method
f	frequency for binomial sampling

Value

a binary matrix

Examples

get_sample(100,6,"binom",3)

group_variables

Description

Divides correlated features into groups, called aspects. Division is based on correlation cutoff level.

Usage

```
group_variables(x, h, clust_method = "complete", cor_method = "spearman")
```

Arguments

х	hclust object
h	correlation value for tree cutting
clust_method	the agglomeration method to be used see hclust methods
cor_method	the correlation method to be used see cor methods

Value

list with aspect

Examples

```
library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
group_variables(dragons_data, h = 0.5, clust_method = "complete")</pre>
```

hierarchical_importance

Calculates importance of hierarchically grouped aspects

Description

This function creates a tree that shows order of feature grouping and calculates importance of every newly created aspect.

hierarchical_importance

Usage

```
hierarchical_importance(
  х,
 data,
 y = NULL,
  predict_function = predict,
  type = "predict",
  new_observation = NULL,
 N = 1000,
  loss_function = DALEX::loss_root_mean_square,
 B = 10,
 fi_type = c("raw", "ratio", "difference"),
  clust_method = "complete",
  cor_method = "spearman",
  . . .
)
## S3 method for class 'hierarchical_importance'
plot(
  х,
  absolute_value = FALSE,
  show_labels = TRUE,
  add_last_group = TRUE,
  axis_lab_size = 10,
  text_size = 3,
  • • •
)
```

х	a model to be explained.		
data	dataset NOTE: Target variable shouldn't be present in the data		
У	true labels for data		
predict_functio	n		
	predict function		
type	if predict then aspect_importance is used, if model than feature_importance is calculated		
new_observation			
	selected observation with columns that corresponds to variables used in the model, should be without target variable		
Ν	number of rows to be sampled from data NOTE: Small N may cause unstable results.		
loss_function	a function that will be used to assess variable importance, if type = model		
В	integer, number of permutation rounds to perform on each variable in feature importance calculation, if type = model		

fi_type	character, type of transformation that should be applied for dropout loss, if type = model. "raw" results raw drop losses, "ratio" returns drop_loss/drop_loss_full_model.
clust_method	the agglomeration method to be used, see hclust methods
cor_method	the correlation method to be used see cor methods
	other parameters
absolute_value	if TRUE, aspects importance values will be drawn as absolute values
show_labels	if TRUE, plot will have annotated axis Y
add_last_group	if TRUE, plot will draw connecting line between last two groups
axis_lab_size	size of labels on axis Y, if applicable
text_size	size of labels annotating values of aspects importance

ggplot

Examples

```
library(DALEX)
apartments_num <- apartments[,unlist(lapply(apartments, is.numeric))]
apartments_num_lm_model <- lm(m2.price ~ ., data = apartments_num)
hi <- hierarchical_importance(x = apartments_num_lm_model,
    data = apartments_num[,-1],
    y = apartments_num[,1],
    type = "model")
plot(hi, add_last_group = TRUE, absolute_value = TRUE)</pre>
```

list_variables Cuts tree at custom height and returns a list

Description

This function creates aspect list after cutting a cluster tree of features at a given height.

Usage

list_variables(x, h)

Arguments

х	hclust object
h	correlation value for tree cutting

Value

list of aspects

plot.aspect_importance

Examples

```
library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
cv <- cluster_variables(dragons_data, clust_method = "complete")
list_variables(cv, h = 0.5)</pre>
```

plot.aspect_importance

Function for plotting aspect_importance results

Description

This function plots the results of aspect_importance.

Usage

```
## S3 method for class 'aspect_importance'
plot(
    x,
    ...,
    bar_width = 10,
    show_features = aspects_on_axis,
    aspects_on_axis = TRUE,
    add_importance = FALSE,
    digits_to_round = 2,
    text_size = 3
)
```

x	object of aspect_importance class	
	other parameters	
bar_width	bar width	
show_features	if TRUE, labels on axis Y show aspect names, otherwise they show features names	
aspects_on_axis		
	alias for show_features held for backwards compatibility	
add_importance	if TRUE, plot is annotated with values of aspects importance	
digits_to_round		
	integer indicating the number of decimal places used for rounding values of aspects importance shown on the plot	
text_size	size of labels annotating values of aspects importance, if applicable	

a ggplot2 object

Examples

library("DALEX")

```
model_titanic_glm <- glm(survived == 1 ~</pre>
                          class+gender+age+sibsp+parch+fare+embarked,
                          data = titanic_imputed,
                          family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed$survived == 1,
                                verbose = FALSE)
aspects <- list(wealth = c("class", "fare"),</pre>
                family = c("sibsp", "parch"),
                personal = c("gender", "age"),
                embarked = "embarked")
titanic_ai <- predict_aspects(explain_titanic_glm,</pre>
                   new_observation = titanic_imputed[1,],
                   variable_groups = aspects)
plot(titanic_ai)
```

plot.cluster_variables

Plots tree with correlation values

Description

Plots tree that illustrates the results of cluster_variables function.

Usage

```
## S3 method for class 'cluster_variables'
plot(x, p = NULL, show_labels = TRUE, axis_lab_size = 10, text_size = 3, ...)
```

Arguments

х	cluster_variables or hclust object
р	correlation value for cutoff level, if not NULL, cutoff line will be drawn
show_labels	if TRUE, plot will have annotated axis Y
axis_lab_size	size of labels on axis Y, if applicable
text_size	size of labels annotating values of correlations
	other parameters

14

plot.triplot

Value

plot

Examples

```
library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
cv <- cluster_variables(dragons_data, clust_method = "complete")
plot(cv, p = 0.7)</pre>
```

plot.triplot	Plots triplot
--------------	---------------

Description

Plots triplot that sum up automatic aspect/feature importance grouping

Usage

```
## S3 method for class 'triplot'
plot(
    x,
    absolute_value = FALSE,
    add_importance_labels = FALSE,
    show_model_label = FALSE,
    abbrev_labels = 0,
    add_last_group = TRUE,
    axis_lab_size = 10,
    text_size = 3,
    bar_width = 5,
    margin_mid = 0.3,
    ...
)
```

```
x triplot object
absolute_value if TRUE, aspect importance values will be drawn as absolute values
add_importance_labels
if TRUE, first plot is annotated with values of aspects importance on the bars
show_model_label
if TRUE, adds subtitle with model label
abbrev_labels if greater than 0, labels for axis Y in single aspect importance plot will be ab-
breviated according to this parameter
```

add_last_group	if TRUE and type = predict, plot will draw connecting line between last two groups at the level of 105 biggest importance value, for model this line is always drawn at the baseline value
axis_lab_size	size of labels on axis
text_size	size of labels annotating values of aspects importance and correlations
bar_width	bar width in the first plot
margin_mid	size of a right margin of a middle plot
	other parameters

plot

Examples

```
print.aspect_importance
```

```
Function for printing aspect_importance results
```

Description

This function prints the results of aspect_importance.

Usage

```
## S3 method for class 'aspect_importance'
print(x, show_features = FALSE, show_corr = FALSE, ...)
```

Х	object of aspect_importance class
show_features	show list of features for every aspect
show_corr	show if all features in aspect are pairwise positively correlated (for numeric features only)
	other parameters

Examples

```
library("DALEX")
model_titanic_glm <- glm(survived == 1 ~</pre>
                          class+gender+age+sibsp+parch+fare+embarked,
                          data = titanic_imputed,
                          family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed$survived == 1,
                                verbose = FALSE)
aspects <- list(wealth = c("class", "fare"),</pre>
                family = c("sibsp", "parch"),
                personal = c("gender", "age"),
                embarked = "embarked")
titanic_ai <- predict_aspects(explain_titanic_glm,</pre>
                  new_observation = titanic_imputed[1,],
                  variable_groups = aspects)
print(titanic_ai)
```

Index

aspect_importance, 2
aspect_importance_single, 4

calculate_triplot, 6
cluster_variables, 8
cor, 7, 8, 10, 12

get_sample, 3, 5, 9
group_variables, 10

hclust, 7, 8, 10, 12
hierarchical_importance, 10

lime (aspect_importance), 2
list_variables, 12

model_triplot (calculate_triplot), 6