
Package ‘trust’
July 22, 2025

Version 0.1-8

Date 2020-01-07

Title Trust Region Optimization

Author Charles J. Geyer <charlie@stat.umn.edu>.

Maintainer Charles J. Geyer <charlie@stat.umn.edu>

Depends R (>= 2.10.0)

Imports stats

ByteCompile TRUE

Description Does local optimization using two derivatives and trust regions.
Guaranteed to converge to local minimum of objective function.

License MIT + file LICENSE

URL http://www.stat.umn.edu/geyer/trust/

NeedsCompilation no

Repository CRAN

Date/Publication 2020-01-10 05:30:06 UTC

Contents
trust . 1

Index 6

trust Non-Linear Optimization

Description

This function carries out a minimization or maximization of a function using a trust region algo-
rithm. See the references for details.

1

http://www.stat.umn.edu/geyer/trust/

2 trust

Usage

trust(objfun, parinit, rinit, rmax, parscale,
iterlim = 100, fterm = sqrt(.Machine$double.eps),
mterm = sqrt(.Machine$double.eps),
minimize = TRUE, blather = FALSE, ...)

Arguments

objfun an R function that computes value, gradient, and Hessian of the function to be
minimized or maximized and returns them as a list with components value,
gradient, and hessian. Its first argument should be a vector of the length of
parinit followed by any other arguments specified by the ... argument.
If the domain of the objective function is not the whole Euclidean space of
dimension length(parinit), then objfun should return list(value = Inf)
when given a parameter value not in the domain of the objective function and
minimize == TRUE. Similarly, it should return list(value = - Inf) when given
a parameter value not in the domain and minimize == FALSE. Conversely, when
given a parameter value in the domain, it must return a list with components
with components value, gradient, and hessian. that are all finite and are the
value, gradient, and Hessian of the objective function at the given point.
Warning: The feature of allowing infinite values to indicate a restricted domain
does not allow for true constrained optimization. The algorithm will converge
to solutions on the boundary very slowly. (See details below.)

parinit starting parameter values for the optimization. Must be feasible (in the domain).

rinit starting trust region radius. The trust region radius (see details below) is adjusted
as the algorithm proceeds. A bad initial value wastes a few steps while the radius
is adjusted, but does not keep the algorithm from working properly.

rmax maximum allowed trust region radius. This may be set very large. If set small,
the algorithm traces a steepest descent path (steepest ascent, when minimize =
FALSE).

parscale an estimate of the size of each parameter at the minimum. The algorithm oper-
ates as if optimizing function(x, ...) objfun(x / parscale, ...). May be
missing in which case no rescaling is done. See also the details section below.

iterlim a positive integer specifying the maximum number of iterations to be performed
before the program is terminated.

fterm a positive scalar giving the tolerance at which the difference in objective function
values in a step is considered close enough to zero to terminate the algorithm.

mterm a positive scalar giving the tolerance at which the two-term Taylor-series ap-
proximation to the difference in objective function values in a step is considered
close enough to zero to terminate the algorithm.

minimize If TRUE minimize. If FALSE maximize.

blather If TRUE return extra info.

... additional arguments to objfun.

trust 3

Details

See Fletcher (1987, Section 5.1) or Nocedal and Wright (1999, Section 4.2) for detailed expositions.

At each iteration, the algorithm minimizes (or maximizes) the two-term Taylor series approximation

m(p) = f + gT p+
1

2
pTBp

where f , g, and B are the value, gradient, and Hessian returned by objfun when evaluated at the
current iterate, subject to the constraint

pTD2p ≤ r2

where D is the diagonal matrix with diagonal elements parscale and r is the current trust region
radius. Both the current iterate x and the trust region radius r are adjusted as the algorithm iterates,
as follows.

Let f∗ be the value returned by objfun at x+p and calculate the ratio of actual to predicted decrease
in the objective function

ρ =
f∗ − f

gT p+ 1
2p

TBp

If ρ ≥ 1/4, then we accept x + p as the next iterate. Moreover, if ρ > 3/4 and the step was
constrained (pTD2p = r2), then we increase the trust region radius to 2 times its current value or
rmax, whichever is least, If ρ < 1/4, then we do not accept x + p as the next iterate and remain at
x. Moreover, we decrease the trust region radius to 1 / 4 of its current value.

The trust region algorithm is known to be highly efficient and very safe. It is guaranteed to converge
to a point satisfying the first and second order necessary conditions (gradient is zero and Hessian
is positive semidefinite) for a local minimum (Fletcher, 1987, Theorem 5.1.1; Nocedal and Wright,
1999, Theorem 4.8) if the level set of the objective function below the starting position is bounded.
If the point to which the algorithm converges actually satisfies the second order sufficient condition
(Hessian is positive definite and Lipschitz in a neighborhood of this point), then the algorithm
converges at second order (Fletcher, 1987, Theorem 5.1.2).

The algorithm is not designed for use on functions of thousands of variables or for functions for
which derivatives are not available. Use nlm or optim for them. It is designed to do the best
possible job at local optimization when derivatives are available. It is much safer and much better
behaved than nlm or optim. It is especially useful when function evaluations are expensive, since it
makes the best possible use of each function, gradient, and Hessian evaluation.

The algorithm is not designed for constrained optimization. It does allow for a restricted domain, but
does not converge efficiently to solutions on the boundary of the domain. The theorems mentioned
above assure rapid convergence to a local optimum (at least a point satisfying the first and second
order necessary conditions) if the level set of the objective function below the starting position
is bounded and is contained in the interior of the domain of the objective function (that is, all
points on the boundary of the domain have higher objective function values than the starting point).
The algorithm automatically adjusts the trust region to keep accepted iterates in the interior of the
domain. This is one way it is safer than nlm or optim, which do not handle general restricted
domains.

Value

A list containing the following components:

4 trust

value the value returned by objfun at the final iterate.

gradient the gradient returned by objfun at the final iterate.

hessian the Hessian returned by objfun at the final iterate.

argument the final iterate.

converged if TRUE the final iterate was deemed optimal by the specified termination criteria.

iterations number of trust region subproblems done (including those whose solutions are
not accepted).

argpath (if blather == TRUE) the sequence of iterates, not including the final iterate.

argtry (if blather == TRUE) the sequence of solutions of the trust region subproblem.

steptype (if blather == TRUE) the sequence of cases that arise in solutions of the trust
region subproblem. "Newton" means the Newton step solves the subproblem
(lies within the trust region). Other values mean the subproblem solution is con-
strained. "easy-easy" means the eigenvectors corresponding to the minimal
eigenvalue of the rescaled Hessian are not all orthogonal to the gradient. The
other cases are rarely seen. "hard-hard" means the Lagrange multiplier for the
trust region constraint is minus the minimal eigenvalue of the rescaled Hessian;
"hard-easy" means it isn’t.

accept (if blather == TRUE) indicates which of the sequence of solutions of the trust
region subproblem were accepted as the next iterate. (When not accepted the
trust region radius is reduced, and the previous iterate is kept.)

r (if blather == TRUE) the sequence of trust region radii.

rho (if blather == TRUE) the sequence of ratios of actual over predicted decrease in
the objective function in the trust region subproblem, where predicted means the
predicted decrease in the two-term Taylor series model used in the subproblem.

valpath (if blather == TRUE) the sequence of objective function values at the iterates.

valtry (if blather == TRUE) the sequence of objective function values at the solutions
of the trust region subproblem.

preddiff (if blather == TRUE) the sequence of predicted differences using the two-term
Taylor-series model between the function values at the current iterate and at the
solution of the trust region subproblem.

stepnorm (if blather == TRUE) the sequence of norms of steps, that is distance between
current iterate and proposed new iterate found in the trust region subproblem.

References

Fletcher, R. (1987) Practical Methods of Optimization, second edition. John Wiley, Chichester.

Nocedal, J. and Wright, S. J. (1999) Numerical Optimization. Springer-Verlag, New York.

See Also

nlm and optim for competitors that do not require analytical derivatives. deriv to calculate analyt-
ical derivatives.

trust 5

Examples

Rosenbrock's function
objfun <- function(x) {

stopifnot(is.numeric(x))
stopifnot(length(x) == 2)
f <- expression(100 * (x2 - x1^2)^2 + (1 - x1)^2)
g1 <- D(f, "x1")
g2 <- D(f, "x2")
h11 <- D(g1, "x1")
h12 <- D(g1, "x2")
h22 <- D(g2, "x2")
x1 <- x[1]
x2 <- x[2]
f <- eval(f)
g <- c(eval(g1), eval(g2))
B <- rbind(c(eval(h11), eval(h12)), c(eval(h12), eval(h22)))
list(value = f, gradient = g, hessian = B)

}

trust(objfun, c(3, 1), 1, 5)

function with restricted domain
d <- 5
mu <- 10 * seq(1, d)
objfun <- function(x) {

normxsq <- sum(x^2)
omnormxsq <- 1 - normxsq
if (normxsq >= 1) return(list(value = Inf))
f <- sum(x * mu) - log(omnormxsq)
g <- mu + 2 * x / omnormxsq
B <- 4 * outer(x, x) / omnormxsq^2 + 2 * diag(d) / omnormxsq
list(value = f, gradient = g, hessian = B)

}

whoop <- trust(objfun, rep(0, d), 1, 100, blather = TRUE)
whoop$converged
whoop$iterations
data.frame(type = whoop$steptype, rho = whoop$rho, change = whoop$preddiff,

accept = whoop$accept, r = whoop$r)

solution
whoop$argument
distance of solution from boundary
1 - sqrt(sum(whoop$argument^2))

fail when initial point not feasible
Not run: trust(objfun, rep(0.5, d), 1, 100, blather = TRUE)

Index

∗ nonlinear
trust, 1

∗ optimization
trust, 1

∗ optimize
trust, 1

deriv, 4

nlm, 3, 4

optim, 3, 4

trust, 1

6

	trust
	Index

