## ----setup, include=FALSE----------------------------------------------------- library(knitr) opts_chunk$set(collapse = TRUE) ## ----------------------------------------------------------------------------- # Load the package library(ungroup) ## ----------------------------------------------------------------------------- # Input data # x: Age groups x <- c(0, 1, seq(5, 85, by = 5)) x # y: Death counts in the age group y <- c(294, 66, 32, 44, 170, 284, 287, 293, 361, 600, 998, 1572, 2529, 4637, 6161, 7369, 10481, 15293, 39016) # offset: Population exposed to risk in the age group offset <- c(114, 440, 509, 492, 628, 618, 576, 580, 634, 657, 631, 584, 573, 619, 530, 384, 303, 245, 249) * 1000 # nlast: the size of the last age interval (usually open) nlast <- 26 # This results in the last group being [85, 110). ## ---- message=FALSE, results='hide'------------------------------------------- M1 <- pclm(x, y, nlast) ## ----------------------------------------------------------------------------- ls(M1) ## ----------------------------------------------------------------------------- summary(M1) ## ---- fig.align='center', fig.asp=0.8, out.width = '60%'---------------------- plot(M1) # Print first 6 fitted values fitted(M1)[1:6] ## ---- message=FALSE, results='hide', fig.align='center', fig.asp=0.8, out.width = '60%'---- M2 <- pclm(x, y, nlast, out.step = 0.5) plot(M2) ## ----------------------------------------------------------------------------- # Print first 6 fitted values fitted(M2)[1:6] # Number of fitted values length(fitted(M2)) ## ---- eval=FALSE-------------------------------------------------------------- # # Optimise smoothing parameter: lambda, kr and deg # M3 <- pclm(x, y, nlast, # control = list(lambda = NA, opt.method = "AIC")) ## ---- message=FALSE, results='hide'------------------------------------------- M5 <- pclm(x, y, nlast, offset) ## ---- fig.align='center', fig.asp=0.8, out.width = '60%'---------------------- plot(M5, type = "s")