Package 'uwedragon'

July 22, 2025

Type Package
Title Data Research, Access, Governance Network : Statistical Disclosure Control
Version 0.1.0
Author Ben Derrick
Maintainer Ben Derrick <ben.derrick@uwe.ac.uk></ben.derrick@uwe.ac.uk>
Description A tool for checking how much information is disclosed when reporting summary statistics.
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2.9000
Imports gtools
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-02 19:40:01 UTC

Contents

disguise SDCdrago solutions	n.							•							•								1 3 3
																							6

Index

disguise

Disguise the sample mean and sample deviation

Description

Disguises the sample mean and standard deviation via a choice of methods.

Usage

```
disguise(usersample, method = 2)
```

Arguments

usersample	A vector of all individual sample values.
method	Approach for disguising mean and standard deviation. (default = 1)

Details

Method 1

Randomly split the sample into two (approx. equal size) samples A, and B. For sample A calculate and report mean. For sample B calculate and standard deviation.

Method 2 (default)

Take a sample of size N with replacement; calculate and report mean. Repeat to calculate and report standard deviation.

Method 3

Generate a random number (RN1) between N/2 and N. Sample with replacement a sample size of RN1; calculate and report mean. Generate a random number (RN2) between N/2 and N. Sample with replacement a sample size of RN2; calculate and report standard deviation.

Method 4

As Method 3, but sampling without replacement.

Value

Outputs disguised mean and disguised standard deviation.

References

Derrick, B., Green, L., Kember, K., Ritchie, F. & White P, 2022, Safety in numbers: Minimum thresholding, Maximum bounds, and Little White Lies. Scottish Economic Society Annual Conference, University of Glasgow, 25th-27th April 2022

Examples

usersample<-c(1,1,2,3,4,4,5)

```
disguise(usersample,method=1)
disguise(usersample,method=2)
disguise(usersample,method=3)
disguise(usersample,method=4)
```

SDCdragon Statistical Data Control. Data Research, Access, Governance Network.

Description

A tool for checking how much information is disclosed when reporting summary statistics

solutions	Find individual sample values from the sample mean and standard
	deviation

Description

For integer based scales, finds possible solutions for each value within a sample. This is revealed upon providing sample size, minimum possible value, maximum possible value, mean, standard deviation (and optionally median).

Usage

```
solutions(
    n,
    min_poss,
    max_poss,
    usermean,
    usersd,
    meandp = NULL,
    sddp = NULL,
    usermed = NULL
```

)

Arguments

n	Sample size.
min_poss	Minimum possible value. If sample minimum is disclosed, this can be inserted here, otherwise use the theoretical minimum. If there is no theoretical maximum 'Inf' can be inserted.
max_poss	Maximum possible value. If sample maximum is disclosed, this can be inserted here, otherwise use the theoretical maximum. If there is no theoretical minimum '-Inf' can be inserted.
usermean	Sample mean.
usersd	Sample standard deviation, i.e. n-1 denominator.
meandp	(optional, default=NULL) Number of decimal places mean is reported to, only required if including trailing zeroes.

solutions

sddp	(optional, default=NULL) Number of decimal places standard deviation is re-
	ported to, only required if including trailing zeroes.
usermed	(optional, default=NULL) Sample median.

Details

For use with data measured on a scale with 1 unit increments. Samuelson's inequality [1] used to further restrict the minimum and maximum. All possible combinations within this inequality are calculated [2] for factorial(n+k-1)/(factorial(k)*factorial(n-1))<65,000,000.

No restriction on number of decimal places input. Reporting less than two decimal places will reduce the chances of unique solution to all sample values being uncovered [3]

Additional options to specify number of digits following the decimal place that are reported, required for trailing zeroes.

Value

Outputs possible combinations of original integer sample values.

References

[1] Samuelson, P.A, 1968, How deviant can you be? Journal of the American Statistical Association, Vol 63, 1522-1525.

[2] Allenby, R.B. and Slomson, A., 2010. How to count: An introduction to combinatorics. Chapman and Hall/CRC.

[3] Derrick, B., Green, L., Kember, K., Ritchie, F. & White P, 2022, Safety in numbers: Minimum thresholding, Maximum bounds, and Little White Lies. Scottish Economic Society Annual Conference, University of Glasgow, 25th-27th April 2022

Examples

```
# EXAMPLE 1
# Seven observations are taken from a five-point Likert scale (coded 1 to 5).
# The reported mean is 2.857 and the reported standard deviation is 1.574.
solutions(7,1,5,2.857,1.574)
# For this mean and standard deviation there are two possible distributions:
# 1 1 2 3 4 4 5
# 1 2 2 2 3 5 5
# Optionally adding median value of 3.
solutions(7,1,5,2.857,1.574, usermed=3)
# uniquely reveals the raw sample values:
# 1 1 2 3 4 4 5
```

EXAMPLE 2

solutions

The mean is '4.00'.
The standard deviation is '2.00'.
Narrower set of solutions found specifying 2dp including trailing zeroes.
solutions(3,-Inf,Inf,4.00,2.00,2,2)
uniquely reveals the raw sample values:
2 4 6

Index

disguise, 1

SDCdragon, 3 solutions, 3