
Package ‘whirl’
July 22, 2025

Title Log Execution of Scripts

Version 0.3.0

Description Logging of scripts suitable for clinical trials using
'Quarto' to create nice human readable logs. 'whirl' enables
execution of scripts in batch, while simultaneously creating logs for
the execution of each script, and providing an overview summary log of
the entire batch execution.

License Apache License (>= 2)

URL https://novonordisk-opensource.github.io/whirl/,

https://github.com/novonordisk-opensource/whirl

BugReports https://github.com/NovoNordisk-OpenSource/whirl/issues

Depends R (>= 4.1)

Imports callr, cli, dplyr, jsonlite, kableExtra, knitr, purrr, quarto,
R6 (>= 2.4.0), reticulate, rlang, sessioninfo, stringr, tibble,
tidyr, unglue, utils, withr, yaml, zephyr (>= 0.1.1)

Suggests ggplot2, renv, rstudioapi, testthat (>= 3.0.0), usethis

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

SystemRequirements Quarto command line tool
(<https://github.com/quarto-dev/quarto-cli>).

NeedsCompilation no

Author Aksel Thomsen [aut, cre],
Lovemore Gakava [aut],
Cervan Girard [aut],
Kristian Troejelsgaard [aut],
Steffen Falgreen Larsen [aut],
Vladimir Obucina [aut],
Michael Svingel [aut],
Skander Mulder [aut],
Novo Nordisk A/S [cph]

1

https://novonordisk-opensource.github.io/whirl/
https://github.com/novonordisk-opensource/whirl
https://github.com/NovoNordisk-OpenSource/whirl/issues

2 custom_logging

Maintainer Aksel Thomsen <oath@novonordisk.com>

Repository CRAN

Date/Publication 2025-07-08 12:10:02 UTC

Contents
custom_logging . 2
run . 3
use_biocompute . 5
use_whirl . 5
whirl-options . 6
write_biocompute . 7

Index 10

custom_logging Helper function to log custom messages

Description

Useful for e.g. read and write operations on databases etc. that are not automatically captured.

Usage

log_read(file, log = Sys.getenv("WHIRL_LOG_MSG"))

log_write(file, log = Sys.getenv("WHIRL_LOG_MSG"))

log_delete(file, log = Sys.getenv("WHIRL_LOG_MSG"))

Arguments

file character() description of the file that was read, written or deleted.
log character() path to the log file.

Details

The default environment variable WHIRL_LOG_MSG is set in the session used to log scripts, and input
is automatically captured in the resulting log.

If run outside of whirl, meaning when the above environment variable is unset, the operations are
streamed to stdout(). By default the console.

Examples

Stream logs to console since `WHIRL_LOG_MSG` is not set:
log_read("my/folder/input.txt")
log_write("my/folder/output.txt")
log_delete("my/folder/old_output.txt")

run 3

run Execute single or multiple R, R Markdown, and Quarto scripts

Description

Executes and logs the execution of the scripts. Logs for each script are stored in the same folder as
the script.

The way the execution is logged is configurable through several options for e.g. the verbosity of the
logs. See whirl-options on how to configure these.

Usage

run(
input = "_whirl.yml",
steps = NULL,
summary_file = "summary.html",
n_workers = zephyr::get_option("n_workers", "whirl"),
check_renv = zephyr::get_option("check_renv", "whirl"),
verbosity_level = zephyr::get_verbosity_level("whirl"),
track_files = zephyr::get_option("track_files", "whirl"),
out_formats = zephyr::get_option("out_formats", "whirl"),
log_dir = zephyr::get_option("log_dir", "whirl")

)

Arguments

input A character vector of file path(s) to R, R Markdown, Quarto scripts, or files in a
folder using regular expression, or to to a whirl config file. The input can also
be structured in a list where each element will be executed sequentially, while
scripts within each element can be executed in parallel.

steps An optional argument that can be used if only certain steps within a config files
(or list) is to be executed. Should be equivalent to the names of the steps found
in the config file. If kept as NULL (default) then all steps listed in the config file
will be executed.

summary_file A character string specifying the file path where the summary log will be stored.

n_workers Number of simultaneous workers used in the run function. A maximum of 128
workers is allowed.. Default: 1.

check_renv Should the projects renv status be checked?. Default: FALSE.
verbosity_level

Verbosity level for functions in whirl. See zephyr::verbosity_level for details..
Default: NA_character_.

track_files Should files read and written be tracked? Currently only supported on Linux..
Default: FALSE.

out_formats Which log format(s) to produce. Possibilities are html, json, and markdown
formats: gfm, commonmark, and markua.. Default: "html".

4 run

log_dir The output directory of the log files. Default is the folder of the executed script.
log_dir can be a path as a character or it can be a function that takes the script
path as input and returns the log directory. For more information see the exam-
ples of run() or vignette('whirl').. Default: function (x) dirname(x).

Value

A tibble containing the execution results for all the scripts.

Examples

Copy example scripts:
file.copy(

from = system.file("examples", c("success.R", "warning.R", "error.R"),
package = "whirl"

),
to = tempdir()

)

Run a single script and create log:
run(file.path(tempdir(), "success.R"))

Run several scripts in parallel on up to 2 workers:
run(

input = file.path(tempdir(), c("success.R", "warning.R", "error.R")),
n_workers = 2

)

Run several scripts in two steps by providing them as list elements:
run(

list(
file.path(tempdir(), c("success.R", "warning.R")),
file.path(tempdir(), "error.R")

)
)

Re-directing the logs to a sub-folder by utilizing the log_dir argument in
run(). This will require that the sub-folder exists.

Specifying the path using a manually defined character
run(file.path(tempdir(), "success.R"), log_dir = tempdir())

Specifying the path with a generic function that can handle the scripts
individually.
run(

input = file.path(tempdir(), "success.R"),
log_dir = function(x) {paste0(dirname(x), "/logs")}

)

use_biocompute 5

use_biocompute Use whirl to create biocompute logs

Description

Utility function to setup execution with whirl in your project suitable for creating biocompute logs
with write_biocompute():

1. Creates configuration file (default _whirl.yml) with default values for the biocompute meta-
data.

2. Updates .gitignore to not include log files

See vignette("whirl") for how to specify paths inside the configuration file.

Usage

use_biocompute(
config_file = "_whirl.yml",
parametrics_file = "_parametrics.yml"

)

Arguments

config_file Path to the whirl config file, relative to the project
parametrics_file

Path to the biocompute parametrics file, relative to the project

use_whirl Use whirl

Description

Utility function to setup execution with whirl in your project:

1. Creates configuration file (default _whirl.yml)

2. Updates .gitignore to not include log files

See vignette("whirl") for how to specify paths inside the configuration file.

Usage

use_whirl(config_file = "_whirl.yml")

Arguments

config_file Path to the whirl config file, relative to the project

6 whirl-options

whirl-options Options for whirl

Description

verbosity_level:
Verbosity level for functions in whirl. See zephyr::verbosity_level for details.

• Default: NA_character_
• Option: whirl.verbosity_level
• Environment: R_WHIRL_VERBOSITY_LEVEL

out_formats:
Which log format(s) to produce. Possibilities are html, json, and markdown formats: gfm,
commonmark, and markua.

• Default: "html"
• Option: whirl.out_formats
• Environment: R_WHIRL_OUT_FORMATS

track_files:
Should files read and written be tracked? Currently only supported on Linux.

• Default: FALSE
• Option: whirl.track_files
• Environment: R_WHIRL_TRACK_FILES

check_renv:
Should the projects renv status be checked?

• Default: FALSE
• Option: whirl.check_renv
• Environment: R_WHIRL_CHECK_RENV

track_files_discards:
List of file naming patterns not be tracked when track_files = TRUE

• Default: c("^/lib", "^/etc", "^/lib64", "^/usr", "^/var", "^/opt", "^/sys", "^/proc",
"^/tmp", "^/null", "^/urandom", "^/.cache")

• Option: whirl.track_files_discards
• Environment: R_WHIRL_TRACK_FILES_DISCARDS

track_files_keep:
List of file naming patterns always to be tracked when track_files = TRUE

• Default: NULL
• Option: whirl.track_files_keep
• Environment: R_WHIRL_TRACK_FILES_KEEP

write_biocompute 7

approved_packages:
List of approved packages and their version in the format: {name}@{version}

• Default: NULL
• Option: whirl.approved_packages
• Environment: R_WHIRL_APPROVED_PACKAGES

n_workers:
Number of simultaneous workers used in the run function. A maximum of 128 workers is allowed.

• Default: 1
• Option: whirl.n_workers
• Environment: R_WHIRL_N_WORKERS

log_dir:
The output directory of the log files. Default is the folder of the executed script. log_dir can be
a path as a character or it can be a function that takes the script path as input and returns the log
directory. For more information see the examples of run() or vignette('whirl').

• Default: function (x) dirname(x)
• Option: whirl.log_dir
• Environment: R_WHIRL_LOG_DIR

execute_dir:
The working directory of the process executing each script. Default us to execute R files from the
working directory when calling run() and all other functions from the directory of the script. To
change provide a character path (used for all scripts) or a function that takes the script as input
and returns the execution directory.

• Default: NULL
• Option: whirl.execute_dir
• Environment: R_WHIRL_EXECUTE_DIR

wait_timeout:
Timeout for waiting for the R process from callr::r_session to start, in milliseconds.

• Default: 9000
• Option: whirl.wait_timeout
• Environment: R_WHIRL_WAIT_TIMEOUT

write_biocompute Create biocompute logs

Description

BioCompute is a standard for logs of programs for for Bioinformatics Computational Analyses.

The BioCompute object is a json log that can be created based on the output of run().

8 write_biocompute

Usage

write_biocompute(queue = run("_whirl.yml"), path = "bco.json", ...)

Arguments

queue Result from run().

path A character string specifying the file path to write BioCompute log to.

... Additional arguments parsed to jsonlite::write_json(). Note always uses
auto_unbox = TRUE.

Details

The object consists of the following domains:

• Specifications:

– spec_version: Version of BioCompute used (‘https://w3id.org/biocompute/1.3.0/“)
– object_id: Unique project id
– type: Your project type
– etag: Your etag id from the BioCompute Object Portal

• Provenance Domain

– This is used to track the history of the BCO. Review and signatures go here.

• Usability Domain

– This is used to improve searchability by allowing a free-text description of the BCO.
– Provide external document.

• Extension Domain

– This is used to add any additional structured information that is not directly covered by
the BCO.

• Description Domain

– Contains a structured field for the description of external references, the pipeline steps,
and the relationship of I/O objects.

– Provide external document.
– Note: Use of keywords and External_Reference entries are not yet implemented. To

use fill out the entries manually after creating the BioCompute object.‘

• Execution Domain

– Contains fields for the execution of the BCO.
– Note: Use of external_data_endpoints not implemented. Fill out manually afterwards

if needed.

• Parametric Domain

– Represents the list of parameters customizing the computational flow which can affect
the output of the calculations.

• IO Domain

– Represents the list of global input and output files created by the computational workflow.

https://wiki.biocomputeobject.org/index.php?title=Provenance-domain
https://wiki.biocomputeobject.org/index.php?title=Usability-domain
https://wiki.biocomputeobject.org/index.php?title=Extension-domain
https://wiki.biocomputeobject.org/index.php?title=Description-domain
https://wiki.biocomputeobject.org/index.php?title=Execution-domain
https://wiki.biocomputeobject.org/index.php?title=Parametric-domain
https://wiki.biocomputeobject.org/index.php?title=Iodomain

write_biocompute 9

• Error Domain

– Defines the empirical and algorithmic limits and error sources of the BCO.
– Note: Use of this domain is not clearly defined. It is therefore always left empty in the

current implementation. If you want to add content do so manually after creating the
BCO.

See the BioCompute Object Portal and the BioCompute Objects Wiki for more information.

Value

(invisible) list of the biocompute domains and their content.

https://wiki.biocomputeobject.org/index.php?title=Error-domain
https://www.biocomputeobject.org
https://wiki.biocomputeobject.org/Main_Page

Index

character(), 2
custom_logging, 2

log_delete (custom_logging), 2
log_read (custom_logging), 2
log_write (custom_logging), 2

run, 3

use_biocompute, 5
use_whirl, 5

whirl-options, 3, 6
write_biocompute, 7

zephyr::verbosity_level, 3, 6

10

	custom_logging
	run
	use_biocompute
	use_whirl
	whirl-options
	write_biocompute
	Index

