## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----a_p_single_file---------------------------------------------------------- library(workloopR) ## import the workloop.ddf file included in workloopR wl_dat <-read_ddf(system.file("extdata", "workloop.ddf", package = 'workloopR'), phase_from_peak = TRUE) ## select cycles 3 through 5 using a peak-to-peak definition wl_selected <- select_cycles(wl_dat, cycle_def = "p2p", keep_cycles = 3:5) ## run the analysis function and get the full object wl_analyzed <- analyze_workloop(wl_selected, GR = 2) ## for brevity, the print() method for this object produces a simple output wl_analyzed ## but see the structure for the full output, e.g. #str(wl_analyzed) ## or run the analysis but get the simplified version wl_analyzed_simple <- analyze_workloop(wl_selected, simplify = TRUE, GR = 2) wl_analyzed_simple ## ----a_p_batch_files---------------------------------------------------------- ## batch read and analyze files included with workloopR analyzed_wls <- read_analyze_wl_dir(system.file("extdata/wl_duration_trials", package = 'workloopR'), cycle_def = "p2p", keep_cycles = 2:4, phase_from_peak = TRUE ) ## now summarize summarized_wls <- summarize_wl_trials(analyzed_wls) summarized_wls ## ----data_import-------------------------------------------------------------- library(workloopR) ## import the workloop.ddf file included in workloopR wl_dat <-read_ddf(system.file("extdata", "workloop.ddf", package = 'workloopR'), phase_from_peak = TRUE) ## muscle_stim objects have their own print() and summary() S3 methods ## for example: summary(wl_dat) # some handy info about the imported file ## see the first few rows of data stored within head(wl_dat) ## ----attributes--------------------------------------------------------------- ## names(attributes(x) gives a list of all the attributes' names names(attributes(wl_dat)) ## take a look at the stimulation protocol attr(wl_dat, "protocol_table") ## at what frequency were cyclic changes to Position performed? attr(wl_dat, "cycle_frequency") ## at what frequency were data recorded? attr(wl_dat, "sample_frequency") ## ----transformations---------------------------------------------------------- ## this multiples Force by 2 ## and multiplies Position by (1/2) wl_fixed <- fix_GR(wl_dat, GR = 2) # quick check: max(wl_fixed$Force)/max(wl_dat$Force) #5592.578 / 2796.289 = 2 max(wl_fixed$Position)/max(wl_dat$Position) #1.832262 / 3.664524 = 0.5