Package 'wsprv'

July 22, 2025

Type Package	
Title Weighted Selection Probability for Rare Variant Analysis	
Version 0.1.0	
Author Xianglong Liang [aut, cre], Hokeun Sun [ctb]	
Maintainer Xianglong Liang <xianglongliang@gmail.com></xianglongliang@gmail.com>	
Description A weighted selection probability to locate rare variants associated with multiple phenotypes.	
License GPL-2	
Depends R (>= 3.6.0)	
Imports glmnet, mnormt, stats	
Encoding UTF-8	
RoxygenNote 7.1.1	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2021-12-17 19:40:02 UTC	
Contents	
wsprv	1
Index	5
	_
wsprv A weighted selection probability is developed to locate individual rare variants associated with multiple phenotypes.	

2 wsprv

Description

Recently, rare variant association studies with multiple phenotypes have drawn a lot of attentions because association signals can be boosted when rare variants are related with more than one phenotype. Most of existing statistical methods to identify rare variants associated with multiple phenotypes are based on a group test, where a gene or a genetic region is tested one at a time. However, these methods are not designed to locate individual rare variants within a gene or a genetic region. We propose a weighted selection probability to locate individual rare variants within a group after a multiple-phenotype based group test finds significance.

Usage

```
weight_sp(
  х,
  у,
  alpha = 1,
  penalty.factor = NULL,
  standardize = TRUE,
  type.multinomial = c("grouped", "ungrouped"),
  rep = 100,
  rate = 0.05
  gamma = 0.01
)
```

Arguments

Х A $n \times (m+p)$ matrix with n samples, m covariates and p rare variants where m can be zero, i.e., there does not exist covariates.

A $n \times Q$ phenotype matrix with n samples and Q phenotypes where Q > 1. У

The mixing parameter of elastic-net, alpha=1 is the lasso, and alpha=0 is the alpha

ridge. Default value is 1.

penalty.factor Separate penalty factors factors can be applied to each coefficient. Can be 0 for

some variables, which implies no shrinkage, and that variable is always included

in the model.

standardize Genotype standardization. Default is TRUE.

type.multinomial

A group lasso penalty is used on the multinomial coefficients for a variable when 'grouped'. It ensures the multinomial coefficents are all in or out. Default

is 'grouped'.

The number of bootstrap replications. We recommend to use 100 or more to rep

compute weighted selection probability. Default value is 100.

rate A tuning parameter represents rate of degree of freedom to the number of rare

variants. Default value is 0.05.

The upper gamma quantile of selection frequencies of individual variants each gamma

phenotype to compute the threshold. Default value is 0.01.

wsprv 3

Details

The penalty function of elastic-net is defined as

$$\lambda(\alpha||\beta||_1 + \frac{(1-\alpha)}{2}||\beta||_2^2),$$

where α is a mixing proportion of ridge and the lasso, and β is regression coefficients. This penalty is equivalent to the Lasso penalty if alpha=1.

Let η be the degree of freedom and it depends on the tuning parameter λ , and rate is computed as

$$rate = \frac{\eta}{p},$$

Note that $\eta \leq n$ is set up in weight_sp function.

Let δ_{γ} be a threshold of SF and it depends on the upper γ^{th} qunatile value of SF. Where $SF = \{SF_{11}(\eta), SF_{21}(\eta), \cdots, SF_{pQ}(\eta)\}$ is a set that contains selection frequencies of individual rare variants each phenotype.

Value

res A matrix contains the order of weighted selection probabilities from the largest

to the smallest and the corresponding weighted selection probabilities.

eta eta used.

bootstrap.rep The number of bootstrap replications used.

rate The tuning parameter rate used.

gamma The upper gamma quantile of selection frequencies of individual rare variants

each phenotype used.

Examples

```
# Generate simulation data
n <- 400
p <- 100
q <- 5
MAF <- 0.01
geno.prob <- rbind((1-MAF)^2,2*(1-MAF)*MAF,MAF^2)</pre>
x <- matrix(NA,n,p)</pre>
set.seed(1)
for(i in 1:p) x[,i] <- sample(0:2,n,prob=geno.prob,replace=TRUE)</pre>
beta <- c(rep(3.0,10),rep(0,(p-10)))
cova \leftarrow matrix(0.75,q,q)
diag(cova) <- 1
require(mnormt)
err.mat <- rmnorm(n,rep(0,q),cova)</pre>
y1 <- x %*% beta+err.mat[,1]</pre>
y2 <- x %*% beta+err.mat[,2]</pre>
y <- cbind(y1,y2,err.mat[,3:5])</pre>
```

4 wsprv

```
# Weighted selection probabilities for individual rare variants without covariates.
#If rep=100, time consuming.
wsp.rv1 <- weight_sp(x,y,rep=5) # continuous phenotypes

# Weighted selection probabilities for individual rare variants with covariates.
#If rep=100, time consuming.
cx <- cbind(rnorm(n),sample(0:1,n,replace=TRUE))
x <- cbind(cx,x)
penalty.factor <- c(rep(0,2),rep(1,p))
colnames(x) <- c('Age','Gender',paste0('V',3:102))
wsp.rv2 <- weight_sp(x,y,penalty.factor=penalty.factor,rep=5) # continuous phenotypes</pre>
```

Index

weight_sp(wsprv), 1
wsprv, 1